田佳玉 馮丹 胡焓 張書力 童勝雄 李少軍
摘要:目的 探討槲皮素(Que)對大鼠帶狀皰疹后神經(jīng)痛(PHN)及趨化因子配體3(CCL3,即MIP-1α)/C-C趨化因子受體(CCR)1/CCR5信號通路的影響。方法 將60只大鼠分為對照組(Con組)、PHN組、L-Que組(30 mg/kg)、M-Que組(60 mg/kg)、H-Que組(120 mg/kg)以及H-Que+MIP-1α組(120 mg/kg Que+0.4 mg/kg重組MIP-1α)。檢測各組大鼠機(jī)械痛閾值(PWT)、熱痛閾值(TWL);試劑盒檢測外周組織液腺苷、腺嘌呤核糖核苷酸(AMP)、腺苷二磷酸(ADP)以及脊髓背角樣本腫瘤壞死因子-α(TNF-α)和白細(xì)胞介素-1β(IL-1β)水平;通過HE染色觀察脊髓背角病理切片;免疫熒光染色檢測脊髓背角小膠質(zhì)細(xì)胞活化情況;Western blot檢測MIP-1α/CCR1/CCR5信號通路蛋白表達(dá)。結(jié)果 PHN組脊髓背角組織出現(xiàn)破裂現(xiàn)象,神經(jīng)束排列混亂,炎性細(xì)胞浸潤、水腫,神經(jīng)元輕微萎縮現(xiàn)象。與Con組相比,PHN組PWT值、腺苷、AMP、ADP水平降低(P<0.05),TWL值、TNF-α、IL-1β水平、Iba1陽性小膠質(zhì)細(xì)胞數(shù)量以及MIP-1α、CCR1、CCR5蛋白水平均升高(P<0.05);Que治療后,大鼠神經(jīng)束排列雜亂現(xiàn)象有所改善,炎性細(xì)胞浸潤減少,神經(jīng)元萎縮現(xiàn)象減輕;與PHN組相比,L-Que組、M-Que組、H-Que組的PWT值、腺苷、AMP、ADP水平升高(P<0.05),TWL值、TNF-α、IL-1β水平、Iba1陽性小膠質(zhì)細(xì)胞數(shù)量以及MIP-1α、CCR1、CCR5蛋白水平均降低(P<0.05),且Que作用效果呈劑量依賴性;與H-Que組相比,H-Que+MIP-1α組的PWT值、腺苷、AMP、ADP水平降低(P<0.05),TWL值、TNF-α、IL-1β水平、Iba1陽性小膠質(zhì)細(xì)胞數(shù)量以及MIP-1α、CCR1、CCR5蛋白水平均升高(P<0.05)。結(jié)論 Que可能通過抑制MIP-1α/CCR1/CCR5信號通路減輕大鼠炎癥反應(yīng),進(jìn)而減輕PHN。
關(guān)鍵詞:槲皮素;神經(jīng)痛,帶狀皰疹后;趨化因子CCL3;受體,CCR1;受體,CCR5
中圖分類號:R752.12文獻(xiàn)標(biāo)志碼:ADOI:10.11958/20221587
Mechanism of quercetin alleviating postherpetic neuralgia in rats by inhibiting
MIP-1α/CCR1/CCR5 signaling pathway
TIAN Jiayu, FENG Dan△, HU Han, ZHANG Shuli, TONG Shengxiong, LI Shaojun
Department of Pain, Wuhan First Hospital, Wuhan 430000, China
△Corresponding Author E-mail: ht3bxv@163.com
Abstract: Objective To investigate the impact of quercetin (Que) on postherpetic neuralgia (PHN) and chemokine ligand 3 (CCL3, namely MIP-1α)/C-C chemokine receptor 1 (CCR1)/C-C chemokine receptor 5 (CCR5) signaling pathway in rats. Methods Sixty rats were divided into the control group (Con), the PHN group (model group), the L-Que (30 mg/kg) group, the M-Que (60 mg/kg) group, the H-Que (120 mg/kg) group and the H-Que+pathway activator MIP-1α (120 mg/kg Que+0.4 mg/kg recombinant MIP-1α) group. The mechanical paw withdrawal threshold (PWT) and thermal pain threshold (TWL) of rats were detected in each group. The kit was used to detect adenosine, Adenine ribonucleotide (AMP), adenosine diphosphate (ADP) and tumor necrosis factor in spinal dorsal horn samples- α (TNF-α), and interleukin-1 β (IL-1 β) levels in spinal dorsal horn samples. HE staining was applied to observe the pathological sections of spinal dorsal horn. Immunofluorescence staining was used to detect the activation of microglia in spinal dorsal horn. Western blot assay was applied to detect MIP-1α/CCR1/CCR5 signaling pathway protein expression. Results In the PHN group, the dorsal horn of the spinal cord was ruptured, the arrangement of nerve bundles was disordered, and inflammatory cell infiltration, edema, and slight atrophy of neurons appeared. Compared with the Con group, the PWT value, adenosine, AMP and ADP levels were obviously decreased in the PHN group (P<0.05), and TWL value, TNF-α, IL-1β levels, the number of Iba1-positive microglia, MIP-1α, CCR1 and CCR5 protein levels were obviously increased (P<0.05). After treatment with Que, the disordered arrangement of nerve bundles was improved, the infiltration of inflammatory cells was reduced, and the phenomenon of neuronal atrophy disappeared. Compared with the PHN group, the PWT value, adenosine, AMP and ADP levels were obviously increased in the L-Que group, the M-Que group and the H-Que group (P<0.05). TWL value, TNF-α and IL-1β levels, the number of Iba1-positive microglia, and MIP-1α, CCR1 and CCR5 protein levels were obviously decreased (P<0.05). The effect of Que was dose dependent. Compared with the H-Que group, PWT value, adenosine, AMP and ADP levels were obviously decreased in the H-Que+MIP-1α group (P<0.05), and TWL value, TNF-α, IL-1β levels, the number of Iba1 positive microglia, MIP-1α, CCR1 and CCR5 protein levels were obviously increased (P<0.05). Conclusion Que may reduce the inflammatory response in rats by inhibiting the MIP-1α/CCR1/CCR5 signaling pathway, thereby reducing PHN.
Key words: Quercetin; neuralgia, postherpetic; chemokine CCL3; receptors, CCR1;receptors, CCR5
帶狀皰疹后神經(jīng)痛(postherpetic neuralgia,PHN)是一種神經(jīng)性疼痛,通常發(fā)生在帶狀皰疹發(fā)病后的1~3個月,疼痛劇烈且難以治愈[1]。PHN嚴(yán)重影響患者的生活質(zhì)量,增加患者焦慮、抑郁的風(fēng)險(xiǎn);然而,關(guān)于PHN的機(jī)制目前尚不清楚[2]。臨床使用阿片類、抗癲癇和抗抑郁藥物治療PHN及其并發(fā)癥,但治療效果并不理想,且可能會導(dǎo)致呼吸抑制、惡心嘔吐,甚至成癮等并發(fā)癥[3-4]。因此,尋找高效且不良反應(yīng)少的藥物是臨床急需解決的難題。槲皮素(Quercetin,Que)是一種天然類黃酮,通常用作膳食成分和補(bǔ)充劑,具有廣泛的生物活性,包括抗氧化應(yīng)激、抗炎、免疫調(diào)節(jié)、鎮(zhèn)痛和舒張血管等[5-6]?;谝陨纤幚砘钚裕藗冮_始探尋Que對疾病的治療效果。研究表明,Que可以減輕慢性縮窄性損傷(chronic constriction injury,CCI)大鼠的神經(jīng)性疼痛[7],但其作用機(jī)制尚不明確。趨化因子配體3(CC-chemokine ligand 3,CCL3,即MIP-1α)是炎癥性疼痛和痛覺過敏的調(diào)節(jié)因子,可通過激活C-C趨化因子受體(CC-chemokine receptor,CCR)1和CCR5來調(diào)節(jié)神經(jīng)系統(tǒng)的炎癥[8]。Li等[9]研究發(fā)現(xiàn),抑制MIP-1α/CCR1/CCR5信號通路可以減輕神經(jīng)性疼痛和神經(jīng)炎癥。筆者推測,Que可能通過抑制MIP-1α/CCR1/CCR5信號通路減輕PHN,本研究通過構(gòu)建PHN大鼠模型對此進(jìn)行探討。
1 材料與方法
1.1 實(shí)驗(yàn)動物 60只雄性SPF級SD大鼠,體質(zhì)量200~220 g,7周齡,購自杭州啟真實(shí)驗(yàn)動物科技有限公司,動物生產(chǎn)許可證號:SCXK(浙)2022-0005。所有大鼠均在動物飼養(yǎng)房中飼養(yǎng),溫度(25±2)℃,濕度(50±5)%,自由飲水、進(jìn)食,本實(shí)驗(yàn)全程遵循3R原則。
1.2 主要試劑與儀器 Que(上海金穗生物科技有限公司);樹膠脂毒素(resiniferatoxin,RTX,上海延慕實(shí)業(yè)有限公司);腫瘤壞死因子-α(TNF-α)、白細(xì)胞介素-1β(IL-1β)、腺苷、腺嘌呤核糖核苷酸(AMP)以及腺苷二磷酸(ADP)檢測試劑盒購自上海酶研生物科技有限公司;MIP-1α、CCR1、CCR5抗鼠抗體購自R&D Systems;重組大鼠MIP-1α蛋白以及Iba-1、GAPDH兔抗鼠抗體購自Abcam公司;HPR標(biāo)記的山羊抗兔IgG二抗購自Cell Signaling Technology公司,用于免疫熒光染色和Western blot檢測。凝膠成像系統(tǒng)購自杭州申花科技有限公司;包埋機(jī)購自上海信裕生物科技有限公司。冷/熱盤痛覺測試儀購自上海玉研科學(xué)儀器有限公司。
1.3 研究方法
1.3.1 PHN模型構(gòu)建及分組 造模前,檢測每只大鼠的機(jī)械和熱敏感性。通過隨機(jī)數(shù)字表法抽取10只大鼠作為對照組(Con組)。將RTX與10%乙醇、80%生理鹽水、10%Tween 80混合均勻配制成100 mg/L的RTX混合液,隨后按照200 μg/kg腹腔注射造模;造模3 d后再次檢測大鼠的機(jī)械和熱敏感性,若與造模前相比,熱痛閾值(TWL)顯著升高,機(jī)械痛閾值(PWT)顯著降低,則造模成功[10]。Con組注射等劑量10%乙醇、10%Tween 80的混合液。
將造模成功的50只大鼠按照隨機(jī)數(shù)字表法分為PHN組、L-Que組、M-Que組、H-Que組以及H-Que+MIP-1α組。L-Que組、M-Que組、H-Que組分別灌胃30、60、120 mg/kg槲皮素[7],每日1次,連續(xù)灌胃21 d。H-Que+MIP-1α組在灌胃120 mg/kg Que的基礎(chǔ)上,于最后7 d腹腔注射0.4 mg/kg的重組MIP-1α,每日1次。
1.3.2 機(jī)械刺激敏感性實(shí)驗(yàn) 將大鼠置于透明的亞克力箱子中,然后將箱子放在鐵網(wǎng)上,將大鼠置于箱子30 min,適應(yīng)環(huán)境,然后選用0.2~26 g壓力值的vonfrey絲并按從小到大的強(qiáng)度順序由下往上垂直刺激大鼠右后腳外側(cè)邊緣皮膚,當(dāng)大鼠出現(xiàn)回縮后足、舔足以及甩腿等收縮反應(yīng)時,記錄此時的刺激強(qiáng)度,即為PWT。
1.3.3 熱刺激敏感性實(shí)驗(yàn) 將大鼠置于透明的亞克力箱子中,箱子下面放冷/熱盤痛覺測試儀。待大鼠適應(yīng)環(huán)境后,將測試儀熱強(qiáng)度調(diào)至45 ℃,并對準(zhǔn)大鼠右后足底,當(dāng)后足出現(xiàn)收縮現(xiàn)象,記錄此時的強(qiáng)度值,即為TWL。
1.3.4 外周神經(jīng)遞質(zhì)腺苷、AMP及ADP的檢測 灌胃藥物結(jié)束后,對各組大鼠右下肢消毒,將微透析線性探針插入脛骨前緣,連接微透析系統(tǒng),在1 μL/min的流速下,灌流30 min,收集外周組織液(灌流液)按照試劑盒說明書檢測腺苷、AMP及ADP水平。
1.3.5 脊髓背角樣本采集 完成1.3.4檢測后,麻醉大鼠并處死,取L3-L5脊髓背角標(biāo)本,通過隨機(jī)數(shù)字表法每組抽取5只大鼠的標(biāo)本固定于4%多聚甲醛用于制作病理石蠟切片,剩余5只大鼠的標(biāo)本置于-80 ℃冰箱用于酶聯(lián)免疫吸附試驗(yàn)(ELISA)和Western blot實(shí)驗(yàn)。
1.3.6 HE染色觀察脊髓背角病理切片 將固定后的L3-L5脊髓樣本脫水后用石蠟包埋,切成5 μm左右的組織切片,脫蠟后用不同體積分?jǐn)?shù)的乙醇復(fù)水,經(jīng)HE染色后,再用梯度乙醇脫水,中性膠密封,置于顯微鏡下觀察脊髓背角病理變化。
1.3.7 ELISA試劑盒檢測炎性因子 取出保存在-80 ℃冰箱的脊髓樣本,經(jīng)研磨儀勻漿后,分離獲得上清液,根據(jù)ELISA試劑盒說明書檢測脊髓背角中炎性因子TNF-α、IL-1β水平。
1.3.8 免疫熒光法測定脊髓背角中小膠質(zhì)細(xì)胞活化情況 取脊髓石蠟切片置于含有10%山羊血清和0.3% Trition X-100的PBS溶液2 h。隨后加入一抗Iba-1,用PBS沖洗后加入HPR標(biāo)記的IgG二抗,用DAPI染色后封片,置于顯微鏡下拍照觀察陽性小膠質(zhì)細(xì)胞數(shù)量。
1.3.9 Western blot檢測MIP-1α/CCR1/CCR5信號通路相關(guān)蛋白表達(dá) 提取各組脊髓樣本的總蛋白,使用電泳分離蛋白后轉(zhuǎn)膜,加入一抗MIP-1α(1∶2 000)、CCR1(1∶1 000)、CCR5(1∶1 000)、GAPDH(1∶1 000),4 ℃過夜,加入HPR標(biāo)記的IgG二抗,37 ℃下孵育1 h,加入ECL顯影后,以GAPDH為內(nèi)參基因,用凝膠成像系統(tǒng)觀察目的蛋白條帶相對表達(dá)量。
1.4 統(tǒng)計(jì)學(xué)方法 采用SPSS 25.0軟件進(jìn)行數(shù)據(jù)分析,計(jì)量資料均符合正態(tài)分布并以均數(shù)±標(biāo)準(zhǔn)差[([x] ±s)
]表示,多組間比較使用單因素方差分析(ANOVA),組間多重比較使用SNK-q檢驗(yàn)。P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1 Que對各組大鼠機(jī)械刺激和熱刺激敏感性的影響 與Con組相比,PHN組的PWT值減小,TWL值增加(P<0.05),與PHN組相比,L-Que組、M-Que組、H-Que組的PWT值依次增加,TWL值明顯減小,且呈劑量依賴性(P<0.05);與H-Que組相比,H-Que+MIP-1α組的PWT值下降,TWL值上升(P<0.05),見表1。
2.2 Que對各組大鼠外周神經(jīng)遞質(zhì)的影響 與Con組相比,PHN組的腺苷、AMP及ADP水平降低(P<0.05);與PHN組相比,L-Que組、M-Que組、H-Que組的腺苷、AMP以及ADP水平依次增加(P<0.05);與H-Que組相比,H-Que+MIP-1α組的腺苷、AMP以及ADP水平下降(P<0.05),見表2。
2.3 Que對各組大鼠神經(jīng)病理性損傷的影響 HE染色結(jié)果顯示,PHN組脊髓背角組織出現(xiàn)破裂現(xiàn)象,神經(jīng)束排列混亂,炎性細(xì)胞浸潤、水腫,神經(jīng)元輕微萎縮等現(xiàn)象;Que治療后,神經(jīng)束排列逐漸規(guī)則,炎性細(xì)胞浸潤有所減少,神經(jīng)元萎縮現(xiàn)象有所減輕,且H-Que組效果最好;H-Que+MIP-1α組脊髓背角組織形態(tài)與PHN組相似,較Que組損傷加重,見圖1。
2.4 Que對各組大鼠炎性因子水平和小膠質(zhì)細(xì)胞活化的影響 與Con組相比,PHN組TNF-α及IL-1β水平上升(P<0.05);與PHN組相比,L-Que組、M-Que組、H-Que組TNF-α以及IL-1β水平呈依次下降趨勢(P<0.05);與H-Que組相比,H-Que+MIP-1α組TNF-α和IL-1β水平上升(P<0.05),見表3。與Con組相比,PHN組Iba1陽性小膠質(zhì)細(xì)胞數(shù)量明顯增多(P<0.05);與PHN組相比,L-Que組、M-Que組、H-Que組Iba1陽性小膠質(zhì)細(xì)胞數(shù)量明顯減少,且呈劑量依賴性(P<0.05);與H-Que組相比,H-Que+MIP-1α組Iba1陽性小膠質(zhì)細(xì)胞數(shù)量明顯增多(P<0.05),見圖2、表3。
2.5 Que對各組大鼠MIP-1α/CCR1/CCR5通路相關(guān)蛋白表達(dá)的影響 與Con組相比,PHN組MIP-1α、CCR1、CCR5蛋白水平均上調(diào)(P<0.05);與PHN組相比,L-Que組、M-Que組、H-Que組MIP-1α、CCR1、CCR5蛋白水平依次下調(diào)(P<0.05);與H-Que組相比,H-Que+MIP-1α組MIP-1α、CCR1、CCR5蛋白水平均上調(diào)(P<0.05),見圖3、表4。
3 討論
PHN的典型特征是機(jī)體出現(xiàn)持續(xù)性疼痛,熱敏感性降低以及觸覺異常[11]。外周組織液中的腺苷、AMP為“嘌呤能感受器”的重要組成部分,參與中樞以及外周神經(jīng)系統(tǒng)痛覺信息的傳導(dǎo),調(diào)節(jié)神經(jīng)性疼痛;當(dāng)其水平降低時,提示機(jī)體痛閾降低[12]。本研究使用RTX構(gòu)建大鼠PHN模型[13],結(jié)果發(fā)現(xiàn),PHN組較Con組脊髓背角組織出現(xiàn)神經(jīng)束排列混亂、炎性細(xì)胞浸潤、水腫,神經(jīng)元輕微萎縮等病理現(xiàn)象,且PWT值、腺苷、AMP、ADP水平明顯減小,TWL值均明顯升高,大鼠機(jī)械刺激敏感性增加,熱刺激敏感性降低,與相關(guān)研究[10]一致,表明PHN模型構(gòu)建成功。Que的鎮(zhèn)痛作用已被大量研究證實(shí),如Que可以減輕糖尿病神經(jīng)性疼痛及慢性縮窄性損傷的神經(jīng)性疼痛[14-16]。但關(guān)于Que對PHN治療作用的機(jī)制尚不清楚。本研究發(fā)現(xiàn),Que治療后,神經(jīng)束排列逐漸規(guī)則,炎性細(xì)胞浸潤有所減少,神經(jīng)元形態(tài)趨于正常,且PWT值、腺苷、AMP、ADP水平明顯升高,TWL值明顯降低,且呈劑量依賴性,提示Que可以改善機(jī)械和熱刺激敏感性,減輕PHN。
脊髓炎癥參與神經(jīng)性疼痛的發(fā)生發(fā)展過程,其中神經(jīng)膠質(zhì)細(xì)胞激活是神經(jīng)性疼痛的重要原因之一[17-19]。小膠質(zhì)細(xì)胞數(shù)量增加以及細(xì)胞體增大是神經(jīng)膠質(zhì)細(xì)胞激活的主要特征[20-21]。活化的神經(jīng)膠質(zhì)細(xì)胞還會促進(jìn)促炎細(xì)胞因子IL-1β和TNF-α的釋放,誘發(fā)神經(jīng)炎癥,進(jìn)而加重神經(jīng)性疼痛[22]。本研究顯示,PHN組較Con組TNF-α、IL-1β水平、Iba1陽性小膠質(zhì)細(xì)胞數(shù)量均明顯升高,而Que治療后,TNF-α、IL-1β水平、Iba1陽性小膠質(zhì)細(xì)胞數(shù)量均明顯降低,提示Que可抑制PHN大鼠脊髓背角神經(jīng)膠質(zhì)細(xì)胞的活化及促炎因子的釋放,進(jìn)而緩解神經(jīng)性疼痛。
MIP-1α是一種具有促炎特性的趨化蛋白。有研究報(bào)道,MIP-1α對介導(dǎo)炎癥反應(yīng)至關(guān)重要[23]。Wu等[8]研究表明,MIP-1α可以通過激活CCR1/CCR5信號通路誘導(dǎo)炎癥反應(yīng)。最近有研究發(fā)現(xiàn),抑制MIP-1α/CCR1/CCR5信號通路可以緩解神經(jīng)性疼痛和神經(jīng)炎癥[9]。本研究結(jié)果與其一致,PHN組MIP-1α、CCR1、CCR5蛋白水平明顯升高,而Que治療可明顯降低MIP-1α、CCR1、CCR5蛋白水平,推測Que可能通過抑制MIP-1α/CCR1/CCR5信號通路減輕PHN。為了驗(yàn)證此猜想,本研究同時給予大鼠Que和重組MIP-1α,結(jié)果發(fā)現(xiàn),H-Que+MIP-1α組較H-Que組的PWT值、腺苷、AMP、ADP水平明顯降低,TWL值、TNF-α、IL-1β水平、Iba1陽性小膠質(zhì)細(xì)胞數(shù)量以及MIP-1α、CCR1、CCR5蛋白水明顯升高,提示重組MIP-1α消除了Que對PHN大鼠的保護(hù)作用。
綜上所述,Que可能通過抑制MIP-1α/CCR1/CCR5信號通路,減輕PHN大鼠炎癥反應(yīng),進(jìn)而緩解PHN癥狀。Que是否還能作用于其他通路,需要進(jìn)一步探究。
參考文獻(xiàn)
[1] MAKHARITA M Y. Prevention of post-herpetic neuralgia from dream to reality:a ten-step model[J]. Pain Physician,2017,20(2):E209-E220.
[2] MEACHAM K,SHEPHERD A,MOPHAPATRA D P,et al. Neuropathic pain:central vs. peripheral mechanisms[J]. Curr Pain Headache Rep,2017,21(6):28-38. doi:10.1007/s11916-017-0629-5.
[3] KENNEDY P,GERSHON A A. Clinical features of varicella-zoster virus infection[J]. Viruses,2018,10(11):609. doi:10.3390/v10110609.
[4] TAN X,MA L,YUAN J,et al. Intravenous infusion of lidocaine enhances the efficacy of conventional treatment of postherpetic neuralgia[J]. J Pain Res,2019,12:2537-2545. doi:10.2147/JPR.S213128.
[5] CHEN J,LI G,SUN C,et al. Chemistry,pharmacokinetics,pharmacological activities,and toxicity of Quercitrin[J]. Phytother Res,2022,36(4):1545-1575. doi:10.1002/ptr.7397.
[6] CARULLO G,CAPPELLO A R,F(xiàn)RATTARUOLO L,et al. Quercetin and derivatives:useful tools in inflammation and pain management[J]. Future Med Chem,2017,9(1):79-93. doi:10.4155/fmc-2016-0186.
[7] YE G,LIN C,ZHANG Y,et al. Quercetin alleviates neuropathic pain in the rat CCI model by mediating AMPK/MAPK pathway[J]. J Pain Res,2021,14:1289-1301. doi:10.2147/JPR.S298727.
[8] WU X,JI K,WANG H,et al. MIP-1α induces inflammatory responses by upregulating chemokine receptor 1/chemokine receptor 5 and activating c-Jun N-terminal kinase and mitogen-activated protein kinase signaling pathways in acute pancreatitis[J]. J Cell Biochem,2019,120(3):2994-3000. doi:10.1002/jcb.27049.
[9] LI M,JIANG H,GU K,et al. Lidocaine alleviates neuropathic pain and neuroinflammation by inhibiting HMGB1 expression to mediate MIP-1α/CCR1 pathway[J]. J Neuroimmune Pharmacol,2021,16(2):318-333. doi: 10.1007/s11481-020-09913-y.
[10] 常成,宋燕. 甘草酸銨對帶狀皰疹后遺神經(jīng)痛大鼠GLP-1R/IL-10/β-內(nèi)啡肽通路及脊髓背角小膠質(zhì)細(xì)胞活化的影響[J]. 免疫學(xué)雜志,2022,38(1):81-87. CHANG C,SONG Y. Effect of ammonium glycyrrhizinate on GLP-1R/IL-10/β-endorphin pathway and microglia activation in spinal dorsal dorn of rats posherpetic neuralgla[J]. Immunal J,2022,38(1):81-87. doi:10.13431/j.cnki.immunol.j.20220012.
[11] JI C,XU Y,HAN F,et al. Quercetin alleviates thermal and cold hyperalgesia in a rat neuropathic pain model by inhibiting Toll-like receptor signaling[J]. Biomed Pharmacother,2017,94:652-658. doi:10.1016/j.biopha.2017.07.145.
[12] FERRARI L F,ARALDI D,LEVINE J D. Regulation of expression of hyperalgesic priming by estrogen receptor α in the rat[J]. J Pain,2017,18(5):574-582. doi:10.1016/j.jpain.2016.12.017.
[13] WEI X,WANG L,HUA J,et al. Inhibiting BDNF/TrkB.T1 receptor improves resiniferatoxin-induced postherpetic neuralgia through decreasing ASIC3 signaling in dorsal root ganglia[J]. J Neuroinflammation,2021,18(1):96. doi:10.1186/s12974-021-02148-5.
[14] YANG R,LI L,YUAN H,et al. Quercetin relieved diabetic neuropathic pain by inhibiting upregulated P2X4 receptor in dorsal root ganglia[J]. J Cell Physiol,2019,234(3):2756-2764. doi:10.1002/jcp.27091.
[15] WANG R,QIU Z,WANG G,et al. Quercetin attenuates diabetic neuropathic pain by inhibiting mTOR/p70S6K pathway-mediated changes of synaptic morphology and synaptic protein levels in spinal dorsal horn of db/db mice[J]. Eur J Pharmacol,2020,882:173266. doi:10.1016/j.ejphar.2020.173266.
[16] ESPINOSA-JU?REZ J V,JARAMILLO-MORALES O A,D?CIGA-CAMPOS M,et al. Sigma-1 receptor antagonist (BD-1063) potentiates the antinociceptive effect of quercetin in neuropathic pain induced by chronic constriction injury[J]. Drug Dev Res,2021,82(2):267-277. doi:10.1002/ddr.21750.
[17] CHEN Z,DOYLE T M,LUONGO L,et al. Sphingosine-1-phosphate receptor 1 activation in astrocytes contributes to neuropathic pain[J]. Proc Natl Acad Sci U S A,2019,116(21):10557-10562. doi:10.1073/pnas.1820466116.
[18] ECHEVERRY S,SHI X Q,YANG M,et al. Spinal microglia are required for long-term maintenance of neuropathic pain[J]. Pain,2017,158(9):1792-1801. doi:10.1097/j.pain.0000000000000982.
[19] WANG M,PAN W,XU Y,et al. Microglia-mediated neuroinflammation:a potential target for the treatment of cardiovascular diseases[J]. J Inflamm Res,2022,15:3083-3094. doi:10.2147/JIR.S350109.
[20] DAVIS B M,SALINAS-NAVARRO M,CORDEIRO M F,et al. Characterizing microglia activation:a spatial statistics approach to maximize information extraction[J]. Sci Rep,2017,7(1):1576. doi: 10.1038/s41598-017-01747-8.
[21] WANG J,TU J,CAO B,et al. Astrocytic l-lactate signaling facilitates amygdala-anterior cingulate cortex synchrony and decision making in rats[J]. Cell Rep,2017,21(9):2407-2418. doi:10.1016/j.celrep.2017.11.012.
[22] YANG Q Q,ZHOU J W. Neuroinflammation in the central nervous system: symphony of glial cells[J]. Glia,2019,67(6):1017-1035. doi: 10.1002/glia.23571.
[23] PELISCH N,ROSAS ALMANZA J,STEHLIK K E,et al. CCL3 contributes to secondary damage after spinal cord injury[J]. J Neuroinflammation,2020,17(1):362. doi:10.1186/s12974-020-02037-3.
(2023-09-27收稿 2023-12-06修回)
(本文編輯 李國琪)