• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ON DE FINETTI’S OPTIMAL IMPULSE DIVIDEND CONTROL PROBLEM UNDER CHAPTER 11 BANKRUPTCY*

    2024-03-23 08:02:54王文元
    關(guān)鍵詞:瑞星

    (王文元)

    School of Mathematics and Statistics, Fujian Normal University, Fuzhou 350007, China;School of Mathematical Sciences, Xiamen University, Xiamen 361005, China E-mail: wywang@fjnu.edu.cn

    Ruixing MING (明瑞星)?

    School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou 310018, China E-mail: rxming@zjgsu.edu.cn

    Yijun HU (胡亦鈞)

    School of Mathematics and Statistics, Wuhan University, Wuhan 430071, China E-mail: yjhu.math@whu.edu.cn

    Abstract Motivated by recent advances made in the study of dividend control and risk management problems involving the U.S.bankruptcy code, in this paper we follow [44] to revisit the De Finetti dividend control problem under the reorganization process and the regulator’s intervention documented in U.S.Chapter 11 bankruptcy.We do this by further accommodating the fixed transaction costs on dividends to imitate the real-world procedure of dividend payments.Incorporating the fixed transaction costs transforms the targeting optimal dividend problem into an impulse control problem rather than a singular control problem, and hence computations and proofs that are distinct from [44] are needed.To account for the financial stress that is due to the more subtle concept of Chapter 11 bankruptcy,the surplus process after dividends is driven by a piece-wise spectrally negative L′evy process with endogenous regime switching.Some explicit expressions of the expected net present values under a double barrier dividend strategy, new to the literature, are established in terms of scale functions.With the help of these expressions, we are able to characterize the optimal strategy among the set of admissible double barrier dividend strategies.When the tail of the L′evy measure is log-convex, this optimal double barrier dividend strategy is then verified as the optimal dividend strategy, solving our optimal impulse control problem.

    Key words spectrally negative L′evy process;Chapter 11 bankruptcy;De Finetti’s dividend problem; double barrier strategy; impulse control

    1 Introduction

    As an alternative risk management tool to that of ruin probability, De Finetti’s dividend control problem has remained an active research topic in corporate finance and insurance for decades, mainly due to its effectiveness in signaling the health and stability of financial companies.The goal of this type of risk management is to maximize the expected total net present value (NPV) of accumulated dividend payments, which is conventionally referred to as the value of the company.The literature of the past decades has witnessed fruitful research (see[16, 17, 21, 42] for some early works along these lines) on De Finetti’s dividend optimization involving stochastic regular,singular,or impulse control problems under a number of risk models, among which the spectrally negative L′evy risk model has been gaining in popularity in insurance applications, due to its capability to model the reserve process of an insurance company that collects premiums continuously and pays claim payments in lump sums.Early works on De Finetti’s dividend control problem under the spectrally negative L′evy risk model are[6, 25, 31, 32, 41]; see also the references therein.In particular, the works of [6, 31, 32, 43-45]verified that the optimal dividend strategy yielding the maximum NPV of accumulated dividends is the barrier strategy, here the fluctuation theory of spectrally negative L′evy processes and the standard approach of the Hamilton-Jacobi-Bellman(HJB)equation was adopted.For a more comprehensive review of developments in optimal dividends and the related methodology,we refer to two survey papers,[1]and[3],where thorough and insightful reviews on the classical contributions and recent progress in the dividend control field are provided.In addition, a variety of recent works have taken into account new and different risk factors, control constraints or model generalizations; see, for example, [4, 5, 10, 11, 15, 22, 28, 35, 36, 39, 43, 44, 46], etc..

    In recent years, the modelling of the liquidation process (Chapter 7 bankruptcy) and the reorganization process (Chapter 11 bankruptcy) written in the bankruptcy code of the United States has attracted more and more research attention among at the insurance and finance communities; see, [8, 9, 13, 14, 27, 37] as well as the references therein.To get a real-world picture of Chapter 7 and Chapter 11 bankruptcy, [29] used a piece-wise time-homogeneous diffusion process, as well as three constant barrier levels,a,bandc(a <b <c), to model the reserve process of an insurance company.The lower barrierarepresents the liquidation barrier, i.e., once the reserve process falls belowa, the company is liquidated because its assets can no longer cover its debts.The middle barrierbrepresents the reorganization barrier, i.e.,once the reserve process falls belowb, the insurer enters a state of insolvency (the businesses of an insolvent insurer are subject to reorganization under the interventions of the regulator),and it may either return to the solvent state (a solvent insurer is free of interventions) if the reserve process recovers to the upper barriercwithin the grace period granted by the regulator,or it remains in a state of insolvency and is then liquidated.The upper barriercrepresents the solvency barrier, i.e., an insurer who possesses a reserve above this barrier is solvent, since it is able to meet its liabilities, and the solvent insurer will not switch to the insolvent state unless the reserve process falls belowbat some future time.In addition, the dynamics of the reserve process, subject to the state of the insurer, switches between two time-homogeneous diffusion processes with different drifts and volatilities.[29] obtained closed-form expressions of the liquidation probability and the Laplace transform of the liquidation time.

    Inspired by the above mentioned works on the De Finetti dividend problems and the financial modelling of the liquidation and reorganization process, [44]considered a variant of the De Finetti optimal dividend control problem by incorporating an appealing feature of Chapter 11 bankruptcy to the piece-wise spectrally negative L′evy risk processes embedded with a reorganization barrierband a solvency barrierc(b <c); it turned out that a single barrier dividend strategy is the optimal dividend strategy.In this paper, to better imitate the realworld procedure of dividend payments, we would like to incorporate the real-life factor of fixed transaction costs on dividends into our new targeting variant for the De Finetti dividend optimization problem.In addition, we follow[44]in assuming that the uncontrolled reserve process(i.e., free of dividends) evolves as two spectrally negative L′evy processes switching between each other, where a change in the state of the insurer triggers a switch of the dynamics of the reserve process.To match the real life situation, we also assume that dividends are paid only when the reserve is higher thanc.An analytical characterization of the optimal strategy in the set of all double barrier admissible dividend strategies is provided.Then important properties of the optimal double barrier levels are studied.A sufficient condition that the L′evy measure has a log-convex tail is finally found; under that our optimal control problem is solvable, in that the optimal double barrier dividend strategy dominates all admissible impulse dividend strategies.We mention that, since no fixed transaction costs are considered, the dividend optimization problem addressed in [44] is a singular control problem.With the presence of fixed transaction costs, our new control problem becomes an impulse control problem, rather than a singular control problem as in [44].Therefore, compared with [44], we need distinct computations and arguments to solve our control problem and characterize the optimal impulse dividend strategy; for example, some different deep understandings of the scale functions and delicate computations on generators and slope conditions are needed.Another contribution of the current paper lies in that it helps understanding of how the impulse dividend decision can be affected by reorganization and by regulator’s intervention for a concrete example, see Section 4, where detailed discussions are provided.

    The rest of the paper is organized as follows: some preliminary results on spectrally negative L′evy processes are presented in Section 2.Section 3 focuses on solving De Finetti’s optimal impulse dividend control problem by accommodating fixed transaction costs under Chapter 11 bankruptcy; here the optimal impulse control is shown to fit the double-barrier type dividend strategy by following a “guess-and-verify” procedure.In Section 4, a concrete example is provided and analyzed to illustrate the main results obtained in Section 3.

    2 Preliminaries on Spectrally Negative L′evy Processes

    We collect in this section some elementary facts on the spectrally negative L′evy processes;interested readers may refer to [23] for more details.A spectrally negative L′evy process is an upward-jump-free stochastic process having stationary and independent increments.Denote byX={X(t);t ≥0}a spectrally negative L′evy process defined on a filtered probability space(Ω,{Ft;t ≥0},P) satisfying the usual conditions.To avoid trivialities, we assume thatXhas no monotone paths.Let Pxbe the conditional probability, given thatXstarts fromx, and let Exbe the corresponding expectation operator.For simplicity, write P and E for P0and E0,respectively.The Laplace transform ofXis given by

    We recall that the scale functionWqis left and right differentiable atx ∈(0,∞).Furthermore,Wqis continuously differentiable on (0,∞) ifXhas sample paths of unbounded variation or has sample paths of bounded variation and the L′evy measure is atomless; in particular, it is twice continuously differentiable on (0,∞) ifXhas a nontrivial Gaussian component.We are refer to [31] for more analytical properties of the scale functions.To make our impulse control problem solvable, we shall assume throughout this paper that the tail of the L′evy measureυis log-convex, and hence the scale functionWq(x) is continuously differentiable andW′q(x) is log-convex, implying thatW′q(x) is right and left differentiable over (0,∞) and is differentiable over (0,∞) except for countably many points.In the sequel, byW′′q(x), we mean the right derivative ofW′q(x) whenW′q(x) is not differentiable atx.

    3 De Finetti’s Optimal Dividend under Chapter 11 Bankruptcy and Fixed Transaction Costs

    This section investigates De Finetti’s optimal dividend control problem with fixed transaction costs on dividends under the Chapter 11 bankruptcy is written in the U.S.bankruptcy code.To describe the dynamics of switching under the regulator’s intervention, we introduce an auxiliary state processI(t), subject to the dividend control, as an indicator of the process of solvency and insolvency states.Supposing that the insurer is solvent at timet ≥0 (i.e.,I(t) = 0), it remains solvent until the reserve processUfalls below the reorganization barrierb, at which time the state of the insurer is switched to that of insolvency.On the other hand, if the insurer is in the insolvent state at timet ≥0(i.e.,I(t)=1),then it remains in the insolvent state until the reserve process climbs up to the safety barrierc, at which period the state of the insurer is switched to that of being solvent.As a result, the dynamics of the reserve processUfollows as a spectrally negative L′evy processXdeduced with dividends whenever the insurer is solvent, andUis governed by the spectrally negative L′evy processXwhenever the insurer is insolvent.We mention that Chapter 11 bankruptcy takes place if the insurer stays continuously in a state of insolvency for a time interval greater than that of the grace time limit granted by the regulator.It also needs to be mentioned that, due to the additional costs at the time of dividend payment, we shall restrict the admissible controls to impulse dividend strategies,instead of regular or singular dividend strategies.

    3.1 Problem Formulation

    (b) Supposing that the process (U,I) has been defined on [0,Tn] for somen ≥0 withTn=∞, we updateTn+1=∞.

    Let us denote byDthe set of all admissible impulse dividend controls, which consists of all pure-jump non-decreasing and left-continuous F-adapted processes.For an admissible impulse dividend controlD ∈D, we consider the next two expected NPVs with the fixed unit transaction costφsuch that

    3.2 Expected NPVs of Dividends under a Double Barrier Strategy

    which completes the proof.□

    3.3 Optimal Double Barriers and Verification of the Optimality

    For fixedbandcsuch that-∞<b <c <∞, let us define the auxiliary function

    which stands for the set of the maximizers of the above bi-variate functionξ.The following lemma investigates some properties ofMthat are useful for further computations and analysis;see Proposition 3.2 and the proof of Lemma 3.3, etc.:

    Lemma 3.3The setMdefined in (3.12) is non-empty, and there exists az0∈(c,∞)such that

    ProofFrom (2.1) and the L’H?ospital’s rule, it can be verified that

    Proposition 3.4For (z1,z2)∈M, we have that

    By the definition ofξ,Proposition 3.1 and Lemma 3.1,it seems reasonable to take a double barrier (z1,z2)∈Mdividend strategy as the candidate optimal strategy among the set of all admissible double barrier dividend strategies.As is stated above, we aim to show that the optimal impulse dividend control under fixed transaction costs fits this type of double barrier dividend strategy.To this end,we guess that the double barrier(z1,z2)∈Mdividend strategy is the optimal one among the set of all admissible impulse dividend strategies, and verify in the next lemma that its value function fits the Hamilton-Jacobi-Bellman (HJB) inequality to which the optimal value function should fit.

    Lemma 3.5For (z1,z2)∈M, we have that

    Putting all of the pieces together completes the proof.□

    ProofFor a given strategyD ∈Dand the resulting surplus processU,given by Definition 3.1,we denote(Uc(t))t≥0as the continuous part of(U(t))t≥0.In addition,for a positive integerN ≥1, let us defineηN:=inf{t ≥0:|U(t)|>N}as the sequence of localizing stopping times.By definition, it holds that, fort <ηN,

    Theorem 3.8Suppose that the tail of the L′evy measure is log-convex.Recall thatMis as defined in (3.12).The double barrier (z1,z2)∈Mdividend strategy is the optimal impulse dividend strategy achieving the maximal value function up to the Chapter 11 bankruptcy time.

    4 An Illustrative Example

    Under the mild condition that the L′evy measure ofXhas a log-convex tail, Theorem 3.8 verifies that the double barrier dividend strategy with barriers (z1,z2)∈Mserves as the optimal impulse dividend strategy,and yields the maximum expected discounted total dividends(subtracting with transaction costs).To compute explicitly the two barriers of the optimal impulse dividend strategy, we consider the Cram′er-Lundberg processXwith exponential jump sizes; namely, a processXdefined by a deterministic driftp(the premium income) subtracting a compound Poisson process with jump intensityλ0and exponentially distributed jump sizes with a mean of 1/μ.It is well known that

    ·c <x0andφ0≤φ <x1-c.From (4.3) we have thatg(c)>0, which, together with the fact thatgis strictly increasing, yields thatg(x)>0 for allx ∈[c,x0], which contradicts the first equation in (3.14).Hence, there should not be an interior local maximum point ofξ,which implies thatMreduces to a singleton, i.e.,M={(c,z2)}withz2∈(x0,∞) being the unique solution of (4.2).

    Conflict of InterestThe authors declare no conflict of interest.

    猜你喜歡
    瑞星
    一個(gè)農(nóng)民的70年書(shū)畫(huà)情緣
    跌落的殺軟巨頭
    瑞星再來(lái),尚能飯否?
    瑞星發(fā)布“互聯(lián)網(wǎng)+”安全解決方案
    蕩秋千
    以航天品質(zhì)主打高端企業(yè)市場(chǎng)瑞星連發(fā)16款企業(yè)新品
    三層防護(hù)真“給力”,瑞星2011全接觸
    瑞星安全周報(bào)
    瑞星安全周報(bào)
    瑞星安全周報(bào)
    亚洲精品成人久久久久久| 2021少妇久久久久久久久久久| 成人二区视频| 欧美+日韩+精品| 永久免费av网站大全| www.色视频.com| 岛国在线免费视频观看| 国产v大片淫在线免费观看| 久久亚洲国产成人精品v| 寂寞人妻少妇视频99o| 色吧在线观看| 毛片女人毛片| 国产欧美日韩精品一区二区| 久久热精品热| 听说在线观看完整版免费高清| 成人性生交大片免费视频hd| 久久久久久久久中文| ponron亚洲| 美女黄网站色视频| 一本一本综合久久| 可以在线观看毛片的网站| 国产极品精品免费视频能看的| 亚洲av男天堂| 一级毛片我不卡| 亚洲国产精品国产精品| 中文亚洲av片在线观看爽| 男人舔女人下体高潮全视频| 六月丁香七月| 中文字幕人妻熟人妻熟丝袜美| 亚洲经典国产精华液单| 久久精品夜夜夜夜夜久久蜜豆| 最近中文字幕高清免费大全6| 日本黄色片子视频| 亚洲国产精品合色在线| 亚洲自拍偷在线| 我要看日韩黄色一级片| 国产精品久久久久久久久免| 不卡视频在线观看欧美| 日韩精品有码人妻一区| 亚洲精品国产av成人精品| 99久久成人亚洲精品观看| 网址你懂的国产日韩在线| 久久久久久大精品| 国产真实乱freesex| 成人美女网站在线观看视频| 插逼视频在线观看| 麻豆国产97在线/欧美| 1024手机看黄色片| 欧美97在线视频| 国产成人精品久久久久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 中文亚洲av片在线观看爽| 国产成人91sexporn| 欧美xxxx黑人xx丫x性爽| 亚洲美女搞黄在线观看| 国产熟女欧美一区二区| 亚洲精品乱久久久久久| 最近2019中文字幕mv第一页| 日韩在线高清观看一区二区三区| 日本色播在线视频| 亚洲欧美日韩卡通动漫| 老女人水多毛片| 亚洲国产高清在线一区二区三| 色吧在线观看| 国产美女午夜福利| 一个人看视频在线观看www免费| 免费观看a级毛片全部| 国产黄色小视频在线观看| 免费看av在线观看网站| .国产精品久久| 色综合亚洲欧美另类图片| 能在线免费看毛片的网站| 乱码一卡2卡4卡精品| 欧美日韩一区二区视频在线观看视频在线 | 免费观看精品视频网站| 2022亚洲国产成人精品| 亚洲国产精品成人综合色| 欧美高清性xxxxhd video| 国语自产精品视频在线第100页| 最新中文字幕久久久久| 亚洲精品国产av成人精品| 亚洲在线自拍视频| 中文天堂在线官网| 男女边吃奶边做爰视频| 又爽又黄无遮挡网站| 国产精品乱码一区二三区的特点| 婷婷六月久久综合丁香| 亚洲av免费高清在线观看| 青春草视频在线免费观看| ponron亚洲| 我要看日韩黄色一级片| 久久精品国产亚洲av天美| av天堂中文字幕网| 色综合站精品国产| 国产v大片淫在线免费观看| 女人久久www免费人成看片 | 中文资源天堂在线| 精品一区二区免费观看| 大香蕉97超碰在线| 亚洲成av人片在线播放无| 欧美日本亚洲视频在线播放| 亚洲精品影视一区二区三区av| 99久久成人亚洲精品观看| 久久精品91蜜桃| 日韩三级伦理在线观看| 韩国av在线不卡| 伦精品一区二区三区| 国产一区二区在线观看日韩| 天天躁日日操中文字幕| av专区在线播放| 天天躁夜夜躁狠狠久久av| 舔av片在线| 国产一级毛片在线| av.在线天堂| 国产成人精品婷婷| 午夜激情福利司机影院| 国产精品国产高清国产av| 国产一区二区在线观看日韩| 日韩欧美精品免费久久| 小蜜桃在线观看免费完整版高清| 少妇被粗大猛烈的视频| 男人和女人高潮做爰伦理| 欧美变态另类bdsm刘玥| 国产不卡一卡二| 欧美成人a在线观看| 老女人水多毛片| 91久久精品电影网| 亚洲av熟女| 老师上课跳d突然被开到最大视频| 寂寞人妻少妇视频99o| 成人特级av手机在线观看| 超碰97精品在线观看| 看十八女毛片水多多多| 成年女人永久免费观看视频| 亚洲av电影不卡..在线观看| 精品一区二区三区人妻视频| 观看美女的网站| 成年av动漫网址| 高清午夜精品一区二区三区| 有码 亚洲区| 成年免费大片在线观看| 大香蕉久久网| 日本猛色少妇xxxxx猛交久久| 青春草国产在线视频| 岛国毛片在线播放| 亚洲一级一片aⅴ在线观看| 精品人妻熟女av久视频| 看十八女毛片水多多多| 国产高清国产精品国产三级 | 国产精品一区二区三区四区久久| 国产精品伦人一区二区| 成人毛片60女人毛片免费| 一级二级三级毛片免费看| 亚洲av电影不卡..在线观看| 22中文网久久字幕| av卡一久久| 99热精品在线国产| 男女下面进入的视频免费午夜| 国产在视频线精品| 麻豆成人av视频| 99久久精品热视频| 亚洲欧美中文字幕日韩二区| 国产精品一区二区三区四区免费观看| 国产亚洲午夜精品一区二区久久 | 国产中年淑女户外野战色| 黄色一级大片看看| 长腿黑丝高跟| 中文字幕免费在线视频6| 日本-黄色视频高清免费观看| 亚洲内射少妇av| 婷婷色av中文字幕| 国产精品综合久久久久久久免费| 超碰av人人做人人爽久久| 天堂影院成人在线观看| 亚洲成人精品中文字幕电影| 日本欧美国产在线视频| 久久久久国产网址| 成人特级av手机在线观看| 一卡2卡三卡四卡精品乱码亚洲| 亚洲电影在线观看av| 噜噜噜噜噜久久久久久91| 久久精品影院6| 蜜桃亚洲精品一区二区三区| 国产精品综合久久久久久久免费| 欧美成人一区二区免费高清观看| 尾随美女入室| 长腿黑丝高跟| 尤物成人国产欧美一区二区三区| 亚洲乱码一区二区免费版| 好男人视频免费观看在线| 联通29元200g的流量卡| 精品久久久久久电影网 | 久久精品国产自在天天线| 午夜精品在线福利| 伦理电影大哥的女人| 国产亚洲91精品色在线| 欧美另类亚洲清纯唯美| 免费看a级黄色片| 午夜福利在线观看吧| 99久久精品一区二区三区| 欧美日韩精品成人综合77777| 午夜福利视频1000在线观看| 欧美激情久久久久久爽电影| 久久久久久国产a免费观看| 特大巨黑吊av在线直播| 亚洲精品自拍成人| 国产精华一区二区三区| 免费无遮挡裸体视频| 国产一区二区亚洲精品在线观看| 国产在视频线在精品| 欧美又色又爽又黄视频| 国产精品熟女久久久久浪| 高清视频免费观看一区二区 | 国产亚洲av嫩草精品影院| 国产伦理片在线播放av一区| 精品久久久久久久久av| 日韩欧美国产在线观看| 亚洲精品成人久久久久久| av女优亚洲男人天堂| 人妻制服诱惑在线中文字幕| or卡值多少钱| 亚洲丝袜综合中文字幕| 色综合亚洲欧美另类图片| 午夜激情欧美在线| 国产精品一区二区性色av| 嫩草影院新地址| 99热精品在线国产| 爱豆传媒免费全集在线观看| 亚洲美女搞黄在线观看| 91av网一区二区| 国产亚洲av嫩草精品影院| 伊人久久精品亚洲午夜| 亚洲精品国产成人久久av| 国产在线一区二区三区精 | 国产免费视频播放在线视频 | 日本五十路高清| 18禁裸乳无遮挡免费网站照片| 国产在线男女| 五月玫瑰六月丁香| 久久精品国产鲁丝片午夜精品| 亚洲真实伦在线观看| 国产在视频线精品| 成人高潮视频无遮挡免费网站| 亚洲内射少妇av| 久久精品国产亚洲av天美| av在线观看视频网站免费| 国内精品宾馆在线| 熟女电影av网| 亚洲五月天丁香| 久久亚洲国产成人精品v| 精品午夜福利在线看| 一卡2卡三卡四卡精品乱码亚洲| 亚洲精品乱码久久久久久按摩| av国产久精品久网站免费入址| 欧美高清成人免费视频www| 亚洲av免费在线观看| 蜜桃亚洲精品一区二区三区| 人人妻人人澡欧美一区二区| 亚洲人与动物交配视频| av在线蜜桃| 天天躁日日操中文字幕| 黄色一级大片看看| 69人妻影院| 人人妻人人看人人澡| 丰满人妻一区二区三区视频av| 欧美成人免费av一区二区三区| 亚洲精品自拍成人| 日韩 亚洲 欧美在线| 国产老妇女一区| 岛国在线免费视频观看| 日韩国内少妇激情av| 丰满乱子伦码专区| 成人美女网站在线观看视频| 美女黄网站色视频| 国产亚洲av片在线观看秒播厂 | 久久久久久久久久黄片| 国产精品永久免费网站| 午夜a级毛片| 麻豆乱淫一区二区| 亚洲精品日韩在线中文字幕| 国产精品久久久久久精品电影小说 | 18禁在线播放成人免费| 亚洲人成网站在线观看播放| 99在线人妻在线中文字幕| 久久精品国产鲁丝片午夜精品| 深夜a级毛片| 三级毛片av免费| 午夜福利在线观看免费完整高清在| 欧美激情在线99| av在线亚洲专区| 色哟哟·www| 国产综合懂色| 美女国产视频在线观看| 亚洲图色成人| 久久99热这里只有精品18| 干丝袜人妻中文字幕| 午夜福利高清视频| 人妻少妇偷人精品九色| 午夜福利高清视频| 国产精品美女特级片免费视频播放器| ponron亚洲| 一本一本综合久久| 国产熟女欧美一区二区| 国产成人a∨麻豆精品| 中国美白少妇内射xxxbb| 有码 亚洲区| 精品久久久噜噜| 国产精品一及| 国产色爽女视频免费观看| 婷婷六月久久综合丁香| 直男gayav资源| 久久精品久久久久久噜噜老黄 | 在线免费观看的www视频| 亚洲精品乱码久久久v下载方式| 黄片无遮挡物在线观看| 美女高潮的动态| 亚洲精品日韩在线中文字幕| 久久人人爽人人片av| 午夜福利网站1000一区二区三区| 好男人在线观看高清免费视频| 欧美日韩综合久久久久久| 亚洲av熟女| 精品少妇黑人巨大在线播放 | av福利片在线观看| 97热精品久久久久久| 亚洲国产精品合色在线| 国产免费视频播放在线视频 | 亚洲欧洲国产日韩| 国产精品伦人一区二区| www日本黄色视频网| 99热全是精品| 中文欧美无线码| 人妻系列 视频| 成人毛片60女人毛片免费| 大香蕉97超碰在线| 国产精品一区二区性色av| 毛片女人毛片| 永久免费av网站大全| 午夜精品在线福利| 欧美精品一区二区大全| 水蜜桃什么品种好| 久久久午夜欧美精品| 亚洲人与动物交配视频| 午夜福利在线在线| 麻豆av噜噜一区二区三区| 男人舔奶头视频| 国产人妻一区二区三区在| 身体一侧抽搐| 水蜜桃什么品种好| 国产极品天堂在线| 免费无遮挡裸体视频| 亚洲欧美日韩卡通动漫| h日本视频在线播放| 亚洲aⅴ乱码一区二区在线播放| 免费看光身美女| 青青草视频在线视频观看| kizo精华| 青青草视频在线视频观看| 亚洲无线观看免费| 中文字幕熟女人妻在线| 国产成人午夜福利电影在线观看| 亚洲av电影在线观看一区二区三区 | 能在线免费观看的黄片| 亚洲精品乱码久久久久久按摩| 成人av在线播放网站| av在线蜜桃| 成人性生交大片免费视频hd| 亚洲精品乱码久久久久久按摩| 久久久久九九精品影院| 国产午夜福利久久久久久| 亚洲欧美清纯卡通| 麻豆久久精品国产亚洲av| 国内精品宾馆在线| 日本免费一区二区三区高清不卡| 日韩一区二区三区影片| 美女大奶头视频| 麻豆精品久久久久久蜜桃| 男人舔奶头视频| 韩国av在线不卡| 只有这里有精品99| 免费看日本二区| 精品人妻视频免费看| 久久久国产成人精品二区| 国产一区二区三区av在线| 99久国产av精品| 久久精品久久久久久噜噜老黄 | 亚洲精品色激情综合| 日本三级黄在线观看| 国产精品av视频在线免费观看| 别揉我奶头 嗯啊视频| 久久久久精品久久久久真实原创| 日韩欧美国产在线观看| 亚洲av成人av| 国产午夜精品一二区理论片| 99九九线精品视频在线观看视频| 国产伦在线观看视频一区| 18禁在线播放成人免费| 色综合色国产| 好男人视频免费观看在线| 在线天堂最新版资源| 久久6这里有精品| 成年版毛片免费区| 免费观看的影片在线观看| 国产成人精品久久久久久| 国产精品久久久久久精品电影小说 | 一区二区三区四区激情视频| 在线观看66精品国产| 性色avwww在线观看| 夜夜看夜夜爽夜夜摸| 亚洲av免费高清在线观看| 国产精品综合久久久久久久免费| 精品无人区乱码1区二区| 国产精品福利在线免费观看| 超碰97精品在线观看| 97人妻精品一区二区三区麻豆| 亚洲精品456在线播放app| 国产av在哪里看| 蜜桃亚洲精品一区二区三区| www.色视频.com| av黄色大香蕉| 美女黄网站色视频| 亚洲av中文字字幕乱码综合| 一个人免费在线观看电影| 人妻制服诱惑在线中文字幕| 性色avwww在线观看| 国内精品美女久久久久久| 国产精品一区www在线观看| 亚洲av中文av极速乱| 久久久国产成人精品二区| 午夜a级毛片| 最近最新中文字幕大全电影3| 又粗又硬又长又爽又黄的视频| 少妇的逼水好多| 免费观看人在逋| 欧美不卡视频在线免费观看| 99久久精品国产国产毛片| 91久久精品电影网| 久久精品国产99精品国产亚洲性色| 国内揄拍国产精品人妻在线| 国产日韩欧美在线精品| 久久久精品欧美日韩精品| 少妇熟女aⅴ在线视频| 18禁在线无遮挡免费观看视频| 九九在线视频观看精品| 国产麻豆成人av免费视频| 人人妻人人澡欧美一区二区| 欧美极品一区二区三区四区| 国产成年人精品一区二区| 国产欧美日韩精品一区二区| 日本av手机在线免费观看| 久久久久国产网址| 一区二区三区免费毛片| 国内少妇人妻偷人精品xxx网站| 午夜激情欧美在线| 男人舔女人下体高潮全视频| 欧美另类亚洲清纯唯美| 国产精品福利在线免费观看| 亚洲国产精品久久男人天堂| 天堂√8在线中文| 人人妻人人看人人澡| 综合色丁香网| 黄色配什么色好看| 日本欧美国产在线视频| 久久久亚洲精品成人影院| 色视频www国产| 婷婷六月久久综合丁香| 啦啦啦观看免费观看视频高清| 黑人高潮一二区| 日韩欧美在线乱码| 国产亚洲最大av| 亚洲欧美成人精品一区二区| 丝袜美腿在线中文| 国产免费一级a男人的天堂| 人妻系列 视频| 成人国产麻豆网| 最近最新中文字幕大全电影3| 变态另类丝袜制服| 日本熟妇午夜| 国产精品熟女久久久久浪| 亚洲真实伦在线观看| 亚洲不卡免费看| 一边亲一边摸免费视频| 国产成人freesex在线| 插阴视频在线观看视频| 中文字幕av成人在线电影| 韩国高清视频一区二区三区| 最新中文字幕久久久久| 精品国内亚洲2022精品成人| 日本免费a在线| 国产熟女欧美一区二区| 韩国av在线不卡| 久久精品国产自在天天线| 亚洲在线观看片| 国产一区二区在线av高清观看| 国产精品不卡视频一区二区| 久久99热这里只频精品6学生 | 国产高清有码在线观看视频| 寂寞人妻少妇视频99o| 成年免费大片在线观看| av免费在线看不卡| 中文资源天堂在线| 一本久久精品| 汤姆久久久久久久影院中文字幕 | 99久久精品一区二区三区| 狠狠狠狠99中文字幕| 亚洲中文字幕日韩| 色视频www国产| 高清日韩中文字幕在线| 国产又色又爽无遮挡免| videossex国产| 亚洲精品自拍成人| 国产在线一区二区三区精 | 成人美女网站在线观看视频| 一个人免费在线观看电影| 欧美三级亚洲精品| 成人二区视频| 亚洲国产欧美在线一区| 熟妇人妻久久中文字幕3abv| 国内精品宾馆在线| 日本色播在线视频| 免费观看精品视频网站| 欧美zozozo另类| 我的老师免费观看完整版| 蜜桃亚洲精品一区二区三区| 国产亚洲91精品色在线| 黄色配什么色好看| 人妻少妇偷人精品九色| 久久亚洲精品不卡| 国产在线男女| 欧美成人一区二区免费高清观看| 2022亚洲国产成人精品| 国产大屁股一区二区在线视频| 我要看日韩黄色一级片| 九九在线视频观看精品| 国产69精品久久久久777片| 亚洲av.av天堂| 尾随美女入室| 2021少妇久久久久久久久久久| 91aial.com中文字幕在线观看| 级片在线观看| 免费大片18禁| 亚洲中文字幕一区二区三区有码在线看| 免费看av在线观看网站| 欧美精品国产亚洲| 九草在线视频观看| 最近2019中文字幕mv第一页| 精品久久久久久电影网 | 一区二区三区免费毛片| 国产亚洲5aaaaa淫片| 国产乱人偷精品视频| 91久久精品国产一区二区三区| 国产成人freesex在线| 春色校园在线视频观看| 国产av在哪里看| 久久久久久久久久久丰满| 色哟哟·www| 岛国毛片在线播放| 午夜精品国产一区二区电影 | 久久久精品大字幕| av在线天堂中文字幕| h日本视频在线播放| 成人性生交大片免费视频hd| 五月伊人婷婷丁香| 午夜精品一区二区三区免费看| 偷拍熟女少妇极品色| 人体艺术视频欧美日本| 久久精品国产亚洲网站| 国产一区二区在线观看日韩| 啦啦啦观看免费观看视频高清| 视频中文字幕在线观看| 久久精品91蜜桃| 欧美丝袜亚洲另类| 国产伦精品一区二区三区视频9| 秋霞伦理黄片| 色播亚洲综合网| 久久久久久九九精品二区国产| 男人狂女人下面高潮的视频| 免费不卡的大黄色大毛片视频在线观看 | 国产亚洲av片在线观看秒播厂 | 亚洲精品乱久久久久久| 色5月婷婷丁香| 最近手机中文字幕大全| 国产av在哪里看| 乱码一卡2卡4卡精品| 免费大片18禁| 人人妻人人澡人人爽人人夜夜 | 亚洲综合精品二区| 亚洲精品,欧美精品| 乱码一卡2卡4卡精品| av在线天堂中文字幕| 国产av码专区亚洲av| 国产69精品久久久久777片| 亚洲精品乱久久久久久| 亚洲,欧美,日韩| 国产亚洲精品久久久com| 深夜a级毛片| 啦啦啦观看免费观看视频高清| 69人妻影院| 国产女主播在线喷水免费视频网站 | 男女那种视频在线观看| 亚洲欧美日韩卡通动漫| 国产极品天堂在线| 中文字幕久久专区| 午夜福利在线观看吧| 少妇人妻一区二区三区视频| av专区在线播放| 男插女下体视频免费在线播放| www日本黄色视频网| 日韩欧美在线乱码| 精品欧美国产一区二区三| 久久这里只有精品中国| 久久久久免费精品人妻一区二区| 日韩亚洲欧美综合| 日韩制服骚丝袜av| 免费看光身美女|