• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electromagnetic Ion Beam Instability in the Solar Corona

    2024-03-22 04:11:38WenLiuJinSongZhaoDeJinWuHuanYuJiaandSiMingLiu

    Wen Liu , Jin-Song Zhao, De-Jin Wu, Huan-Yu Jia, and Si-Ming Liu

    1 School of Mechanics and Aeronautics, Southwest Jiaotong University, Chengdu 610000, China; liuwen@my.swjtu.edu.cn

    2 School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610000, China

    3 Key Laboratory of Planetary Sciences, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210023, China

    Abstract Remote-sensing measurements indicate that heavy ions in the corona undergo an anisotropic and mass-charge dependent energization.A popular explanation to this phenomenon is the damping of the Alfvén/ion cyclotron waves.In this paper, we propose that the ion beam instability can be an important source of the Alfvén/ion cyclotron waves, and we study the excitation of the ion beam instability in the corona at the heliocentric distance~3R⊙and the corresponding energy transfer process therein based on plasma kinetic theory.The results indicate that the existence of the motionless heavy ions inhibits the ion beam instability.However,the anisotropic beams of heavy ions promote the excitation of the ion beam instability.Besides, the existence of α beams can provide a second energy source for exciting beam instability.However,when both the proton beam and the α beam reach the instability excitation threshold, the proton beam driven instability excites preferentially.Moreover, the excitation threshold of the Alfvén/ion cyclotron instability driven by ion beam is of the local Alfvén speed or even less in the corona.

    Key words: plasmas – instabilities – waves – Sun: corona

    1.Introduction

    The solar corona is characterized by its unusually high temperatures (Cranmer & Winebarger 2019).Besides, the effective temperature of minor ions in the solar corona is proportional to their atomic mass number and they are strongly anisotropic, with Ti⊥>Ti//, where ⊥and //are respect to the background magnetic fields (Kohl et al.1997, 1998).One of the most popular physical explanations for highly anisotropic minor ions in the solar corona is the cyclotron interactions between ions and Alfvén/ion cyclotron waves (Cranmer et al.1999; Isenberg et al.2001; Liewer et al.2001; Marsch &Tu 2001; Hollweg & Isenberg 2002).

    There are several theories about the origin of the Alfvén/ion cyclotron waves.First,these waves are generated by the smallscale magnetic activity in the chromospheric network and directly launched into corona(Axford&McKenzie 1992,1995;Tu&Marsch 1997).Second,these waves may be produced by a turbulent cascade from much lower frequencies (Li et al.1999; Hollweg & Isenberg 2002; Li et al.2004).Third, the microinstabilities that locally excited by the electrons and electric currents in the corona may be their source (Forslund 1970; Toichi 1971; Markovskii 2001; Markovskii &Hollweg 2002).Besides, Alfvén/ion cyclotron waves can also be locally generated by plasma instabilities related to ion temperature anisotropy(Gary 1993;Klein&Howes 2015;Sun et al.2019)and ion beams(Montgomery et al.1976;Daughton& Gary 1998; Liu et al.2021).In this paper, we mainly focus on this mechanism.However, in this mechanism, it is much easier to excite Alfvén/ion cyclotron waves through ion beam instability processes in a low-β environment like the solar corona(Hellinger et al.2006;Sun et al.2019;Liu et al.2021).Therefore, ion beam instability may play an important role in the energization processes of coronal ions.

    In situ observations of the solar wind show that there are usually differential flows between different ion components,where these differential flows are also named as ion beams in the proton core frame.(Feldman et al.1973, 1974; Marsch et al.1982;Goldstein et al.2000;Tu et al.2004;Alterman et al.2018; ?urovcová et al.2019; Verniero et al.2020; Mostafavi et al.2022).Recently, based on in situ observations of Parker Solar Probe (PSP) in the near-Sun solar wind, Verniero et al.(2020) have shown that the number density of proton beam component can be unexpectedly large relative to proton core component, and most of the coexistent ion-scale waves are excited by proton beams.Besides, significantly enhanced ionscale waves are observed in the near-Sun solar wind (Bowen et al.2020, 2020; Liu et al.2023) and they are more likely excited by ion beams (Verniero et al.2020; Klein et al.2021;Liu et al.2021).Moreover, Bowen et al.(2022) have found obvious cyclotron resonant heating in the near-Sun solar wind.These observations seem to show that the energy transfer processes related to ion beams may play a much important role in ion energization of the near-Sun solar wind and corona.

    In this paper, considering the potential importance of ion beams in the corona environment, we study the excitation of electromagnetic ion beam instability and related energy transfer processes in the corona.Unlike previous studies, we not only consider the major particles (protons, electrons, and α particles), but we also consider the influence of several minor ions (oxygen ions, magnesium ions, and iron ions).

    This paper is organized as follows.Section 2 introduces the theoretical model and plasma parameters.Section 3 exhibits our main results and related analysis.The discussion and summary are shown in Sections 4 and 5, respectively.

    2.Theoretical Model and Plasma Parameters

    2.1.Theoretical Model

    In this paper, we ignore weak collision in the solar corona and treat it as collisionless plasma.To study the wave dynamics in the solar corona, we use the model consisting of Vlasov’s equation and Maxwell’s equation to obtain the wave equation in Fourier space

    where?=iσ/(?0ω)+I,?0is the permittivity of free space,?is the dielectric tensor,σ is the conductivity tensor,ω is the wave frequency, and E is the wave electric field.The plasma wave eigenmodes correspond to solutions of Equation (1).Xie &Xiao (2016) and Xie (2019) develop a numerical solver (BO/PDRK) for Equation (1) and this solver is useful to perform a comprehensive study for ion and electron kinetic instabilities(Sun et al.2019, 2020; Liu et al.2021).In this paper, we use BO/PDRK to give the wave dispersion relation in the coronal ion beam plasma.

    In plasma instability study,it is very important to understand the kinetic processes when instability is generated.In this paper,we use the energy transfer rate to quantify the exchanged energy between particles and waves.The energy transfer rate is calculated by using the plasma current J and the wave electric field E.The equations of the energy transfer rate are shown as follows:

    and

    where WEB=?0|E|2/2+|B|2/2μ0is the electromagnetic energy.The detailed derivation processes are shown in the appendix of Liu et al.(2021).The advantage of Equation(3)is that Pt=-γ.Hence, we can directly measure the contribution of each resonance effect on the wave growth or damping.Here γ represents the imaginary part of ω in which γ>0 (or <0)corresponds the wave growth (or damping).

    2.2.Parameter Specification

    In order to study ion beam instability in the solar corona at heliocentric distance ~3R⊙, we use radial distributions of magnetic field strength and plasma parameters stated in Bale et al.(2016).The magnetic field strength is

    where the solar wind velocity is

    The electron number density is given by (also see Sittler &Guhathakurta 1999)

    with N0=3.26×105cm-3.The proton temperature is

    where T0=226.4 eV.Therefore, the basic parameters used in this paper are as follows: B0=2.0766×104nT,Ne=4.5547×105cm-3, Tp=151.3129 eV and VA=634.8629 km s-1, here the Alfvén speed

    In this paper, excepting four kinds of usual particles (proton core“pc,”proton beam“pb,”alpha particles“α”and electrons“e”), we also consider three typical heavy ions in the corona,i.e., oxygen ions “O,” magnesium ions “Mg” and iron ions“Fe.” The velocity distributions of all these seven types particles follow drifting Maxwellian distribution, i.e.,expwhere ms, Ns, Tsand Vsdenote the mass, number density,temperature,and drifting speed for each particle component“s”;kBis Boltzmann constant; the subscript //and ⊥ present directions parallel and perpendicular to the background magnetic field, respectively.

    Based on recent observations of PSP, the number density ratio of proton beam in the near-Sun solar wind is found to be usually higher than 0.1 Ne(Verniero et al.2020; Klein et al.2021).Therefore, the number density of proton beam in this paper are set as Npb=0.25Ne.In addition,according to Level 3 data obtained by Solar Probe ANalyzers for Ions(SPAN-I;Livi et al.2022) on board PSP, the number density ratio of α particles are set as Nα=0.05Ne.Moreover, based on observations of Solar and Heliospheric Observatory (SoHO) (Kohl et al.1997,1998),we chose three heavy ions(O5+,Mg9+,and Fe11+).The number density of these heavy ions is as follows:NO?0.001Ne, NMg?0.0001Ne, and NFe?0.0001Ne(Reames 1994; Wu & Yang 2007).We note that the abundances of these heavy ions here are relatively higher than those in Asplund et al.(2009).This may be caused by the difference in the abundance of elements between the photosphere and the corona.Lastly, to ensure the charge neutrality condition,the number density of proton core is Npc=0.643Ne.

    Figure 1.Vpb–θ distributions of the ion beam instabilities at r=3R⊙.(a)The plasma consists of proton core,proton beam,α particles and electrons;(b)three types heavy ions(oxygen ions,magnesium ions and iron ions)are added on the basis of case(a).All ions in two cases have same temperature.(Top panels)The maximum growth rate,γm ax; (middle panels)the real frequency ωr at γm ax ;(bottom panels)the argument of By/Bx at γmax.The regions controlled by OA/IC,OA/IB and PFM/W instabilities are denoted by I, II and III, respectively.OA/IC=oblique Alfvén/ion cyclotron; OA/IB=oblique Alfvén/ion beam; PFM/W=parallel fastmagentosonic/whistler.

    We study ion beam instability in proton core frame which means Vpc=0.In order to be consistent with the observations,we not only consider the proton beam, but also consider other factors.For example, observed alpha particles and heavy ions are usually drifting faster than proton core component(Marsch et al.1982; von Steiger et al.1995; von Steiger &Zurbuchen 2006; Alterman et al.2018; ?urovcová et al.2019).Besides,the temperature of ions in the corona is usually proportional to their atomic mass number and they are strongly anisotropic, with Ti⊥>Ti//(Kohl et al.1997, 1998; Li et al.1998).Therefore, the differential speed with proton core and temperature anisotropy of heavy ions are taken into account.Here, we use drifting electrons to ensure zero current conditions, i.e., ΣisNisVis-NeVe=0, where “is” denotes each ion particle component.In addition,the temperature of protons and electrons are same.

    3.Ion Beam Instability Analysis

    3.1.Influence of Temperature Isotropic Minor Ions

    In this part, we only consider the influence of the temperature isotropic heavy ions on the ion beam instability.Based on magnetic field and plasma parameters listed in Sub Section 2.2, the Vpb–θ distributions of the proton beam instability at r=3R⊙is exhibited in Figure 1, where θ represents the angle between the wave propagating direction and the background magnetic field.The plasma in Figure 1 consists of only proton core, proton beam, α particles and electrons in case(a)and all particles have the same temperature as protons; case (b) considers three additional heavy ions(oxygen ions, magnesium ions, and iron ions) and all particles have the same temperature as protons.Obviously,in both cases of Figure 1,only three types ion beam instabilities are excited.They are the oblique Alfvén/ion cyclotron instability (OA/IC,region I surrounded by red dots),the oblique Alfvén/ion beam instability(OA/IB,region II surrounded by black dots)and the parallel fast-magentosonic/whistler instability (PFM/W,region III surrounded by blue dots).Comparing case (a) and case (b) in Figure 1, we can see that the most obvious change occurs in region I, which is mainly manifested in the increase of excitation threshold (Vpbthre? 0.9V Ain case (a) andVpbthre? 1V Ain case (b)) and the decrease of excitation range.This indicates that the oblique Alfvén/ion cyclotron instability is most easily influenced by heavy ions.In a word,in a plasma where all particles have same temperature, the addition of temperature isotropic heavy ions will inhibit the excitation of the oblique Alfvén/ion cyclotron instability (reducing the parameter range of the instability excitation).

    However, in actual observations of the solar corona, the temperature of ions is different and proportional to their atomic mass number (Kohl et al.1997, 1998).Besides, the remote observations from SoHO indicate that the heavy ions always flow faster than protons(Kohl et al.1997,1998).Therefore,we also take these two influence factors into account,respectively.The related results are shown in Figure 2.Considering that observed velocity of proton beam are usually concentrated in the region less than twice of the local Alfvén speed, the velocity of proton beam are limited in 0.1–2 VA.Compared with the results shown in Figure 1(b), the excitation of the oblique Alfvén/ion cyclotron instability, which is exhibited in Figure 2(a), will be further inhibited when ions have the temperature proportional to their atomic mass number.

    In Figure 2(b), the temperature settings for all ions are the same as that in Figure 1(b).However, the α particles, oxygen ions, magnesium ions and iron ions flow faster than the core protons, and their relative drifting speed is the local Alfvén speed.Different from Figure 1(b), the excitation range of the oblique Alfvén/ion cyclotron instability has a significant change.There are two obvious excitation regions of the oblique Alfvén/ion cyclotron instability.This indicates that the addition of other four types ion beams will promote the excitation of the oblique Alfvén/ion cyclotron instability.In this case,there are five types ion beams(proton beam,α beam,oxygen beam,magnesium beam and iron beam)and all of them can become the energy source of excited instabilities.To figure out which ion beams are the main energy source of the oblique Alfvén/ion cyclotron instability, it is necessary to analyze its excitation mechanism, which is helpful to understand the energy transfer process therein.

    Figure 3.Vpb–θ distributions of (a) total, (b) parallel, (c) perpendicular energy transfer rate in instabilities shown in Figure 2(b).These energy transfer rates are normalized by max(|Ps|),which corresponds to main energy flowing from the instability source particles into unstable waves.The top to bottom panels present energy transfer rates associated with proton beam, proton core, α particles, electrons, oxygen ions, magnesium ions and iron ions, respectively.The meaning of the dotted lines is same as that in Figure 2(b).The green labels“1”and“2”represent two regions of the oblique Alfvén/ion cyclotron instability.The regions marked by“+”represent normalized energy transfer rate is equal to -1, where the yellow “+” and cyan “+” represent the proton beam and α beam, respectively.

    Hence, based on Equation (3), the energy transfer rate of all ions in the instabilities shown in Figure 2(b) is exhibited in Figure 3.In Figure 3, the energy transfer rates are normalized by max(|Ps|),which corresponds to main energy flowing from the instability source particles into unstable waves.Therefore,the color region representing -1, which is marked by “+” in Figure 3 (the yellow “+” and cyan “+” represent the proton beam and α beam,respectively),is the main source of the free energy required for instability excitation.The oblique Alfvén/ion cyclotron instability has two regions, one in the region of low proton beam speed (region 1, 0 ≤Vpb/VA≤0.5) and the other in the region of relatively high proton beam speed(region 2, 0.9 ≤Vpb≤1.5VA).The oblique Alfvén/ion cyclotron instability in region 1 is totally marked by cyan “+” and this indicates that the energy source of this unstable region is α beam.Similarly, the oblique Alfvén/ion beam instability region (surrounded by black dotted lines) is totally marked by yellow “+” and this means that its energy source is from proton beam.The oblique Alfvén/ion cyclotron instability in region 2 is relatively complicated.At relatively lager propagating angle (~50°–80°), the oblique Alfvén/ion cyclotron instability is totally excited by proton beam.The rest areas in region 2 are influenced by both proton beam and α beam,where the region marked by cyan“+”is dominated by α beam and the rest region is mainly controlled by proton beam.Generally, the oblique Alfvén/ion cyclotron instability in region 2 mainly dominated by proton beam.Obviously, when the proton beam is slowed down due to excitation instability,the existence of the α beam can provide the second energy source for the excitation of the instability in the solar corona.

    Figure 4.Vpb–θ distributions of the ion beam instabilities at r=3R⊙.The plasma consists of proton core,proton beam,α particles,electrons,oxygen ions,magnesium ions and iron ions.The temperatures of all ions are proportional to their atomic mass number,Tis=MisTp/Mp.The α beam,oxygen beam,magnesium beam and iron beam have a speed of the local Alfvén speed,Vαb=VOb=VMgb=VFeb=VA.The temperature of three types heavy ions(oxygen ions,magnesium ions and iron ions)is anisotropic, with Th⊥/Th//=(a) 1, (b) 5, (c) 10.Other labels are the same as those in Figure 2.

    3.2.Influence of Temperature Anisotropic Minor Ions

    In the solar corona, the remote sensing observations reveal that the effective temperatures of ions are strongly anisotropic,with Ti⊥>Ti//, where ⊥and //are respect to the background magnetic fields(Kohl et al.1998;Li et al.1998).Therefore,in this section,we perform instability analysis at parameters closer to the actual coronal plasma environment.The temperature of ions are proportional to their atomic mass number.In addition,α particles, oxygen ions, magnesium ions and iron ions flow faster than core protons with a relative speed of the local Alfvén speed.Moreover, the temperature of three types heavy ions (oxygen ions, magnesium ions, and iron ions) is anisotropic, with Th⊥/Th//=1, 5, 10.The instability results of three cases are shown in Figure 4.The instability results shown in Figure 4 are similar to Figure 2(b).Besides, the excitation parameter range of both oblique Alfvén/ion cyclotron instability and oblique Alfvén/ion beam instability becomes larger with the increase the temperature anisotropy of heavy ions.

    In this case, ion beams and temperature anisotropy of ions both can provide free energy to excite instabilities.Hence, the same analysis as shown in Figure 3 is necessary.Due to the fact that three cases in Figure 4 are similar, we only use analysis case (c).The energy transfer rate results of Figure 4(c) are presented in Figure 5.The energy transfer rate shown in Figure 5 is similar to that in Figure 3.Both oblique Alfvén/ion cyclotron instability(in region 2)and oblique Alfvén/ion beam instability are mainly excited by proton beam.However, the energy source of the oblique Alfvén/ion cyclotron instability close to Vpb=0.9VAin region 2 is from anisotropic oxygen beam and α beam and the oxygen ions dominate.Besides, the excitation of the oblique Alfvén/ion cyclotron instability in region 1 is also driven by both anisotropic oxygen beam and α beam, and the contribution of oxygen ions is concentrated in regions with relatively larger proton beam velocity, while the contribution of α particles is the opposite.These results indicate that the anisotropic beams of heavy ions can also promote the excitation of the Alfvén/ion cyclotron waves in the actual coronal plasma environment.Hence, the instability driven by ion beams can be a very important source of the Alfvén/ion cyclotron waves in the corona.

    Figure 5.Vpb–θ distributions of (a) total, (b) parallel, (c) perpendicular energy transfer rate in instabilities shown in Figure 4(c).The labels are same as those in Figure 3.The new label (the magenta “+”) represents the regions dominated by oxygen ions.

    4.Discussion

    Since remote observations revealed the unusually high temperature of the coronal ions (Kohl et al.1997, 1998;Cranmer & Winebarger 2019), finding out the main physical mechanism for heating coronal ions has been a fundamental problem in solar and space physics.Especially,the coronal ions are highly anisotropic, with Ti⊥>Ti//(Kohl et al.1997, 1998;Li et al.1998).This suggests that the heating process of coronal ions is anisotropic,in particular,that the heating is concentrated in the perpendicular direction with respect to the background magnetic fields.The cyclotron damping of Alfvén/ion cyclotron waves is usually used to explain this observed phenomenon(Cranmer et al.1999;Isenberg et al.2001;Liewer et al.2001;Marsch&Tu 2001;Hollweg&Isenberg 2002).In this paper,we find that proton beam and α beam can both drive oblique Alfvén/ion cyclotron instability to generate Alfvén/ion cyclotron waves.Especially, in the low beta plasma environment like the solar corona, the excitation threshold of ion beam instability is easily met.In addition, Jets associated with magnetic reconnection are injected into the coronal background environment,which can be the source of ion beam(Feldman et al.1996).Recently, Phan et al.(2022) found that the leaked high-energy protons during the magnetic reconnection process may be the source of the proton beam in the near-Sun solar wind.Through checking the velocity distribution function(VDF)of protons in Phan et al.(2022),we found that the proton beam generated by magnetic reconnection process usually has relatively high number density ratio.Verniero et al.(2020), Klein et al.(2021) also found that the number density of the proton beam in the near-Sun solar wind usually have higher number density ratio than that beyond 0.3 au.This may indicate that the number density ratio of ion beam can be higher when getting close to the Sun.Theoretically, the region of excitation parameters of ion beam instability increases with the increase of ion beam number density (Liu et al.2021).Therefore, based on these observed phenomena, we think that instabilities driven by ion beams can play an important role in energizing corona ions.

    To better understand the energy transfer rate in the background plasma of corona, we find the Alfvén wave mode without any instabilities and give the energy transfer rate related to this wave mode.The results are shown in Figure 6,where λpk is the wavevector k normalized by the proton inertial length λp.Here, the plasma consists of all ions mentioned before.In addition, there is only one type ion beam (proton beam, Vpb=0.8VA) and all particles have the same temperature.In Figures 6(a)–(b), the Alfvén wave mode are divided into three regions by the cyclotron frequencies of iron and oxygen ions and the corresponding damping rates in these two places become larger suddenly.From Figure 6(d),We can see three peaks, from left to right, representing the energy absorption peaks of iron,oxygen and magnesium ions.Besides,the energy absorption of heavy ions are concentrated on the perpendicular direction.Therefore,heavy ions in corona can be heated perpendicularly through this process with the existence of excited Alfvén waves.This also suggests that the ion beam instability that excites Alfvén waves may play an important role in the process of coronal ion energization.

    Through studying the ion beam instability in the coronal environment, this work mainly reveals that the ion beam instability is easily excited and is an important source of the Alfvén/ion cyclotron waves.This also indicates that the instability driven by ion beams may play an important role in energizing corona ions.However, the heavy ions are not preferentially heated in perpendicular during ion beam instability excitation.Actually, when ion beam instability is excited, the free energy of ion beams mainly follows into core protons and the unstable wave mode(the Alfvén/ion cyclotron wave).Finally, the energy of these excited Alfvén/ion cyclotron waves can preferentially heat heavy ions in perpendicular by wave-particle interaction process.Simulations can be used to study this entire process and we will present it in our future work.

    5.Summary

    Based on the plasma kinetic theory, this work mainly study the excitation of ion beam instability in corona at heliocentric distance ~3 R⊙and the corresponding energy transfer process therein.Our results indicate that the addition of the heavy ions will inhibit the excitation of ion beam instability, which is manifested in both its excitation threshold and parameter range.On the other hand, anisotropic beams of heavy ions can promote the excitation of the ion beam instability.Moreover,the existence of α beams can provide the second energy source for exciting beam instability in the corona.When both the proton beam and the α beam reach the instability excitation threshold, the proton beam driven instability excites preferentially.In addition, through the ion beam instability, the energy of ion beams mainly follows into core protons and unstable waves.Besides, the excitation threshold of the Alfvén/ion cyclotron instability driven by ion beam is of the local Alfvén speed or even less.This indicates that ion beams can easily excite Alfvén/ion cyclotron waves through ion beam instability process in the corona.Due to the fact that the Alfvén/ion cyclotron waves can energize corona ions through waveparticle interactions, the ion beam driven instability may play an important role in corona ion energization.

    Acknowledgments

    This work was funded by the National Natural Science Foundation of China (NSFC) under No.12347166.

    ORCID iDs

    Wen Liu https://orcid.org/0000-0002-8376-7842

    日日啪夜夜爽| 男女边吃奶边做爰视频| 国产成人免费观看mmmm| 亚洲自偷自拍三级| 国产男女内射视频| 色哟哟·www| 国产日韩一区二区三区精品不卡 | a级片在线免费高清观看视频| 国产成人一区二区在线| 性高湖久久久久久久久免费观看| www.av在线官网国产| 插逼视频在线观看| 日韩欧美 国产精品| 伊人亚洲综合成人网| 亚洲熟女精品中文字幕| 成人毛片a级毛片在线播放| 午夜免费男女啪啪视频观看| 18+在线观看网站| 18+在线观看网站| 亚洲精品中文字幕在线视频 | 午夜激情福利司机影院| 99热6这里只有精品| 男人爽女人下面视频在线观看| 日韩av在线免费看完整版不卡| 三级国产精品欧美在线观看| 男女啪啪激烈高潮av片| 深夜a级毛片| 国产极品天堂在线| 少妇被粗大猛烈的视频| 日韩三级伦理在线观看| 午夜激情久久久久久久| 亚洲伊人久久精品综合| 亚洲精品乱久久久久久| 亚洲美女视频黄频| 亚洲综合色惰| 少妇的逼好多水| 人人澡人人妻人| 男男h啪啪无遮挡| 99久久精品国产国产毛片| 久久久久网色| 极品教师在线视频| 久久久a久久爽久久v久久| 久热这里只有精品99| 久久久久国产网址| 国产精品久久久久久久电影| 亚洲av中文av极速乱| 久久精品久久久久久噜噜老黄| 亚洲真实伦在线观看| 亚洲av国产av综合av卡| 汤姆久久久久久久影院中文字幕| 日本午夜av视频| 99久久中文字幕三级久久日本| 日本猛色少妇xxxxx猛交久久| 久久久久久久精品精品| 亚洲综合精品二区| 国产精品国产三级国产专区5o| 国产91av在线免费观看| 国产色婷婷99| 伊人久久精品亚洲午夜| 男女免费视频国产| 国产精品偷伦视频观看了| 99久久精品热视频| av一本久久久久| 国产免费一区二区三区四区乱码| 久久久久精品性色| 中文字幕免费在线视频6| av视频免费观看在线观看| 国产av码专区亚洲av| 日韩中字成人| 久久久久人妻精品一区果冻| 一本久久精品| 中文字幕制服av| 中文字幕久久专区| 亚洲国产精品一区二区三区在线| 色吧在线观看| av不卡在线播放| 精品久久久噜噜| 在线精品无人区一区二区三| 亚洲欧洲国产日韩| av卡一久久| 亚洲精品456在线播放app| 日日摸夜夜添夜夜添av毛片| 99热国产这里只有精品6| 亚洲精品乱久久久久久| 久久97久久精品| 亚洲精品中文字幕在线视频 | 亚洲欧美成人精品一区二区| 国产在线免费精品| 边亲边吃奶的免费视频| 视频区图区小说| 一级毛片久久久久久久久女| 亚洲国产精品成人久久小说| 国产深夜福利视频在线观看| 波野结衣二区三区在线| 啦啦啦在线观看免费高清www| 在现免费观看毛片| 精品久久久噜噜| 欧美精品一区二区大全| 狂野欧美激情性xxxx在线观看| 亚洲成人手机| 桃花免费在线播放| 在线观看一区二区三区激情| 日韩视频在线欧美| 亚洲在久久综合| 久久人妻熟女aⅴ| 成人黄色视频免费在线看| 亚洲av福利一区| 最近中文字幕高清免费大全6| 亚洲精品日本国产第一区| 蜜桃久久精品国产亚洲av| 国产欧美日韩精品一区二区| 黄色日韩在线| 亚洲真实伦在线观看| 亚洲av福利一区| 国产成人a∨麻豆精品| 久久精品国产亚洲网站| 欧美精品高潮呻吟av久久| 伦理电影大哥的女人| av播播在线观看一区| 国产精品免费大片| 一区二区三区乱码不卡18| 三上悠亚av全集在线观看 | 夫妻午夜视频| 亚洲av综合色区一区| 看免费成人av毛片| 777米奇影视久久| 亚洲欧美中文字幕日韩二区| 免费看光身美女| 精品久久久久久久久亚洲| 18禁在线无遮挡免费观看视频| av在线老鸭窝| 国产精品成人在线| 插阴视频在线观看视频| 亚洲丝袜综合中文字幕| 成人黄色视频免费在线看| 热re99久久国产66热| 97在线人人人人妻| 日韩一本色道免费dvd| 91久久精品国产一区二区三区| 女性被躁到高潮视频| 久久精品国产亚洲av天美| 亚洲精品一二三| 亚洲av欧美aⅴ国产| 少妇的逼好多水| 国产精品一二三区在线看| 国产在线视频一区二区| 777米奇影视久久| 97精品久久久久久久久久精品| 中文资源天堂在线| 美女国产视频在线观看| 国产日韩欧美视频二区| 女性生殖器流出的白浆| 多毛熟女@视频| 日本黄色片子视频| 一级毛片黄色毛片免费观看视频| 丰满乱子伦码专区| 国产69精品久久久久777片| 国产成人精品福利久久| 国产亚洲欧美精品永久| 日本黄色片子视频| 欧美区成人在线视频| 九色成人免费人妻av| 日本黄色片子视频| 男女免费视频国产| 日日爽夜夜爽网站| 久久久a久久爽久久v久久| 在线观看av片永久免费下载| 校园人妻丝袜中文字幕| 日韩精品免费视频一区二区三区 | 自线自在国产av| 亚洲精品国产av蜜桃| 蜜桃在线观看..| 22中文网久久字幕| 黑人高潮一二区| 国语对白做爰xxxⅹ性视频网站| 国产91av在线免费观看| 亚洲欧美日韩东京热| 国产黄色免费在线视频| 啦啦啦在线观看免费高清www| 亚洲精品国产av成人精品| 内地一区二区视频在线| 国产在线视频一区二区| 国产一区二区三区av在线| 青春草亚洲视频在线观看| 简卡轻食公司| 十八禁高潮呻吟视频 | 视频中文字幕在线观看| 国产日韩欧美视频二区| 在线观看免费视频网站a站| 天天操日日干夜夜撸| 搡老乐熟女国产| 狠狠精品人妻久久久久久综合| 亚洲电影在线观看av| 一级毛片电影观看| av在线app专区| 22中文网久久字幕| 国精品久久久久久国模美| 久久久久久人妻| 91午夜精品亚洲一区二区三区| av免费在线看不卡| 国产精品久久久久久久久免| 三级国产精品欧美在线观看| 99久久综合免费| 国产伦精品一区二区三区四那| 观看av在线不卡| 热99国产精品久久久久久7| 亚洲精品中文字幕在线视频 | 少妇猛男粗大的猛烈进出视频| 国产精品久久久久久久久免| 伦精品一区二区三区| 亚洲精品乱码久久久久久按摩| 色婷婷av一区二区三区视频| 在线观看免费高清a一片| 18禁动态无遮挡网站| 欧美老熟妇乱子伦牲交| 亚洲精品自拍成人| 成人特级av手机在线观看| 狂野欧美白嫩少妇大欣赏| 国产欧美日韩精品一区二区| 美女大奶头黄色视频| 少妇的逼好多水| 国产 精品1| 日韩精品免费视频一区二区三区 | 国产老妇伦熟女老妇高清| 亚洲国产精品国产精品| 久久鲁丝午夜福利片| 男女边摸边吃奶| 亚洲国产欧美在线一区| 毛片一级片免费看久久久久| 国产在线一区二区三区精| 三级经典国产精品| 欧美精品人与动牲交sv欧美| 亚洲伊人久久精品综合| 美女内射精品一级片tv| 晚上一个人看的免费电影| 建设人人有责人人尽责人人享有的| 看免费成人av毛片| 少妇丰满av| 大香蕉97超碰在线| 午夜免费男女啪啪视频观看| 国产亚洲5aaaaa淫片| 日韩成人av中文字幕在线观看| 国产亚洲一区二区精品| 看十八女毛片水多多多| 欧美精品国产亚洲| 韩国高清视频一区二区三区| 欧美最新免费一区二区三区| 少妇的逼好多水| 极品教师在线视频| 永久网站在线| 日韩三级伦理在线观看| 中文字幕av电影在线播放| 国产一级毛片在线| 亚洲性久久影院| 精品久久久久久久久亚洲| 国产黄片视频在线免费观看| 国产精品一区www在线观看| 日韩电影二区| 久久久亚洲精品成人影院| 日韩强制内射视频| 韩国高清视频一区二区三区| 免费看光身美女| 99热国产这里只有精品6| 嫩草影院入口| 久久久国产欧美日韩av| 欧美xxⅹ黑人| 午夜久久久在线观看| 少妇熟女欧美另类| 国产探花极品一区二区| 欧美bdsm另类| 一区二区三区免费毛片| 国产亚洲av片在线观看秒播厂| 国产成人精品久久久久久| 我的女老师完整版在线观看| 国产精品久久久久久av不卡| 在线观看人妻少妇| 久久久久久久久久人人人人人人| 成人黄色视频免费在线看| 嫩草影院入口| 免费黄频网站在线观看国产| 午夜福利在线观看免费完整高清在| a级片在线免费高清观看视频| 在线观看免费日韩欧美大片 | 中文精品一卡2卡3卡4更新| 一级毛片我不卡| 美女中出高潮动态图| 一级,二级,三级黄色视频| 久久人人爽av亚洲精品天堂| 国产综合精华液| 久久久久久久亚洲中文字幕| 国产女主播在线喷水免费视频网站| 9色porny在线观看| 日本91视频免费播放| 亚洲av国产av综合av卡| 最近中文字幕高清免费大全6| 亚洲精品乱码久久久v下载方式| 永久网站在线| 五月玫瑰六月丁香| 国产日韩欧美视频二区| 国产av码专区亚洲av| 青春草亚洲视频在线观看| 一个人免费看片子| 大话2 男鬼变身卡| 亚洲情色 制服丝袜| 新久久久久国产一级毛片| 三级国产精品欧美在线观看| 18禁在线播放成人免费| 精品亚洲乱码少妇综合久久| 91久久精品电影网| 啦啦啦中文免费视频观看日本| 国产深夜福利视频在线观看| 永久免费av网站大全| 综合色丁香网| 高清在线视频一区二区三区| 日韩av不卡免费在线播放| 少妇猛男粗大的猛烈进出视频| 日韩欧美一区视频在线观看 | 妹子高潮喷水视频| 国产精品.久久久| 18禁在线播放成人免费| 美女视频免费永久观看网站| 男女免费视频国产| 我要看日韩黄色一级片| 十八禁高潮呻吟视频 | 三级国产精品片| av福利片在线观看| 爱豆传媒免费全集在线观看| 欧美丝袜亚洲另类| 人体艺术视频欧美日本| 久久久久视频综合| 日韩 亚洲 欧美在线| 人人妻人人爽人人添夜夜欢视频 | 美女内射精品一级片tv| 中文字幕久久专区| av播播在线观看一区| 王馨瑶露胸无遮挡在线观看| 久久精品熟女亚洲av麻豆精品| 国产午夜精品久久久久久一区二区三区| 99久久综合免费| 一级毛片aaaaaa免费看小| 哪个播放器可以免费观看大片| 99久久精品国产国产毛片| 色5月婷婷丁香| 亚洲av成人精品一二三区| 人妻少妇偷人精品九色| 亚洲,欧美,日韩| 亚洲国产av新网站| 亚洲人与动物交配视频| 伦理电影大哥的女人| 2018国产大陆天天弄谢| 91精品国产九色| 亚洲av日韩在线播放| 亚洲,一卡二卡三卡| 少妇精品久久久久久久| 欧美亚洲 丝袜 人妻 在线| 一级毛片我不卡| 亚洲无线观看免费| 日韩大片免费观看网站| 久久精品国产亚洲网站| 久久久久久久久久成人| 丰满人妻一区二区三区视频av| 亚洲精品成人av观看孕妇| 黑丝袜美女国产一区| 国产亚洲最大av| 97在线人人人人妻| 蜜臀久久99精品久久宅男| 精品久久久精品久久久| 国产午夜精品一二区理论片| 少妇人妻久久综合中文| 韩国av在线不卡| 亚洲精华国产精华液的使用体验| 成人毛片60女人毛片免费| 97在线视频观看| 大香蕉97超碰在线| 午夜视频国产福利| 国产极品粉嫩免费观看在线 | 国产亚洲最大av| 国产亚洲av片在线观看秒播厂| 一区二区三区精品91| 人妻人人澡人人爽人人| 欧美老熟妇乱子伦牲交| 日本vs欧美在线观看视频 | 亚洲av国产av综合av卡| 国产免费一区二区三区四区乱码| 国产在线男女| 九九久久精品国产亚洲av麻豆| 最近的中文字幕免费完整| 岛国毛片在线播放| 国产高清国产精品国产三级| 免费看不卡的av| 噜噜噜噜噜久久久久久91| 日韩在线高清观看一区二区三区| 视频中文字幕在线观看| 五月开心婷婷网| 毛片一级片免费看久久久久| 精品国产露脸久久av麻豆| 国产在视频线精品| 人妻夜夜爽99麻豆av| 国产精品嫩草影院av在线观看| 国产免费一级a男人的天堂| 下体分泌物呈黄色| 国产极品天堂在线| 丝袜在线中文字幕| 久久久久精品久久久久真实原创| 精品人妻一区二区三区麻豆| 日本色播在线视频| 少妇人妻精品综合一区二区| 全区人妻精品视频| 啦啦啦中文免费视频观看日本| 国产在线男女| 久久综合国产亚洲精品| 日韩,欧美,国产一区二区三区| 久久6这里有精品| 国产黄片美女视频| 午夜福利影视在线免费观看| 永久免费av网站大全| 国产精品99久久99久久久不卡 | 男女边吃奶边做爰视频| a级片在线免费高清观看视频| 丰满迷人的少妇在线观看| 国产伦在线观看视频一区| 国产黄片视频在线免费观看| av福利片在线观看| 色婷婷久久久亚洲欧美| 天天躁夜夜躁狠狠久久av| 一级黄片播放器| 亚洲激情五月婷婷啪啪| 精品一区二区三区视频在线| 永久网站在线| 少妇 在线观看| 日韩欧美 国产精品| 大香蕉97超碰在线| 亚洲国产精品一区二区三区在线| 久久久久国产精品人妻一区二区| 久久久久久久久久久久大奶| 春色校园在线视频观看| 美女大奶头黄色视频| 免费在线观看成人毛片| 哪个播放器可以免费观看大片| 成年av动漫网址| 99热国产这里只有精品6| 久久精品久久久久久久性| 2022亚洲国产成人精品| 亚洲国产欧美日韩在线播放 | 国产日韩欧美在线精品| 伦理电影免费视频| 看免费成人av毛片| 亚洲欧美清纯卡通| 亚洲av欧美aⅴ国产| 三级国产精品片| 观看av在线不卡| 久久久久久久大尺度免费视频| 国产精品福利在线免费观看| 视频区图区小说| 亚洲精品国产av蜜桃| 久久久久精品久久久久真实原创| 亚洲图色成人| 午夜激情久久久久久久| a级片在线免费高清观看视频| 91在线精品国自产拍蜜月| 色94色欧美一区二区| 婷婷色综合www| 成人毛片60女人毛片免费| 韩国av在线不卡| 国产一区二区在线观看日韩| tube8黄色片| 国产男女内射视频| 99re6热这里在线精品视频| 久久 成人 亚洲| 夫妻性生交免费视频一级片| 午夜福利视频精品| 久久久国产精品麻豆| 大话2 男鬼变身卡| 午夜老司机福利剧场| 三级国产精品欧美在线观看| 久久精品久久久久久久性| 人人妻人人澡人人看| 亚洲av成人精品一区久久| 黑人猛操日本美女一级片| 久久久久久久久久成人| 午夜老司机福利剧场| 美女大奶头黄色视频| 国产无遮挡羞羞视频在线观看| 国产精品秋霞免费鲁丝片| 又黄又爽又刺激的免费视频.| 有码 亚洲区| 欧美+日韩+精品| 男男h啪啪无遮挡| 亚洲欧美精品自产自拍| 韩国高清视频一区二区三区| 成人黄色视频免费在线看| 免费看日本二区| 欧美日韩在线观看h| 超碰97精品在线观看| 欧美日韩在线观看h| 九九爱精品视频在线观看| 国产男人的电影天堂91| 久久久久久久久久成人| 国产在视频线精品| 国产极品天堂在线| 亚洲av在线观看美女高潮| 一边亲一边摸免费视频| 欧美人与善性xxx| 日韩欧美精品免费久久| 亚洲av中文av极速乱| 国产爽快片一区二区三区| 777米奇影视久久| 亚洲熟女精品中文字幕| 一个人免费看片子| 一级二级三级毛片免费看| 黄色日韩在线| 狂野欧美激情性bbbbbb| 免费播放大片免费观看视频在线观看| 男人添女人高潮全过程视频| 亚洲精品久久午夜乱码| 亚洲电影在线观看av| 人妻系列 视频| 亚洲欧洲国产日韩| 精品一品国产午夜福利视频| 日本av手机在线免费观看| 日本免费在线观看一区| 韩国av在线不卡| av福利片在线| 亚洲国产欧美日韩在线播放 | 亚洲第一区二区三区不卡| 在线观看美女被高潮喷水网站| 日韩精品免费视频一区二区三区 | 国产 精品1| 亚洲精品亚洲一区二区| 少妇熟女欧美另类| 国产午夜精品久久久久久一区二区三区| 亚洲av综合色区一区| 91aial.com中文字幕在线观看| 免费在线观看成人毛片| 亚洲精品,欧美精品| 免费看日本二区| 国产极品粉嫩免费观看在线 | 亚洲欧美日韩另类电影网站| 中文天堂在线官网| 国产美女午夜福利| 精品国产露脸久久av麻豆| 黄色怎么调成土黄色| 国产毛片在线视频| 最近中文字幕高清免费大全6| 亚洲丝袜综合中文字幕| 女人精品久久久久毛片| 亚洲av在线观看美女高潮| 日本vs欧美在线观看视频 | 国产成人免费观看mmmm| 97在线人人人人妻| 99热网站在线观看| 免费黄频网站在线观看国产| 啦啦啦在线观看免费高清www| 日韩视频在线欧美| 九色成人免费人妻av| 成年女人在线观看亚洲视频| 国产精品欧美亚洲77777| 亚洲精品一二三| 人人澡人人妻人| 九草在线视频观看| 精品少妇内射三级| 插逼视频在线观看| 精品一区二区三区视频在线| 欧美精品人与动牲交sv欧美| 黄色视频在线播放观看不卡| 亚洲欧美一区二区三区黑人 | 亚洲人成网站在线播| 搡女人真爽免费视频火全软件| 国产精品久久久久久久久免| 少妇被粗大猛烈的视频| 黑人巨大精品欧美一区二区蜜桃 | 日韩成人av中文字幕在线观看| 亚洲,欧美,日韩| 男男h啪啪无遮挡| 亚洲av二区三区四区| 一本久久精品| 成人毛片a级毛片在线播放| 韩国av在线不卡| 精品国产乱码久久久久久小说| 亚洲精品一区蜜桃| 777米奇影视久久| 亚洲欧美成人精品一区二区| 久久久久久久精品精品| 久久女婷五月综合色啪小说| 美女内射精品一级片tv| 高清午夜精品一区二区三区| 色婷婷久久久亚洲欧美| 男女啪啪激烈高潮av片| 啦啦啦啦在线视频资源| 久久精品久久久久久噜噜老黄| 极品少妇高潮喷水抽搐| 精品午夜福利在线看| 精品一品国产午夜福利视频| 亚洲国产精品一区三区| 精品酒店卫生间| 美女cb高潮喷水在线观看| 欧美精品人与动牲交sv欧美| 色视频www国产| 亚洲av成人精品一二三区| 国产一区有黄有色的免费视频| 欧美国产精品一级二级三级 | 久久综合国产亚洲精品| 色94色欧美一区二区| 一本一本综合久久| 日韩av在线免费看完整版不卡| 婷婷色av中文字幕| 最黄视频免费看| 中文字幕人妻熟人妻熟丝袜美| 久久人人爽人人爽人人片va| 欧美老熟妇乱子伦牲交| 国产精品久久久久久av不卡| 肉色欧美久久久久久久蜜桃| 婷婷色av中文字幕| 国产精品三级大全| 久久久欧美国产精品|