• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Relations between the Fractional Variation of the Ionizing Continuum and CIV Broad Absorption Lines with Different Ionization Levels

    2024-03-22 04:11:40YingRuLinCaiJuanPanandWeiJianLu

    Ying-Ru Lin, Cai-Juan Pan, and Wei-Jian Lu

    1 School of Information Engineering, Baise University, Baise 533000, China; yingru_lin@qq.com, william_lo@qq.com

    2 School of Materials Science and Engineering, Baise University, Baise 533000, China

    Abstract This paper explores the correlation between the fractional variation of the ionizing continuum and C IV broad absorption lines (BALs) with different ionization levels.Our results reveal anti-correlations between fractional variation of the continuum and fractional equivalency width(EW)variation of the C IV BALs without Al III BAL/mini-BALs at corresponding velocities,providing evidence for the widespread influence of the ionizing continuum variability on the variation of HiBALs.Conversely, for C IV BALs accompanied by Al III BAL/mini-BALs(LoBAL groups), no significant correction is detected.The absence of such a correlation does not rule out the possibility that variations in these low-ionization lines are caused by ionizing continuum variability, but rather suggests the influence of BAL saturation to some extent.This saturation effect is reflected in the distribution of the fractional EW variation, where the C IV BAL group accompanied by Al III BAL has a smaller standard deviation for the best-fitting Gaussian component than the two BAL groups without Al III BAL.However,the distribution of fractional variation of their continuum does not show any significant difference.Besides the saturation influence,another potential explanation for the lack of correlations in the LoBAL groups may be the effects of other variability mechanisms besides the ionization change, such as clouds transiting across the line of sight.

    Key words: (galaxies:) quasars: absorption lines – (galaxies:) quasars: general – galaxies: active

    1.Introduction

    Quasar outflows have been proposed as a kind of potential active galactic nucleus (AGN) feedback mechanism, which could play a role in terminating star formation in the interstellar medium (ISM) and regulating accretion onto the supermassive black hole (SMBH; Fabian 2012; King & Pounds 2015).In rest-frame UV spectra of quasars, outflows typically appear as broad absorption lines (BALs), with absorption widths greater than 2000 km s-1(Weymann et al.1991).“Mini-BALs” are defined as absorption troughs with full widths at half minimum from a few hundred to 2000 km s-1(Hamann & Sabra 2004).Most BALs have only high-ionization transitions,such as N V,Si IV, and C IV (referred to as HiBALs, as mentioned by Weymann et al.1991).A smaller fraction, about 15% in BAL quasars, also exhibits absorption from low-ionization transitions, including Al II, Al III and Mg II (known as LoBALs, as reported by Voit et al.1993 and Gibson et al.2009).Another subgroup, known as FeLoBALs, represents a small subset of LoBALs that exhibit absorption of Fe II or Fe III (Wampler et al.1995).

    BAL variability can serve as a means to assess BAL structures, wind locations, and dynamics, and constrain the physical mechanisms responsible for AGN outflows.Time variability in individual sources or samples with multi-epoch observations has been reported for HiBALs (e.g., Capellupo et al.2011, 2012; Filiz Ak et al.2013; Yi et al.2019a, 2019b;He et al.2019), for LoBALs (Zhang et al.2011; Vivek et al.2014;McGraw et al.2017;Sun et al.2017;Yi et al.2019a;Yi& Timlin 2021), and for FeLoBALs (Vivek et al.2012;McGraw et al.2015; Zhang et al.2015; Rafiee et al.2016;Stern et al.2017).The observed BAL variability can usually be explained by variations in the ionization parameter (e.g.,Barlow 1994;Crenshaw et al.2003;Filiz Ak et al.2013;Wang et al.2015; He et al.2017; Lu & Lin 2018; Lu et al.2018;Vivek 2019), clouds transiting across the line of sight (e.g.,Lundgren et al.2007;Gibson et al.2008;Hamann et al.2008;Krongold et al.2010; Hall et al.2011; Filiz Ak et al.2012;Vivek et al.2012;Capellupo et al.2014;Shi et al.2016;Vivek et al.2016; Capellupo et al.2017), or a combination of them(e.g., Capellupo et al.2012; Vivek et al.2014).One effective way to determine the variation mechanism of BAL in quasar sample is to investigate the correlation between variability in absorption lines and that of the continuum.Early study based on relatively small quasar samples reported no detectable correlation between changes in the BAL equivalency width(EW) and the continuum flux (Gibson et al.2008; Vivek et al.2014; Wildy et al.2014).However, recent studies have found anti-correlations between the fractional variation of the continuum and that of both C IV and Si IV BAL troughs in several BAL quasar samples (Lu & Lin 2018; Lu et al.2018;Vivek 2019).These anti-correlations reveal the widespread influence of ionizing continuum variability on BALs,providing evidence for photoionization-driven BAL variability.

    The question of whether these correlations extend to lower and higher ionization levels is still under debate.Vivek et al.(2014) found no clear correlation between absorption line and the continuum flux variabilities from a quasar sample of 22 low-ionization quasars that include Mg II and Al III BALs.However,Vivek et al.(2014)pointed out that targets with large absorption line variability also present large variability in their light curves, and they concluded that the observed variability can be well explained by the combination of two mechanisms:one is the continuum variations, and another is the clouds transiting across our line of sight.

    In typical disk-wind models(e.g.,Murray et al.1995;Proga et al.2000; Higginbottom et al.2013), BALs with different ionization levels can be explained by viewing angle effect.More concretely, lower degrees of ionization are observed along lines of sight closer to the accretion disk plane(Hamann& Sabra 2004; Baskin et al.2013, and Figure 16 of Filiz Ak et al.2014).This view is supported by observations as well as simulation studies.For example, Filiz Ak et al.(2014) studied the variability characteristics of C IV BAL troughs and whether they also contained accompanying Si IV and/or Al III BAL troughs.The measurements that they conducted demonstrate the correlation between the changes in ionization level,kinematics, and column density, which is consistent with the prediction of accretion-disk wind models.For example, low ionization absorption features in line of sight typically exhibit deeper and broader C IV BAL troughs, but exhibit smaller minimum velocities and less variation.Recent numerical simulations have also shown that when low ionization absorption features presented, the BALs are wider and deeper,whereas high ionization species exhibit higher blue-edge velocities compared to the low ionization lines (Matthews et al.2016).

    Filiz Ak et al.(2014)have reported the correlated changes of BAL with different ionization levels.Building upon their work,this paper aims to explore the correlation between the fractional variation of the ionizing continuum and C IV BALs with different ionization levels.The rest of this paper is organized as follows.Section 2 presents the data preparation and measurements of BALs and spectra.Section 3 contains the results,discussions, and conclusions.

    2.Data Preparation and Measurements

    The initial sample of this paper containing 671 quasars with at least two-epoch observations was selected by Filiz Ak et al.(2014)from SDSS-I/II/III.The selection criteria for these 671 targets were described in Section 2 of Filiz Ak et al.(2014).In their study, Filiz Ak et al.(2014) identified C IV, Si IV and Al III BAL/mini-BALs in the spectra of these quasars andclassified the C IV BALs into six groups according to whether there are Si IV and/or Al III BALs/mini-BALs at corresponding BAL regions.Specifically, “C IV00” represents C IV BALs without accompanying Si IV and Al III BALs at corresponding velocities during both epochs; “C IVS0” represents C IV BALs with a Si IV BAL at corresponding velocities in one or both epochs, but no corresponding Al III BAL;“C IVSA” represents C IV BALs with both accompanying Si IV and Al III BALs in either epoch;“C IVs0”represents C IV BALs with a Si IV mini-BAL,but no accompanying Al III BAL/mini-BAL is detected; “C IVsa” represents C IV BALs with both accompanying Si IV and Al III mini-BALs, “C IVSa” represents C IV BALs with a Si IV BAL as well as an Al III mini-BAL.In addition,Filiz Ak et al.(2014)defined the corresponding Si IV BALs of C IVS0as“Si IVS0,”the corresponding Si IV and Al III BALs of C IVSAas “Si IVSA” and “Al IIISA,” respectively.It is worth noting that among these nine groups, C IV00,C IVs0,C IVS0and Si IVS0belong to HiBALs, while C IVsa,C IVSA, C IVSa, Si IVSAand Al IIISAbelong to loBALs.

    Table 1 Number and Spearman Rank Correlation Analysis Results of Nine Groups of BALs

    We calculated the EW variation (ΔW) of all these detected BAL/mini-BALs, adopting the EW values measured by Filiz et al.(2014)and applied Equation(1)from Lu et al.(2018).We then selected BALs/mini-BALs based on the criterion of ΔW>3σ.The number of BALs included in each of the nine groups from Filiz Ak et al.(2014) and those selected for this article are listed in Table 1.We then calculated the fractional EW variation (ΔEW/〈EW〉) of our selected C IV, Si IV, and Al III BALs using Equation(2) in Lu et al.(2018).

    Figure 1.Fractional variation of BALs (ΔEW/〈EW〉)as a function of the fractional variation of the continuum(ΔFcont/〈Fcont〉) for nine groups of BALs.For the C IV00,C IVs0,C IVS0,C IVsa,C IVSa,and C IVSA groups,the ΔEW/〈EW〉is measured for C IV BAL troughs.For the Si IVS0 and Si IVSA groups,the ΔEW/〈EW〉is measured for Si IV BAL troughs.For the Al IIISA group, the ΔEW/〈EW〉is measured for Al III BAL troughs.

    To obtain the flux density values, we fitted a power-law continuum for each spectrum utilizing the same procedure in Lu et al.(2018).We then used the power-law continuum flux at 1350 ? from the two-epoch spectra of the same quasar to calculate the fractional variation of the ionizing continuum(ΔFcont/〈Fcont〉), following Equation (4) in Lu et al.(2018).Figure 1 depicts the fractional variation of BALs(ΔEW/〈EW〉) against the fractional variation of the continuum(ΔFcont/〈Fcont〉)for each group,and the corresponding results of the Spearman rank correlation analysis are listed in Table 1.

    3.Results and Discussions

    As shown in Table 1,anti-correlations between the fractional flux variations of the continuum and fractional EW variations of the BALs in C IV00, C IVs0, C IVS0and Si IVS0groups have been confirmed by the Spearman rank correlation analysis(with P-values of Spearman coefficient less than 0.01).It is worth noting that the C IV BALs with lower ionization exhibit smaller correlation coefficients.When the C IV BALs are accompanying with Al III BAL/mini-BALs (C IVsa, C IVSA,C IVSa, Si IVSAand Al IIISA), no significant correction is detected.These statistical results are consistent with the expectations of the disk-wind model and provide important insights into the variation mechanism of BALs with different ionization levels.

    On one hand, we confirm the anti-correlations between the fractional variations of the continuum and BALs in four groups(C IV00, C IVs0, C IVS0and Si IVS0) of HiBALs.Previous studies have observed anti-correlations between the fractional variations of the continuum and absorption lines in several BAL samples (Lu &Lin 2018;Lu et al.2018;Vivek 2019)as evidence for ionization-driven BAL variation.However, these studies did not compare the impact of different ionization states of BAL on the correlation.Our study expands on this by finding anti-correlations between the fractional flux variations of the continuum and fractional EW variations for four BAL groups without Al III BAL/mini-BAL, covering a wider ionization-potential range.This finding provides further evidence of the widespread impact of ionizing continuum variability on the variation of HiBALs (e.g., Weymann et al.1991).Additionally, in accordance with the typical disk-wind model (e.g., Murray et al.1995; Proga et al.2000;Higginbottom et al.2013), if different groups of BALs represent different viewing inclinations, the anti-correlations observed in our study provide evidence for the ubiquitous effects of ionizing continuum variability across a wide range of viewing inclinations.

    Figure 2.ΔFcont/〈Fcont〉 and ΔEW/〈EW〉distributions for the BALs in our CIV00 (dotted–dashed blue), C IVS0 (dashed green), and C IVSA (solid red) groups.

    On the other hand, we found no significant correlations between the fractional flux variations of the continuum and fractional EW variations for the five BAL groups with Al III BAL/mini-BAL (C IVsa, C IVSA, C IVSa, Si IVSAand Al IIISA),with P-values of Spearman coefficient greater than 0.01.We speculate that the lack of correlations in these groups may be due to the effects of BAL saturation or other variability mechanisms besides the ionization change, such as clouds transiting across the line of sight.

    The observations of BAL profiles suffering from saturation have been reported in several previous studies(e.g.,Arav 1997;Hamann 1998; Arav et al.2001; Leighly et al.2009; Borguet et al.2012;Xu et al.2018).For instance,Filiz Ak et al.(2014)have shown that when BAL troughs from lower ionization transitions are present, C IV troughs tend to be stronger and wider (see their Figure 5) and exhibit more saturation, but less fractional EW variation(see their Figure 11).This suggests that C IV troughs might experience more saturation when BAL troughs from lower ionization transitions are present.Hamann et al.(2019) also obtained empirical results showing that compared to the HiBALs, the C IV BALs in the composite spectrum of the LoBALs are deeper and wider (see their Figure 5).Using two sub-samples differing on the absorption trough depth,Vivek (2019)found that the shallow trough subsample exhibits an even stronger correlation while the deep trough sub-sample appears to be no correlation between the BAL variability and the continuum variability (see their Table 3).These results point out that the saturation of the BALs has a considerable effect in the correlation between the BAL variability and the continuum variability.The saturation can also be inferred from our Figure 2, which shows that the ΔEW/〈EW〉distribution of the C IVSAgroup has a smaller standard deviation (σ) for the best-fitting Gaussian component(σ=0.213) compared to the C IV00(σ=0.390) and C IVS0(σ=0.357) groups.This is because for saturated troughs, the fractional EW variation measurements can only reflect the lower limits of the true variations in optical depth and column density, thus weaken the correlation between the absorption line variability and continuum variability.However, the ΔFcont/〈Fcont〉distribution of the C IVSAdoes not show any significant difference compared to the C IV00and C IVS0groups(according to the K-S test results,with P>0.026).Considering the significant impact of line-saturation in the C IVSAgroup,we speculate that the effects of ionizing continuum variability may also exit in the BALs that accompany Al III BAL/mini-BALs.In other words, the ubiquitous effects of ionizing continuum variability may extend to even lower viewing inclinations.

    Another potential explanation for the lack of correlations in our LoBAL groups could be the transiting of the clouds across our line of sight.Transiting scenario has been reported to be a feasible cause of the absorption-line variability (e.g., Hamann et al.2008; Capellupo et al.2017).For example, if a highly saturated C IV BAL exhibits clear variability, it provides evidence in favor of the transiting scenario.This is because a highly saturated C IV BAL is not easily affected by small changes in ionization, but can easily exhibit variations due to the transiting of outflows (e.g., McGraw et al.2018).The presence of a P V BAL can serve as a detector for the highly saturated C IV BAL in the corresponding velocity (e.g.,Capellupo et al.2014, 2017; McGraw et al.2018).To put further constraints on the origin of variability of our LoBAL subsamples,it is necessary to check individual spectra,which is beyond the scope of this paper.

    In summary, we have discovered anti-correlations between the fractional variation of the continuum and fractional EW variation of the C IV BALs in four HiBAL groups, while no significant correlation was found in five LoBAL groups.The anti-correlations presented in four HiBAL groups demonstrates the widespread impact of ionizing continuum variability on the variation of outflow absorption.The lack of correlations in five LoBAL groups does not rule out the possibility that variations in these low-ionization lines are caused by ionizing continuum variability, but rather suggests the influence of BAL saturation to some extent.We have tested the ΔEW/〈EW〉and ΔFcont/〈Fcont〉distributions of the C IV00, C IVS0, and C IVSAgroups (Figure 2) to reveal the saturation influence.Another potential explanation for the lack of correlations in the LoBAL groups may be the effects of other variability mechanisms besides the ionization change, such as clouds transiting across the line of sight.

    Acknowledgments

    We wish to acknowledge the reviewer for the valuable comments on this paper.We also thank Filiz Ak et al.for making their data public.This research was supported by the Guangxi Natural Science Foundation (No.2021GXNSFBA220044), the National Natural Science Foundation of China (No.11903002),and the Research Project of Baise University(No.2019KN04).All observational data that support the findings of this study are available from the corresponding author (Wei-Jian Lu: william_lo@qq.com) on request.

    Funding for the Sloan Digital Sky Survey IV was provided by the Alfred P.Sloan Foundation, the U.S.Department of Energy Office of Science, and the Participating Institutions.SDSS-IV acknowledges support and resources from the Center for High-Performance Computing at the University of Utah.The SDSS website is http://www.sdss.org/.

    SDSS-IV is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS Collaboration including the Brazilian Participation Group, the Carnegie Institution for Science, Carnegie Mellon University,the Chilean Participation Group, the French Participation Group,Harvard-Smithsonian Center for Astrophysics,Instituto de Astrofísica de Canarias, The Johns Hopkins University,Kavli Institute for the Physics and Mathematics of the Universe(IPMU)/University of Tokyo, Lawrence Berkeley National Laboratory, Leibniz Institut für Astrophysik Potsdam (AIP),Max-Planck-Institut für Astronomie (MPIA Heidelberg), Max-Planck-Institut für Astrophysik (MPA Garching), MaxPlanck-Institut für Extraterrestrische Physik (MPE), National Astronomical Observatories of China,New Mexico State University,New York University,University of Notre Dame,Observatário Nacional/MCTI, The Ohio State University, Pennsylvania State University, Shanghai Astronomical Observatory, United Kingdom Participation Group, Universidad Nacional Autónoma de México,University of Arizona,University of Colorado Boulder, University of Oxford, University of Portsmouth,University of Utah, University of Virginia, University of Washington, University of Wisconsin, Vanderbilt University,and Yale University.

    ORCID iDs

    Wei-Jian Lu https://orcid.org/0000-0002-1185-4146

    男女下面插进去视频免费观看| 精品国产亚洲在线| 男女无遮挡免费网站观看| 美女高潮到喷水免费观看| 高清毛片免费观看视频网站 | 亚洲国产看品久久| 国产成人精品久久二区二区91| 亚洲国产av新网站| 成人精品一区二区免费| 亚洲av成人不卡在线观看播放网| 午夜福利在线免费观看网站| 两人在一起打扑克的视频| 制服人妻中文乱码| 国产精品亚洲一级av第二区| 精品乱码久久久久久99久播| tocl精华| av国产精品久久久久影院| 日韩一区二区三区影片| 99re6热这里在线精品视频| 丝袜人妻中文字幕| 黑人欧美特级aaaaaa片| 国产日韩欧美视频二区| 日本精品一区二区三区蜜桃| 如日韩欧美国产精品一区二区三区| 亚洲欧洲精品一区二区精品久久久| 国产老妇伦熟女老妇高清| av天堂在线播放| 国产三级黄色录像| 亚洲国产av影院在线观看| 亚洲色图综合在线观看| 嫩草影视91久久| 成年人免费黄色播放视频| 国产黄频视频在线观看| 亚洲 欧美一区二区三区| 精品国产亚洲在线| 国产在线免费精品| 亚洲国产av新网站| 欧美国产精品va在线观看不卡| 91成人精品电影| 露出奶头的视频| 日本一区二区免费在线视频| 日日摸夜夜添夜夜添小说| 少妇粗大呻吟视频| 国产免费现黄频在线看| 国产97色在线日韩免费| 97人妻天天添夜夜摸| 精品一区二区三卡| 最近最新中文字幕大全免费视频| 多毛熟女@视频| 国产精品国产高清国产av | 精品免费久久久久久久清纯 | 美国免费a级毛片| 99久久人妻综合| videosex国产| 一本—道久久a久久精品蜜桃钙片| netflix在线观看网站| 伊人久久大香线蕉亚洲五| 亚洲精品美女久久av网站| 亚洲熟女精品中文字幕| 99久久99久久久精品蜜桃| 自线自在国产av| 19禁男女啪啪无遮挡网站| 国产熟女午夜一区二区三区| 色视频在线一区二区三区| 国产亚洲一区二区精品| 亚洲精品国产精品久久久不卡| 制服诱惑二区| 看免费av毛片| 亚洲成人免费av在线播放| 亚洲性夜色夜夜综合| 99热国产这里只有精品6| 日日夜夜操网爽| 悠悠久久av| 国产欧美亚洲国产| 首页视频小说图片口味搜索| 老司机在亚洲福利影院| 久久精品国产亚洲av香蕉五月 | 高清在线国产一区| 国产无遮挡羞羞视频在线观看| 十八禁网站网址无遮挡| 国产成人一区二区三区免费视频网站| 免费在线观看视频国产中文字幕亚洲| 国产av一区二区精品久久| 久久天躁狠狠躁夜夜2o2o| 高清在线国产一区| 亚洲专区中文字幕在线| 亚洲七黄色美女视频| 成人三级做爰电影| 亚洲成人免费电影在线观看| 久久久国产精品麻豆| 99久久国产精品久久久| 国产成+人综合+亚洲专区| 国产日韩欧美在线精品| 欧美日韩成人在线一区二区| 啦啦啦视频在线资源免费观看| 好男人电影高清在线观看| 久久精品人人爽人人爽视色| 亚洲精品国产一区二区精华液| 亚洲专区国产一区二区| 欧美激情极品国产一区二区三区| 少妇的丰满在线观看| 国产精品熟女久久久久浪| 精品一区二区三卡| 国产熟女午夜一区二区三区| 超碰成人久久| 他把我摸到了高潮在线观看 | 丁香六月天网| 免费看十八禁软件| 国产精品电影一区二区三区 | 大陆偷拍与自拍| 在线av久久热| 亚洲三区欧美一区| 亚洲性夜色夜夜综合| 精品久久蜜臀av无| 在线观看www视频免费| 一二三四社区在线视频社区8| 99香蕉大伊视频| 一边摸一边做爽爽视频免费| 女人久久www免费人成看片| 热99re8久久精品国产| 女人爽到高潮嗷嗷叫在线视频| 国产精品久久久av美女十八| 汤姆久久久久久久影院中文字幕| 99国产精品99久久久久| 免费少妇av软件| 免费看十八禁软件| 怎么达到女性高潮| 欧美av亚洲av综合av国产av| 国产精品成人在线| 久久精品亚洲精品国产色婷小说| 国产欧美日韩一区二区三| 欧美乱妇无乱码| 日日摸夜夜添夜夜添小说| 91成人精品电影| 天天操日日干夜夜撸| 久久久久精品国产欧美久久久| 午夜两性在线视频| av有码第一页| 熟女少妇亚洲综合色aaa.| 国产亚洲av高清不卡| 亚洲久久久国产精品| 久久久精品国产亚洲av高清涩受| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲欧美一区二区三区久久| 两个人免费观看高清视频| 欧美乱妇无乱码| 王馨瑶露胸无遮挡在线观看| 国产av一区二区精品久久| 后天国语完整版免费观看| 精品少妇内射三级| 国产免费av片在线观看野外av| 成人手机av| 少妇猛男粗大的猛烈进出视频| 在线观看人妻少妇| 高清毛片免费观看视频网站 | aaaaa片日本免费| 国产老妇伦熟女老妇高清| 欧美黄色片欧美黄色片| 久久久久久亚洲精品国产蜜桃av| 黄色视频在线播放观看不卡| 女人久久www免费人成看片| 成年女人毛片免费观看观看9 | 亚洲全国av大片| 男女之事视频高清在线观看| 国产成人av激情在线播放| www.自偷自拍.com| 一级,二级,三级黄色视频| 我的亚洲天堂| 一区福利在线观看| 中文字幕人妻熟女乱码| 国产精品国产高清国产av | 99香蕉大伊视频| 高清欧美精品videossex| 宅男免费午夜| 国产精品亚洲av一区麻豆| 麻豆成人av在线观看| 99re6热这里在线精品视频| e午夜精品久久久久久久| 9热在线视频观看99| 人妻一区二区av| 久久这里只有精品19| 亚洲色图av天堂| 深夜精品福利| 国产激情久久老熟女| 婷婷成人精品国产| 男女下面插进去视频免费观看| 午夜免费鲁丝| 天天影视国产精品| 热99re8久久精品国产| 手机成人av网站| www.999成人在线观看| 菩萨蛮人人尽说江南好唐韦庄| 美女国产高潮福利片在线看| 国产免费现黄频在线看| 亚洲欧洲精品一区二区精品久久久| 好男人电影高清在线观看| 欧美在线一区亚洲| 精品高清国产在线一区| 亚洲,欧美精品.| 极品人妻少妇av视频| 黄色成人免费大全| 天天添夜夜摸| 淫妇啪啪啪对白视频| 国产一区有黄有色的免费视频| 欧美精品一区二区免费开放| 曰老女人黄片| 久久国产精品大桥未久av| 国产亚洲午夜精品一区二区久久| 91成人精品电影| 成人手机av| 免费在线观看视频国产中文字幕亚洲| 亚洲av日韩精品久久久久久密| 亚洲综合色网址| 亚洲精品中文字幕在线视频| 老鸭窝网址在线观看| 国产成人免费无遮挡视频| 国产xxxxx性猛交| 日本av免费视频播放| 成人永久免费在线观看视频 | 天天躁日日躁夜夜躁夜夜| 亚洲成人国产一区在线观看| 18禁裸乳无遮挡动漫免费视频| 国产日韩欧美视频二区| 精品福利永久在线观看| 久久精品国产综合久久久| 久久毛片免费看一区二区三区| 国产成人av教育| 亚洲专区国产一区二区| 俄罗斯特黄特色一大片| 真人做人爱边吃奶动态| 欧美黑人欧美精品刺激| 大码成人一级视频| 国产在线一区二区三区精| 1024视频免费在线观看| 亚洲va日本ⅴa欧美va伊人久久| 一本一本久久a久久精品综合妖精| 欧美黄色淫秽网站| 免费在线观看影片大全网站| 中亚洲国语对白在线视频| 色播在线永久视频| 欧美日本中文国产一区发布| 在线播放国产精品三级| 欧美av亚洲av综合av国产av| 菩萨蛮人人尽说江南好唐韦庄| 中文亚洲av片在线观看爽 | 国产成人欧美在线观看 | 国产欧美亚洲国产| 欧美中文综合在线视频| 免费少妇av软件| 国产精品美女特级片免费视频播放器 | 99精国产麻豆久久婷婷| 亚洲色图综合在线观看| 人人妻人人爽人人添夜夜欢视频| 午夜成年电影在线免费观看| 男女午夜视频在线观看| 免费在线观看黄色视频的| 欧美精品亚洲一区二区| 性色av乱码一区二区三区2| xxxhd国产人妻xxx| 久久天堂一区二区三区四区| www.精华液| 91字幕亚洲| 十八禁人妻一区二区| 亚洲专区字幕在线| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲专区国产一区二区| 久久久久久久精品吃奶| 日日爽夜夜爽网站| 亚洲成av片中文字幕在线观看| 国产精品免费大片| 搡老岳熟女国产| 欧美日韩一级在线毛片| 精品国产亚洲在线| 高清毛片免费观看视频网站 | 国产精品欧美亚洲77777| 18禁观看日本| 久9热在线精品视频| 变态另类成人亚洲欧美熟女 | 天堂俺去俺来也www色官网| 高清黄色对白视频在线免费看| 精品少妇内射三级| 女人久久www免费人成看片| 最近最新中文字幕大全电影3 | 亚洲精品美女久久久久99蜜臀| 人妻久久中文字幕网| 丝瓜视频免费看黄片| 国产色视频综合| 黄色视频在线播放观看不卡| 欧美激情高清一区二区三区| 久久国产亚洲av麻豆专区| 他把我摸到了高潮在线观看 | 天堂动漫精品| 久久久久精品国产欧美久久久| 天天影视国产精品| 可以免费在线观看a视频的电影网站| 大型黄色视频在线免费观看| 免费在线观看黄色视频的| 成人特级黄色片久久久久久久 | 我要看黄色一级片免费的| 大香蕉久久网| 日本av手机在线免费观看| 一区福利在线观看| 国产精品免费大片| h视频一区二区三区| 成人国语在线视频| 精品人妻1区二区| 波多野结衣一区麻豆| 侵犯人妻中文字幕一二三四区| 香蕉丝袜av| 中文字幕高清在线视频| 性高湖久久久久久久久免费观看| 免费在线观看日本一区| 天堂动漫精品| 精品少妇久久久久久888优播| 一区二区日韩欧美中文字幕| 欧美一级毛片孕妇| 丝袜喷水一区| 最新在线观看一区二区三区| 精品亚洲成国产av| av片东京热男人的天堂| 欧美+亚洲+日韩+国产| 欧美成狂野欧美在线观看| 亚洲欧美日韩另类电影网站| av超薄肉色丝袜交足视频| 色婷婷久久久亚洲欧美| 男女免费视频国产| 色老头精品视频在线观看| 免费女性裸体啪啪无遮挡网站| 99久久99久久久精品蜜桃| 国产午夜精品久久久久久| 欧美久久黑人一区二区| 国产不卡av网站在线观看| 亚洲欧洲日产国产| 国产免费av片在线观看野外av| 欧美日韩亚洲国产一区二区在线观看 | 老熟妇仑乱视频hdxx| 免费人妻精品一区二区三区视频| 亚洲中文字幕日韩| 黄片大片在线免费观看| 不卡一级毛片| 亚洲色图 男人天堂 中文字幕| 一边摸一边做爽爽视频免费| 在线观看免费日韩欧美大片| 在线观看www视频免费| a在线观看视频网站| 亚洲五月色婷婷综合| 亚洲国产欧美一区二区综合| 下体分泌物呈黄色| 午夜福利在线观看吧| a级毛片黄视频| 高清黄色对白视频在线免费看| 超碰成人久久| 人成视频在线观看免费观看| 老熟妇乱子伦视频在线观看| 亚洲av欧美aⅴ国产| 久久久久网色| 久久免费观看电影| 女同久久另类99精品国产91| 欧美亚洲 丝袜 人妻 在线| 国产精品1区2区在线观看. | 精品久久久久久电影网| 日韩免费av在线播放| 亚洲人成电影免费在线| 日韩欧美国产一区二区入口| 亚洲伊人久久精品综合| 精品亚洲成国产av| 精品午夜福利视频在线观看一区 | aaaaa片日本免费| 老熟女久久久| 操美女的视频在线观看| tube8黄色片| 亚洲成国产人片在线观看| 久久久国产欧美日韩av| 中文字幕色久视频| 国产日韩欧美在线精品| 国产精品 欧美亚洲| 国产精品久久久人人做人人爽| 法律面前人人平等表现在哪些方面| 在线观看免费视频网站a站| 亚洲欧洲日产国产| 欧美激情 高清一区二区三区| 最新美女视频免费是黄的| 亚洲av美国av| 久久青草综合色| 精品人妻熟女毛片av久久网站| 久久人人爽av亚洲精品天堂| 成年人免费黄色播放视频| 黄色毛片三级朝国网站| 日韩视频一区二区在线观看| 又黄又粗又硬又大视频| 天天操日日干夜夜撸| 国产精品一区二区精品视频观看| 国产黄色免费在线视频| 999精品在线视频| 国产精品成人在线| 狠狠精品人妻久久久久久综合| 国产欧美日韩综合在线一区二区| 男女午夜视频在线观看| 欧美日韩亚洲国产一区二区在线观看 | 亚洲精品在线观看二区| 亚洲免费av在线视频| 欧美精品高潮呻吟av久久| 人妻久久中文字幕网| 一区二区日韩欧美中文字幕| 黑人欧美特级aaaaaa片| 国产三级黄色录像| 一本综合久久免费| 久久亚洲真实| 中文亚洲av片在线观看爽 | 亚洲精品av麻豆狂野| 性高湖久久久久久久久免费观看| 一本久久精品| 国产成人精品久久二区二区91| 精品福利观看| 嫁个100分男人电影在线观看| 激情视频va一区二区三区| 国产欧美日韩一区二区精品| 国产成人欧美| bbb黄色大片| 亚洲少妇的诱惑av| 人妻久久中文字幕网| 80岁老熟妇乱子伦牲交| 高潮久久久久久久久久久不卡| 大香蕉久久网| 老司机深夜福利视频在线观看| 亚洲av第一区精品v没综合| 欧美日韩精品网址| 香蕉国产在线看| 飞空精品影院首页| 桃花免费在线播放| 国产真人三级小视频在线观看| svipshipincom国产片| 蜜桃在线观看..| xxxhd国产人妻xxx| 久久中文字幕人妻熟女| 亚洲一区中文字幕在线| 91国产中文字幕| 在线亚洲精品国产二区图片欧美| 亚洲伊人久久精品综合| 一区福利在线观看| 多毛熟女@视频| 黄片小视频在线播放| 黄色怎么调成土黄色| 国产亚洲欧美在线一区二区| videosex国产| 午夜福利影视在线免费观看| 最近最新免费中文字幕在线| 亚洲国产欧美日韩在线播放| 最新在线观看一区二区三区| 午夜福利一区二区在线看| 黄色a级毛片大全视频| 国产免费现黄频在线看| 色老头精品视频在线观看| 最新的欧美精品一区二区| 久久久久久免费高清国产稀缺| bbb黄色大片| 欧美av亚洲av综合av国产av| 成人影院久久| 女人久久www免费人成看片| 久久精品亚洲精品国产色婷小说| 视频在线观看一区二区三区| 狠狠精品人妻久久久久久综合| 欧美黄色淫秽网站| 欧美午夜高清在线| 男男h啪啪无遮挡| 国产精品自产拍在线观看55亚洲 | 国产又色又爽无遮挡免费看| 青青草视频在线视频观看| 五月开心婷婷网| 午夜福利影视在线免费观看| 亚洲av国产av综合av卡| 91字幕亚洲| 精品欧美一区二区三区在线| 亚洲av美国av| 一区二区三区乱码不卡18| 久久久久久久精品吃奶| 欧美亚洲日本最大视频资源| 国产精品亚洲av一区麻豆| 国产精品久久久人人做人人爽| 久久青草综合色| 日韩欧美免费精品| 亚洲熟女毛片儿| 视频区图区小说| 久久国产精品男人的天堂亚洲| 一级毛片电影观看| 女人久久www免费人成看片| 亚洲va日本ⅴa欧美va伊人久久| 99riav亚洲国产免费| 91字幕亚洲| av网站在线播放免费| 欧美老熟妇乱子伦牲交| 亚洲成人手机| 久久久久久久久久久久大奶| 在线亚洲精品国产二区图片欧美| 色综合欧美亚洲国产小说| 美女高潮喷水抽搐中文字幕| 99九九在线精品视频| 亚洲精华国产精华精| 亚洲国产欧美日韩在线播放| 精品欧美一区二区三区在线| 亚洲久久久国产精品| 午夜福利影视在线免费观看| 桃红色精品国产亚洲av| 男女午夜视频在线观看| 国产高清国产精品国产三级| 露出奶头的视频| 欧美精品亚洲一区二区| 一进一出抽搐动态| 亚洲国产看品久久| 色视频在线一区二区三区| 91av网站免费观看| 一区二区三区激情视频| 久久久久久亚洲精品国产蜜桃av| 欧美老熟妇乱子伦牲交| 天天躁日日躁夜夜躁夜夜| 国产黄色免费在线视频| 十八禁高潮呻吟视频| 国产亚洲午夜精品一区二区久久| 女人久久www免费人成看片| 亚洲午夜精品一区,二区,三区| 久9热在线精品视频| 国产日韩欧美在线精品| 怎么达到女性高潮| 日本a在线网址| 欧美日韩黄片免| 十分钟在线观看高清视频www| 宅男免费午夜| 国产成+人综合+亚洲专区| 嫁个100分男人电影在线观看| 国产男靠女视频免费网站| 国产高清videossex| 视频区欧美日本亚洲| 一边摸一边抽搐一进一出视频| tocl精华| 精品一区二区三卡| 丁香六月欧美| 欧美精品人与动牲交sv欧美| 久久人人97超碰香蕉20202| 亚洲国产欧美在线一区| 欧美日本中文国产一区发布| 国产精品国产高清国产av | 亚洲国产欧美网| 老鸭窝网址在线观看| 伊人久久大香线蕉亚洲五| √禁漫天堂资源中文www| 日韩三级视频一区二区三区| 国产精品国产高清国产av | 亚洲av成人一区二区三| 汤姆久久久久久久影院中文字幕| 国产亚洲精品第一综合不卡| 黑人欧美特级aaaaaa片| 51午夜福利影视在线观看| 久久久久久免费高清国产稀缺| 狂野欧美激情性xxxx| 国产一区二区三区综合在线观看| 在线十欧美十亚洲十日本专区| 亚洲熟女精品中文字幕| 日韩精品免费视频一区二区三区| 一区二区三区国产精品乱码| 亚洲av国产av综合av卡| 丁香六月天网| 日本av手机在线免费观看| 99国产精品一区二区蜜桃av | 黑丝袜美女国产一区| 日韩中文字幕欧美一区二区| 可以免费在线观看a视频的电影网站| 十八禁网站网址无遮挡| 下体分泌物呈黄色| 菩萨蛮人人尽说江南好唐韦庄| 黄片小视频在线播放| 亚洲va日本ⅴa欧美va伊人久久| 久9热在线精品视频| 国产高清激情床上av| 久久精品国产综合久久久| 99riav亚洲国产免费| 欧美精品高潮呻吟av久久| 亚洲色图综合在线观看| 久久天躁狠狠躁夜夜2o2o| 国产亚洲精品第一综合不卡| 亚洲情色 制服丝袜| 亚洲七黄色美女视频| 亚洲全国av大片| 国产精品一区二区在线不卡| 免费观看av网站的网址| 亚洲国产欧美日韩在线播放| 免费av中文字幕在线| 国内毛片毛片毛片毛片毛片| 婷婷成人精品国产| 国产精品欧美亚洲77777| 99国产综合亚洲精品| 久久久久久免费高清国产稀缺| 国产亚洲欧美精品永久| 亚洲av电影在线进入| 国产亚洲一区二区精品| 2018国产大陆天天弄谢| 欧美激情极品国产一区二区三区| 又紧又爽又黄一区二区| 中文字幕色久视频| 女性生殖器流出的白浆| 一区二区三区激情视频| 欧美日韩亚洲国产一区二区在线观看 | 精品乱码久久久久久99久播| 欧美精品啪啪一区二区三区| 国产成人av教育| 亚洲av美国av| 成年版毛片免费区| 桃花免费在线播放| 日韩三级视频一区二区三区| 黑人巨大精品欧美一区二区mp4| 日韩大片免费观看网站| 国产在线视频一区二区| 欧美精品亚洲一区二区| 国产精品亚洲av一区麻豆| 大香蕉久久网| 一区二区三区激情视频|