張偉,朱科杰
高強(qiáng)Al-Mg-Si-Cu鋁合金的時(shí)效工藝研究
張偉,朱科杰
(湖南中創(chuàng)空天新材料股份有限公司,湖南 岳陽(yáng) 414000)
研究時(shí)效工藝參數(shù)對(duì)高強(qiáng)Al-Mg-Si-Cu鋁合金微觀組織和力學(xué)性能的影響規(guī)律,以得到Al-Mg-Si-Cu鋁合金時(shí)效后最優(yōu)的性能和微觀組織。在不同時(shí)效處理工藝參數(shù)條件下,通過對(duì)Al-Mg-Si-Cu鋁合金時(shí)效處理后的硬度、電導(dǎo)率、室溫力學(xué)性能進(jìn)行測(cè)試與對(duì)比分析,并結(jié)合微觀組織觀察實(shí)驗(yàn),分析了不同時(shí)效溫度及時(shí)效時(shí)間對(duì)Al-Mg-Si-Cu鋁合金時(shí)效強(qiáng)化相及力學(xué)性能的影響規(guī)律。在不同時(shí)效溫度條件下,經(jīng)不同時(shí)效時(shí)間的時(shí)效處理后,Al-Mg-Si-Cu鋁合金的電導(dǎo)率隨時(shí)效溫度的升高和時(shí)間的延長(zhǎng)而增大,當(dāng)時(shí)效溫度為170、180、190 ℃時(shí),硬度和力學(xué)性能在時(shí)效時(shí)間為16、12、8 h時(shí)達(dá)到峰值。同時(shí),當(dāng)時(shí)效時(shí)間為8、12、16 h時(shí),Al-Mg-Si-Cu鋁合金的時(shí)效強(qiáng)化相分別是β''相、β'相和Q'相;在峰值時(shí)效和過時(shí)效工況下,Al-Mg-Si-Cu鋁合金的析出相均存在Q'相,該相對(duì)合金的強(qiáng)度具有明顯的貢獻(xiàn)。在過時(shí)效階段,Al-Mg-Si-Cu鋁合金強(qiáng)化相明顯初化,力學(xué)性能和硬度均有明顯降低。經(jīng)淬火處理+180 ℃/12 h時(shí)效處理后,高強(qiáng)Al-Mg-Si-Cu鋁合金的力學(xué)性能最優(yōu),抗拉強(qiáng)度和屈服強(qiáng)度分別為404 MPa和388 MPa,硬度為136HV。
Al-Mg-Si-Cu合金;時(shí)效;析出相;彌散分布
隨著鋁在工業(yè)領(lǐng)域的應(yīng)用越來越廣泛,Al-Mg- Si-(Cu)系合金作為中等強(qiáng)度變形鋁合金得到了廣泛的應(yīng)用[1-2]。市場(chǎng)對(duì)中高強(qiáng)度鋁合金(抗拉強(qiáng)度在400 MPa附近)的需求日益增加,如汽車結(jié)構(gòu)件、高鐵車廂、便攜電子產(chǎn)品結(jié)構(gòu)件等,這類產(chǎn)品不但要求強(qiáng)度高,而且對(duì)材料抗腐蝕性能的要求極高,且要求耐疲勞性優(yōu)、焊接性能好、表面陽(yáng)極處理性能好。因此,開發(fā)高強(qiáng)度(抗拉強(qiáng)度接近400 MPa)且具有良好抗腐蝕性能、焊接性能以及良好表面陽(yáng)極處理性能的合金具有重要的意義。
Al-Mg-Si-(Cu)系鋁合金可以通過固溶和時(shí)效熱處理進(jìn)行強(qiáng)化,鋁基體中的合金元素Mg、Si和Cu在固溶過程中可以完全固溶到基體中,后續(xù)可通過時(shí)效析出納米級(jí)別的Mg2Si亞穩(wěn)相,該相具有很好的強(qiáng)化效果,Al-Mg-Si-(Cu)系鋁合金的時(shí)效析出順序?yàn)椋篠.S.S.S→Clusters→GP zones→亞穩(wěn)相β''→亞穩(wěn)相β'→穩(wěn)定的β(Mg2Si)[3-6]。此外,國(guó)內(nèi)外針對(duì)時(shí)效處理工藝對(duì)Al-Mg-Si-(Cu)系鋁合金力學(xué)性能和腐蝕性能的影響規(guī)律開展了大量研究。李海等[7]研究表明,Al-Mg-Si-Cu鋁合金強(qiáng)度隨時(shí)效時(shí)間的延長(zhǎng)而先升高后降低,且晶間腐蝕深度先增大后減小。曹培元等[8]研究發(fā)現(xiàn),采用雙極時(shí)效工藝(T6+140 ℃×8 h)可綜合提升Al-Mg-Si-Cu鋁合金強(qiáng)度及耐晶間腐蝕性能。聶寶華等[9]研究發(fā)現(xiàn),通過雙極時(shí)效工藝(170 ℃× 4 h+190 ℃×4 h)可提高Al-Mg-Si-Cu鋁合金的耐晶腐蝕性能。
目前,軌道交通、新能源汽車以及5G手機(jī)等領(lǐng)域都急需高強(qiáng)Al-Mg-Si-Cu鋁合金,尤其是強(qiáng)度達(dá)到400 MPa的合金。目前主要通過2種手段調(diào)控性能:一種是通過合金成分設(shè)計(jì)提高合金化元素,增加Mg、Si和Cu的含量,但這同時(shí)也帶來了負(fù)面作用,導(dǎo)致成形性能、氧化性能及腐蝕性能下降;另一種是通過熱處理技術(shù)調(diào)控,尤其是時(shí)效熱處理。目前關(guān)于400 MPa級(jí)Al-Mg-Si-Cu合金時(shí)效熱處理的研究未見報(bào)道。本文研究了高強(qiáng)Al-Mg-Si-Cu鋁合金的時(shí)效工藝,以期為400 MPa級(jí)的Al-Mg-Si-Cu合金產(chǎn)業(yè)化提供理論依據(jù)。
實(shí)驗(yàn)用材料為105 mm×8 mm×200 mm的板材,合金的實(shí)際化學(xué)成分為Al-0.85Si-0.95Mg-0.81Cu- 0.12Mn(質(zhì)量分?jǐn)?shù)),余量為Al。樣品在RX-6小型時(shí)效爐中固溶,固溶溫度為560 ℃,保溫時(shí)間為2 h,而后立即轉(zhuǎn)移至水中淬火,轉(zhuǎn)移時(shí)間不超過10 s。淬火冷卻至室溫后,置于RX-6小型時(shí)效爐中進(jìn)行時(shí)效,時(shí)效溫度為170、180、190 ℃,時(shí)效時(shí)間為0、4、8、12、16、20 h。
針對(duì)不同時(shí)效工藝處理后的厚板,在表層分別切取相應(yīng)的樣品進(jìn)行硬度、電導(dǎo)率和室溫拉伸實(shí)驗(yàn)。硬度測(cè)試設(shè)備為HVS-10F觸摸屏維氏硬度計(jì);電導(dǎo)率測(cè)量在7501型渦流電導(dǎo)儀上進(jìn)行,測(cè)試樣品尺寸約為50 mm×50 mm;室溫拉伸力學(xué)性能測(cè)試設(shè)備為HSM-E-002型萬(wàn)能材料力學(xué)實(shí)驗(yàn)拉伸機(jī),拉伸速度為2 mm/min。
采用FEI TECNAI G2 20電鏡觀察不同時(shí)效機(jī)制下的納米析出相形貌、尺寸和分布,透射電鏡樣品的制備采用雙噴制樣,樣品通過機(jī)械研磨減薄至約80 μm的厚度,沖壓成直徑為3 mm的圓盤,在按70%(體積分?jǐn)?shù))甲醇和30%(體積分?jǐn)?shù))硝酸配備的溶液中通過雙噴減薄,電解液溫度采用液氮控制在?20 ℃以下,電流為50~70 mA,電壓為10~20 V。設(shè)備為MTP-1A型雙噴電解減薄儀。
3個(gè)時(shí)效溫度下的時(shí)效硬化曲線如圖1所示??梢钥闯?,180 ℃時(shí)效硬化曲線在最上方,其硬度最高。在170 ℃時(shí)效時(shí),隨著時(shí)效時(shí)間從0 h增至20 h,硬度先升高后降低,在時(shí)效16 h時(shí)達(dá)到峰值,為131HV。在180 ℃時(shí)效時(shí),隨著時(shí)效時(shí)間從0 h增至20 h,硬度先升高后降低,在時(shí)效12 h時(shí)達(dá)到峰值,為136HV。在190 ℃時(shí)效時(shí),隨著時(shí)效時(shí)間從0 h增至20 h,硬度先升高后降低,在時(shí)效8 h時(shí)達(dá)到峰值,為130HV。
圖1 3個(gè)時(shí)效溫度下的時(shí)效硬化曲線
3個(gè)時(shí)效溫度下的電導(dǎo)率曲線如圖2所示??梢钥闯?,190 ℃時(shí)電導(dǎo)率曲線在最上方,170 ℃時(shí)電導(dǎo)率曲線在最下方,電導(dǎo)率隨時(shí)效時(shí)間的延長(zhǎng)而增大。在170 ℃時(shí)效時(shí),隨著時(shí)效時(shí)間從0 h增至20 h,電導(dǎo)率從40.4%IACS增至45.4%IACS,增大了5%IACS。在180 ℃時(shí)效時(shí),隨著時(shí)效時(shí)間從0 h增至20 h,電導(dǎo)率從40.4%IACS增至46.1%IACS,增大了5.7%IACS。在190 ℃時(shí)效時(shí),隨著時(shí)效時(shí)間從0 h增至20 h,電導(dǎo)率從40.4%IACS增至46.4%IACS,增大了6%IACS。
圖2 3個(gè)時(shí)效溫度下的電導(dǎo)率曲線
170 ℃時(shí)效的拉伸性能如圖3所示。在170 ℃時(shí)效時(shí),隨著時(shí)效時(shí)間從0 h增至20 h,抗拉強(qiáng)度m和屈服強(qiáng)度p0.2逐漸增大,時(shí)效16 h后基本穩(wěn)定,從290 MPa和173 MPa分別增至386 MPa和368 MPa,延伸率逐漸降低,從28%降低至12%。
圖3 170 ℃時(shí)效的拉伸性能
180 ℃時(shí)效的拉伸性能如圖4所示。在180 ℃時(shí)效時(shí),隨著時(shí)效時(shí)間從0 h增至20 h,抗拉強(qiáng)度m和屈服強(qiáng)度p0.2先升高后降低,在時(shí)效12 h時(shí)達(dá)到峰值,分別為404 MPa和388 MPa,延伸率逐漸降低,從28%降低至8%。
圖4 180 ℃時(shí)效的拉伸性能
190 ℃時(shí)效的拉伸性能如圖5所示。在190 ℃時(shí)效時(shí),隨著時(shí)效時(shí)間從0 h增至20 h,抗拉強(qiáng)度m和屈服強(qiáng)度p0.2先升高后降低,在時(shí)效8 h時(shí)達(dá)到峰值,分別為379 MPa和362 MPa,延伸率逐漸降低,從28%降低至11%。
圖5 190 ℃時(shí)效的拉伸性能
2個(gè)時(shí)效溫度下的屈強(qiáng)比曲線如圖6所示??梢钥闯觯S著時(shí)效時(shí)間的延長(zhǎng),屈強(qiáng)比逐漸增大,尤其是在時(shí)效時(shí)間4 h以內(nèi),屈強(qiáng)比增大幅度最大。在170 ℃時(shí)效時(shí),隨著時(shí)效時(shí)間從0 h增至20 h,屈強(qiáng)比從0.6增至0.96;在180 ℃時(shí)效時(shí),隨著時(shí)效時(shí)間從0 h增至20 h,屈強(qiáng)比從0.6增至0.97;在190 ℃時(shí)效時(shí),隨著時(shí)效時(shí)間從0 h增至20 h,屈強(qiáng)比從0.6增至0.96。
圖6 3個(gè)時(shí)效溫度下的屈強(qiáng)比曲線
3種時(shí)效制度下的拉伸斷口SEM照片如圖7所示。可以看出,3種時(shí)效制度下的拉伸斷口均是混合型斷裂,存在明顯的沿晶斷裂。在170 ℃/16 h時(shí)效的拉伸斷口中,除了沿晶斷裂,還可以觀察到許多小韌窩(見圖7a),此時(shí)延伸率為12%。在180 ℃/12 h時(shí)效的拉伸斷口中,主要是沿晶斷裂,且韌窩較少(見圖7b),此時(shí)延伸率為8%。在190 ℃/8 h時(shí)效的拉伸斷口中,除了沿晶斷裂,還可以觀察到一些小韌窩(見圖7c),此時(shí)延伸率為11%。
T4狀態(tài)下的TEM照片如圖8所示??梢钥闯?,在自然時(shí)效狀態(tài)下,只觀察到粗大的彌散相Al6Mn,未觀察到時(shí)效強(qiáng)化相的析出。
不同時(shí)效工藝下的TEM照片如圖9所示。在170 ℃/16 h時(shí)效時(shí),可以清晰地觀察到點(diǎn)狀和針狀的時(shí)效析出相。在180 ℃/12 h時(shí)效時(shí),點(diǎn)狀和針狀的時(shí)效析出相數(shù)量更多且更加彌散,從<001>衍射斑照片(見圖10)可以看出,時(shí)效析出相的斑點(diǎn)非常清晰,可以觀察到β''相和β'相斑點(diǎn),時(shí)效析出大量的β''相和更加彌散的β'相,因此力學(xué)性能較高。在190 ℃/ 8 h時(shí)效時(shí),點(diǎn)狀和針狀的時(shí)效析出相有所粗化,因此力學(xué)性能有所下降。
在6×××系鋁合金中添加Cu元素,可獲得高強(qiáng)度的Al-Mg-Si-Cu系合金,該系合金的時(shí)效析出序列為[10-11]:過飽和固溶體→原子團(tuán)簇→GP區(qū)→亞穩(wěn)相β''→亞穩(wěn)相β'→亞穩(wěn)相Q'→穩(wěn)定的Q+Si相。6×××系鋁合金時(shí)效析出相的結(jié)構(gòu)如表1所示。大量研究認(rèn)為,Al-Mg-Si系合金存在2種GP區(qū)[12-14],其強(qiáng)化效果不佳。β''和β'相是Al-Mg-Si系合金主要的時(shí)效強(qiáng)化相,強(qiáng)化效果較好,該相與基體完全共格,其形貌為針狀,在峰值時(shí)效過程中析出。Andersen等[15]通過3DAP獲得了β''相的化學(xué)成分,他們認(rèn)為,β''相的成分為Mg5Si6。以前的研究認(rèn)為β''亞穩(wěn)相的成分跟β-Mg2Si穩(wěn)定相差不多,Mg和Si的原子比接近1。Hakon等[16]基于APT測(cè)量,獲得了β''亞穩(wěn)相的化學(xué)成分(Mg5Al2Si4)。Banhart等[17]研究認(rèn)為,該系合金中的亞穩(wěn)相是過渡產(chǎn)物,是時(shí)效過程中β''亞穩(wěn)相向平衡相β轉(zhuǎn)變的中間產(chǎn)物。
圖7 3種時(shí)效制度下的拉伸斷口SEM照片
圖8 T4狀態(tài)下的TEM照片(<001>,明場(chǎng)相)
圖9 不同時(shí)效工藝下的TEM照片(<001>)
圖10 β′和Q'在Al基體中的衍射圖(a)以及[100]Al//[0001] β', (020)Al//(0220) β'和[100]Al//[0001] Q', (020)Al//(2130) Q'之間的取向關(guān)系(b)
從析出系列可以看出,在6×××系鋁合金中添加Cu元素,會(huì)形成新的Q'相[18-30]。Al-Mg-Si-Cu系合金經(jīng)過峰值時(shí)效后,基體中析出大量的β''亞穩(wěn)相,同時(shí)β'相也更加均勻彌散,具有很好的強(qiáng)化效果,所以其強(qiáng)度顯著提高。Q'相只在過時(shí)效狀態(tài)下才會(huì)被觀察到。眾所周知,過時(shí)效狀態(tài)的合金強(qiáng)度有所下降。Chakrabarti等[19]研究發(fā)現(xiàn),峰值時(shí)效存在Q'先導(dǎo)相的析出。該板條狀的相對(duì)Al-Mg-Si-Cu系合金的強(qiáng)度有明顯的貢獻(xiàn)。在峰值時(shí)效和過時(shí)效過程中,在本文所研究的合金中均觀察到了Q'相,并且Q'相的熱穩(wěn)定性比較好,隨著時(shí)效時(shí)間的延長(zhǎng),粗化不明顯,但會(huì)發(fā)生轉(zhuǎn)化,在180 ℃時(shí)效時(shí),Q'相的數(shù)量較多,因此該合金的強(qiáng)度較高,峰值可達(dá)到400 MPa以上。在170 ℃時(shí)效時(shí),Q'相的數(shù)量相對(duì)較少,因此強(qiáng)化效果沒有180 ℃時(shí)的好。當(dāng)時(shí)效溫度為190 ℃時(shí),Q'相發(fā)生轉(zhuǎn)變,因此數(shù)量有所降低。因此,180 ℃時(shí)效最有利于Q'相的析出,強(qiáng)化效果最佳,性能也最好。
表1 Al-Mg-Si-Cu系合金析出結(jié)構(gòu)
Tab.1 Precipitation structure of Al-Mg-Si-Cu alloy
1)在170、180、190 ℃時(shí)效溫度下,高強(qiáng)Al-Mg-Si-Cu鋁合金分別在時(shí)效時(shí)間為16、12、8 h時(shí)力學(xué)性能達(dá)到峰值,其中180 ℃/12 h的力學(xué)性能最好,抗拉強(qiáng)度和屈服強(qiáng)度分別為404 MPa和388 MPa,硬度為136HV。
2)在170 ℃/16 h、180 ℃/12 h和190 ℃/8 h 3種時(shí)效工藝下,時(shí)效強(qiáng)化相主要是β''相、β'相和Q'相,峰值時(shí)效和過時(shí)效均存在Q'相,該相對(duì)合金的強(qiáng)度具有明顯的貢獻(xiàn),在180 ℃/12 h時(shí)效時(shí),β''相和β'相均勻、彌散且Q'相數(shù)量最多,因此力學(xué)性能最好。
[1] 沈元元, 肖罡, 干甜, 等. Al-Mg-Si-Cu合金雙道次熱變形流變軟化行為[J]. 機(jī)械工程材料, 2020, 44(10): 92-97.
SHEN Y Y, XIAO G, GAN T, et al. Flow Softening Behavior of Al-Mg-Si-Cu Alloy during Two-Pass Hot Deformation[J]. Materials for Mechanical Engineering, 2020, 44(10): 92-97.
[2] 王芝秀, 朱凡, 鄭凱, 等. 過時(shí)效階段Al-Mg-Si-Cu合金的晶間腐蝕再敏化[J]. 中國(guó)有色金屬學(xué)報(bào), 2018, 28(11): 2199-2205.
WANG Z X, ZHU F, ZHENG K, et al. Re-Sensitization to Intergranular Corrosion in Al-Mg-Si-Cu Alloy during Over-Ageing[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(11): 2199-2205.
[3] RINGER S P, HONO K. Microstructural Evolution and Age Hardening in Aluminium Alloys: Atom Probe Field-Ion Microscopy and Transmission Electron Microscopy Studies[J]. Materials Characterization, 2000, 44(1/2): 101-131.
[4] POGATSCHER S, ANTREKOWITSCH H, WERINOS M, et al. Diffusion on Demand to Control Precipitation Aging: Application to Al-Mg-Si Alloys[J]. Physical Review Letters, 2014, 112(22): 225701.
[5] MARIOARA C D, ANDERSEN S J, ZANDBERGEN H W, et al. The Influence of Alloy Composition on Precipitates of the Al-Mg-Si System[J]. Metallurgical and Materials Transactions A, 2005, 36(3): 691-702.
[6] POGATSCHER S, ANTREKOWITSCH H, LEITNER H, et al. Mechanisms Controlling the Artificial Aging of Al-Mg-Si Alloys[J]. Acta Materialia, 2011, 59(9): 3352-3363.
[7] 李海, 田奎生, 王芝秀. 單級(jí)時(shí)效對(duì)Al-Mg-Si-Cu合金拉伸及晶間腐蝕性能的影響[J]. 熱加工工藝, 2023, 52(16): 111-114.
LI H, TIAN K S, WANG Z X. Effects of Single-Stage Aging on Tensile Properties and Intergranular Corrosion of Al-Mg-Si-Cu Alloy[J]. Hot Working Technology, 2023, 52(16): 111-114.
[8] 曹培元, 袁峰, 李瑞雷, 等. 雙級(jí)時(shí)效對(duì)Al-Mg-Si-Cu合金力學(xué)性能和耐晶間腐蝕性能的影響[J]. 上海金屬, 2022, 44(1): 50-55.
CAO P Y, YUAN F, LI R L, et al. Effect of Two-Step Aging on Mechanical Properties and Intergranular Corrosion Resistance of Al-Mg-Si-Cu Alloy[J]. Shanghai Metals, 2022, 44(1): 50-55.
[9] 聶寶華, 陳東初, 易鵬, 等. 時(shí)效工藝對(duì)Al-Mg-Si-Cu合金性能影響[J]. 裝備制造技術(shù), 2020(9): 22-24.
NIE B H, CHEN D C, YI P, et al. Effect of Aging Process on the Properties of Al-MG-Si-Cu Alloy[J]. Equipment Manufacturing Technology, 2020(9): 22-24.
[10] WANG X, ESMAEILI S, LLOYD D J. The Sequence of Precipitation in the Al-Mg-Si-Cu Alloy AA6111[J]. Metallurgical and Materials Transactions A, 2006, 37(9): 2691-2699.
[11] CHAKRABARTI D J, LAUGHLIN D E. Phase Relations and Alloys with Cu Additions[J]. Progress in Materials Science, 2004, 49(3/4): 389-410.
[12] MURAYAMA M, HONO K. Pre-precipitate Clusters and Precipitation Processes in Al-Mg-Si Alloys[J]. Acta Materialia, 1999, 47(5): 1537-1548.
[13] MATSUDA K, KAWABATA T, UETANI Y. Hrtem Observation of G.P. Zones and Metastable Phase in Al-Mg-Si Alloys[J]. Materials Science Forum, 2000, 331: 989-994.
[14] MARIOARA C D, ANDERSEN S J, JANSEN J, et al. The Influence of Temperature and Storage Time at RT on Nucleation of the β″ Phase in a 6082 Al-Mg-Si Alloy[J]. Acta Materialia, 2003, 51(3): 789-796.
[15] ANDERSEN S J, ZANDBERGEN H W, JANSEN J, et al. The Crystal Structure of the β″ Phase in Al-Mg-Si Alloys[J]. Acta Materialia, 1998, 46(9): 3283-3298.
[16] HAKON S H, ANDERS Q F, SIGMUND J, et al. Composition of β″ Precipitates in Al-Mg-Si Alloys by Aatom Probe Tomography and First Principles Calculations[J]. Journal of Applied Physics, 2009, 106(12): 123527.
[17] BANHART J, CHANG C, LIANG Z, et al. Natural Aging in Al-Mg-Si Alloys-A Process of Unexpected Complexity[J]. Advanced Engineering Materials, 2010, 12(7): 559-571.
[18] SAGALOWICZ L, LAPASSET G, HUG G, et al. Intl Conf of Al Alloys 4[M]. Switzerland: TransTech, 1994: 636.
[19] CHAKRBARTI D J, LAUGHLIN D E. Phase Relations and Precipitation in Al-Mg-Si Alloys with Cu Additions[J]. Progress in Materials Science, 2004, 49(3/4): 389-410.
[20] THANABOONSOMBUT B, SANDERS T H. The Effect of Cooling Rate from the Melt on the Recrystallization Behavior of Aluminum Alloy 6013[J]. Metallurgical and Materials Transactions A, 1997, 28(10): 2137-2142.
[21] LIANG W J, ROMETSCH P A, CAO L F, et al. General Aspects Related to the Corrosion of 6XXX Series Aluminium Alloys: Exploring the Influence of Mg/Si Ratio and Cu[J]. Corrosion Science, 2013, 76: 119-128.
[22] ZANDBERGEN M W, CEREZO A, SMITH G D W. Study of Precipitation in Al-Mg-Si Alloys by Atom Probe Tomography ⅡInfluence of Cu Additions[J]. Acta Materialia, 2015, 101: 149-158.
[23] HASTING H S, WALMSLEY J C, van HELVOORT A T J, et al. Z-contrast Imaging of the Arrangement of Cu in Precipitates in 6XXX-series Aluminium Alloy[J]. Phiosophical Magazine Letters, 2006, 86(9): 589-597.
[24] TABATABAEI N, TAHERI A K, VASEGHI M. Dynamic Strain Aging of a Commercial Al-Mg-Si-Cu Alloy during Equal Channel Angular Extrusion Process[J]. Journal of Alloys and Compounds, 2010, 502(1): 60-62.
[25] BUHA J, LUMLEY R N, CROSKY A G, et al. Secondary Precipition in an Al-Mg-Si-Cu Alloy[J]. Acta Materialia, 2007, 55(9): 3015-3024.
[26] EDWARDS G A, STILLER K, DUNLOP G L, et al. The Precipitation Sequence in Al-Mg-Si Alloys[J]. Acta Materialia, 1998, 46(11): 3893-3904.
[27] ESMAEILI S, LLOYD D J, JIN H. A Themomechanical Process for Grain Refinement in Precipitation Hardening AA6XXX Aluminium Alloys[J]. Materials Letters, 2011, 65(6): 1028-1030.
[28] GUBICZA J, CHINH N Q, CSANADI T, et al. Microstructure and Strength of Severely Deformed fcc Metals[J]. Materials Science and Engineering: A, 2007, 462(1/2): 86-90.
[29] WANDERKA N, LAZAREV N, CHANG C S T, et al. Analysis of Clustering in Al-Mg-Si Alloy by Density Spectrum Analysis of Atom Probe Data[J]. Ultramicroscopy, 2011, 111(6): 701-705.
[30] NAGESWARA R P, VISWANADH B, JAYAGANTHAN R. Effect of Cryorolling and Warm Rolling on Precipitation Evolution in Al 6061 Alloy[J]. Materials Science and Engineering A, 2014, 606: 1-10.
Investigation on Aging Technology of High Strength Al-Mg-Si-Cu Aluminum Alloy
ZHANG Wei, ZHU Kejie
(Hunan Inno China Advanced Materials Co., Ltd., Hunan Yueyang 414000, China)
The work aims to study the effects of aging processing parameters on microstructures and mechanical properties of Al-Mg-Si-Cu aluminum alloy to obtain the optional properties and microstructures of aged Al-Mg-Si-Cu aluminum alloy. Under the condition of different aging treatment parameters and based on the testing analysis of electrical conductivity, hardness and tensile properties as well as microstructural observation, the effects of aging time and temperature on the aging precipitation phases and mechanical properties were analyzed. Results showed that the electrical conductivity increased with the increase of aging temperature or aging time, when the Al-Mg-Si-Cu aluminum alloy was subject to aging treatment under different aging temperatures and aging time. When the aging temperature is 170, 180, 190 ℃, the peak values of electrical conductivity, hardness and tensile properties were reached at the aging temperatures of 16 h, 12 h and 8 h, respectively. Meanwhile, the types of aging strengthening phases for the Al-Mg-Si-Cu aluminum alloy under aging temperatures of 16 h, 12 h and 8 h were β'' phase, β' phase and Q' phase, respectively. The Q' phase, which had a significant contribution to the strength of the Al-Mg-Si-Cu aluminum alloy, could be founded under peak aging and over-aging treatments. Furthermore, the coarsening behaviors of aging precipitation phases occurred under the over-aging process, and then both the hardness and tensile properties were reduced. The mechanical properties of the Al-Mg-Si-Cu aluminum alloy under quenching treatment and aging treatment of 180 ℃/12 h are the best, and its tensile strength and yield strength are 404 MPa and 388 MPa, respectively. Moreover, the hardness was 136HV.
Al-Mg-Si-Cu alloy; aging treatment; precipitation phase; dispersion distribution
10.3969/j.issn.1674-6457.2024.03.021
TG146.2
A
1674-6457(2024)03-0188-07
2023-05-10
2023-05-10
張偉, 朱科杰. 高強(qiáng)Al-Mg-Si-Cu鋁合金的時(shí)效工藝研究[J]. 精密成形工程, 2024, 16(3): 188-194.
ZHANG Wei, ZHU Kejie. Investigation on Aging Technology of High Strength Al-Mg-Si-Cu Aluminum Alloy [J]. Journal of Netshape Forming Engineering, 2024, 16(3): 188-194.