• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimized Ensemble Algorithm for Predicting Metamaterial Antenna Parameters

    2022-08-23 02:17:56ElSayedElkenawyAbdelhameedIbrahimSeyedaliMirjaliliYuDongZhangShaimaElnazerandRokaiaZaki
    Computers Materials&Continua 2022年6期

    El-Sayed M.El-kenawy,Abdelhameed Ibrahim,Seyedali Mirjalili,Yu-Dong Zhang,Shaima Elnazer and Rokaia M.Zaki

    1Department of Communications and Electronics,Delta Higher Institute of Engineering and Technology,Mansoura,35111,Egypt

    2Faculty of Artificial Intelligence,Delta University for Science and Technology,Mansoura,35712,Egypt

    3Computer Engineering and Control Systems Department,Faculty of Engineering,Mansoura University,Mansoura,35516,Egypt

    4Centre for Artificial Intelligence Research and Optimization,Torrens University Australia,Fortitude Valley,QLD 4006,Australia

    5Yonsei Frontier Lab,Yonsei University,Seoul,03722,Korea

    6School of Computing and Mathematical Sciences,University of Leicester,Leicester,LE1 7RH,UK

    7Nile Higher Institute for Engineering and Technology,Mansoura,Egypt

    8Computer and Information Technology College,Taif University,Taif,Saudi Arabia

    9Higher Institute of Engineering and Technology,Kafrelsheikh

    10Department of Electrical Engineering,Shoubra Faculty of Engineering,Benha University,Egypt

    Abstract: Metamaterial Antenna is a subclass of antennas that makes use of metamaterial to improve performance.Metamaterial antennas can overcome the bandwidth constraint associated with tiny antennas.Machine learning is receiving a lot of interest in optimizing solutions in a variety of areas.Machine learning methods are already a significant component of ongoing research and are anticipated to play a critical role in today’s technology.The accuracy of the forecast is mostly determined by the model used.The purpose of this article is to provide an optimal ensemble model for predicting the bandwidth and gain of the Metamaterial Antenna.Support Vector Machines (SVM),Random Forest, K-Neighbors Regressor, and Decision Tree Regressor were utilized as the basic models.The Adaptive Dynamic Polar Rose Guided Whale Optimization method, named AD-PRS-Guided WOA, was used to pick the optimal features from the datasets.The suggested model is compared to models based on five variables and to the average ensemble model.The findings indicate that the presented model using Random Forest results in a Root Mean Squared Error(RMSE)of(0.0102)for bandwidth and RMSE of(0.0891)for gain.This is superior to other models and can accurately predict antenna bandwidth and gain.

    Keywords:Metamaterial antenna;machine learning;ensemble model;feature selection;guided whale optimization;support vector machines

    1 Introduction

    Metamaterials are materials with special physical properties that cannot be reproduced using natural materials, and so metamaterials are popular materials in today’s world and are frequently used in many fields, such as microwave invisibility cloaks, invisible submarines, revolutionary electronics, microwave components, as filters, and antennas that are compact, efficient, and have a negative refractive index.One of its most important uses is the design of antennas made possible by metamaterials[1–3].

    This is due to the fact that metamaterials have unique properties,and as a result,we may construct antennas with innovative features that standard materials cannot provide.One or more layers of metamaterials may be utilized as a substrate or in addition to the antenna design in order to boost the system’s capabilities.Even if a compact antenna with low cost and high efficiency is desired,a slightly larger antenna that costs less money and has better efficiency is the best option.The metamaterial may help increase the bandwidth and gain of tiny antennas.Another advantage is that it reduces their electrical size,but the ability to direct a signal increases.In the case of smaller antennas,metamaterial antennas provide an advantage over traditional antennas since they have more bandwidth[4,5].

    Simulation software is used to estimate the metamaterial effect.The CST Microwave Studio(CST MWS) is an example of a software program that simulates electromagnetic simulations [6].Antenna characteristics like bandwidth,gain,Voltage Standing Wave Ratio(VSWR),and return loss may be calculated after the simulation.In the simulation phase, researchers may make adjustments in Metamaterial Antenna, beginning with trial and error to get the set of antenna characteristics.The amount of time it will take to finish this procedure is completely unpredictable.They are using a machine learning model to estimate antenna characteristics.Numerous studies have examined machine learning applications in antenna design.Machine learning is anticipated to speed the antenna design process while retaining high accuracy, minimizing errors, saving time, and the ability to forecast the antenna behavior, improve computing efficiency, and decrease the number of required simulations[7–9].

    Optimization is the study of finding optimal solutions to problems.Because optimization issues are complex and grow with time,we resort to improved optimization algorithms[10–13].Metaheuristic algorithms are an excellent option for tackling complex issues that are difficult to solve with conventional techniques.Algorithms start with a random population and pass on the best to the next generation.Metaheuristic algorithms are dynamic and widely looking for a solution[14–17].

    In this paper,an Antenna-derived metamaterial ensemble model is presented as a way to estimate the bandwidth and gain of the Antenna.Of the basic models, we utilise Support Vector Machines(SVM) [18,19], Random Forest [20], K-Neighbors Regressor [21,22], and Decision Tree Regressor[23]to be compared with the presented method.Ensemble model is optimized using an optimization method to identify the optimum features based on the adaptive dynamic polar rose guided whale optimization(AD-PRS-Guided WOA)[24]algorithm.A regression analysis using the suggested model indicated that it was superior to the other models,predicting antenna bandwidth and gain efficiencies.

    The structure of this work is organized as follows:Section 2 presents a literature review.Section 3 describes data preparation and the suggested ensemble model in detail.Section 4 displays results and discussion.The last section of the given study(Section 5)examines the conclusion.

    2 Literature Review

    In general, the following steps can be taken to incorporate machine learning into the antenna design problem.The electromagnetic properties of an antenna are first determined via a series of simulations.These attributes are then saved in a database and used to train a machine learning system.Finally,the algorithm determines the Antenna that produces the closest results based on the designer’s requirements.

    2.1 Machine Learning Models

    Machine learning is a technique that relies on algorithms which can learn from data without the need of pre-programming.It can be classified into three types,named supervised,unsupervised and reinforcement learning.To attain high performance in Artificial Neural Networks(ANN),extensive interconnections of“neurons,”which are basic processing cells,are used.When complicated functions with many characteristics are discovered, neural networks provide an alternative method for doing machine learning.Multiple layers comprise neural networks: an input layer, an output layer, and hidden layers between the input and output layers[25].The SVM method is another kind of algorithm for guided learning.It is mainly used in classification and employs kernel techniques to scope with a challenging situation of non-linearly separable patterns.K-Nearest Neighbors (KNN) is considered to be one of the simplest machine learning methods available.After remembering the training set,the algorithm predicts the outcome of each new input using the outputs of its nearest neighbors in the training set.

    Machine learning algorithms have been applied in smart grid networks,where machine learning can be used to anticipate malicious events,communication technology,including antenna selection in wireless communications,wireless networks,where machine learning can be used to forecast wireless users’mobility patterns and content requests,and speech recognition.A technique for using machine learning in antenna design is to train a learning algorithm on data from prior simulations in order to improve the antenna parameters.

    Metaheuristic algorithms solve unexpected issues since they are intelligent and have prior knowledge of random search.These algorithms are either flexible, simple, or able to avoid local perfection.Exploration and exploitation are two elements of population-based heuristic algorithms.The metaheuristic algorithm here selects between Exploration and exploitation.While exploring, the technique examines the search space thoroughly.The area’s local search is currently at the exploitation stage.Several global optimization methods inspired by nature have been developed in recent decades.Population-based metaheuristics, often known as general-purpose algorithms, may be utilized in a variety of situations.Metaheuristics are split into two types:metaphor-based and non-metaphor based.In contrast, metaphors employ algorithms to represent natural phenomena or human behavior in contemporary life[26].

    2.2 Feature Selection

    All machine learning processes rely on feature engineering, which entails the extraction and selection of features, which are critical components of contemporary machine learning pipelines.Despite the fact that feature extraction and feature selection procedures overlap in certain ways,these words are often used interchangeably.Feature extraction is the process of extracting additional variables from raw data in order to make machine learning algorithms function.The feature selection method is focused on identifying the characteristics that are the most consistent,meaningful,and nonredundant.The feature selection issue is unique in that the search space is constrained to two binary values: 0 and 1.As a result, the continuous version of an optimizer should be used and updated to function correctly to address this issue.This method is considered in order to transform the suggested continuous values of AD-PRS-Guided WOA algorithm to binary values,allowing it to be utilised to solve the issue of feature selection.To transform, the Sigmoid form converts continuous values to binary values.

    3 The Proposed Ensemble Model

    Ensemble techniques are getting preferred in addressing various artificial intelligence issues.The average ensemble is among the most basic ensemble strategies that integrate base regressors’outputs and compute the mean.This method aggregates the outcome of various regressors as well as determines the mean value.In this paper,the average ensemble is employed as a reference set version to review the efficiency of the suggested ensemble model.As shown in Fig.1,the presented ensemble model is based on the stages of preprocessing, feature selection and optimized ensemble algorithm for both bandwidth and gain prediction.Ensemble model instead of selecting one ideal version from the candidates combines all the designs by assigning weight to every model.The Ensemble technique is verified as one of the significant methods in enhancing the prescient capability of conventional versions.The ensemble model typically has two stages wherein the first stage,the outcome variable of the best ensemble member,is picked to obtain the final forecast.The second stage blends the ensemble members’output variables using the mixed formula[27].

    Figure 1: The presented ensemble model based on the stages of preprocessing, feature selection and optimized ensemble algorithm for both bandwidth and gain prediction

    3.1 Data Preprocessing

    The dataset utilised in this study includes eleven Metamaterial Antenna characteristics.The dataset was obtained through Kaggle [28].There are 572 records in this collection.Each record contains the following information about the metamaterial antenna:the width and height of the split ring resonator,the distance between rings,the width of the rings,the gap between the rings,the distance between the antenna patch and the array, the number of split ring resonator cells in the array, the gain of the Antenna,the distance between split ring resonator cells in the array,the bandwidth of the Antenna,and the return.Tab.1 summarises the dataset’s characteristics.These characteristics will be utilised to estimate the Antenna’s bandwidth using a machine learning algorithm, and Fig.2 shows the distribution of bandwidth and gain feature.

    Table 1: Description of features of the dataset[28]

    Figure 2:Distribution of bandwidth and gain feature

    The first step is to format the nulls,the second step is to filter out null values,and the third step is to deal with nulls using a formula.Min-max normalisation is one of the most frequently used methods of data normalising.For each feature,the lowest value is converted to a 0,the highest value is converted to a 1,and all other values are converted to a decimal between 0 and 1.The dataset’s correlation matrix,as shown in Fig.3,Wmandtmare strongly correlated with the bandwidth.

    Figure 3:Correlation of metamaterial antenna

    3.2 The AD-PRS-Guided WOA Algorithm

    The AD-PRS-Guided WOA algorithm was first proposed in [24].A binary version of the ADPRS-Guided WOA algorithm is used to select the ideal attributes from the datasets to offer an optimal ensemble design for predicting the bandwidth and gain of the Metamaterial Antenna.The algorithm can check out the search space successfully to improve exploration efficiency.The algorithm also uses three arbitrary solutions as it makes use of significant change to transform between exploration and exploitation processes.According to the most effective remedy,it also calculates a listing of generated walks in a diffusion process as a polar increased feature.The AD-PRS-Guided WOA algorithm is shown in Algorithm 1.

    The updating positions mechanism of the algorithm of AD-PRS-Guided WOA is modified to follow three random solutions ofXo1,Xo2andXo3.These solutions are updated every iteration to enhance the algorithm performance and get the optimal solution.

    whereX(t+1)is the updated solution in iterationt+1 andX(t)is the current solution at iterationt.Qis the optimal solution.w1,w2andw3are random values in[0,0.5],[0,1],and[0,1],respectively.zis updated asz=fortiteration andtmas maximum iterations.

    The algorithm gets the best solution related to the calculated best fitness value.Then, the individuals are split into exploration groups and exploitation groups.Individuals in the exploitation group are moving to the leaders, and individuals in the exploration group are searching for leaders.Individuals in the sub-groups are changed dynamically.For balancing purposes,the algorithm divides the population into(50/50)for the two groups.

    In the algorithm,the polar rose function is used to search the leaders’purpose to find other good solutions.Based on different values of the main parameters of this function namedaandb, Fig.4 shows the output of the polar rose function.The polar rose function is calculated as follows to search around the best solution.

    whereX(t+1)is the updated solution in iterationt+1.Theaandbparameters are within[-10,10]and 0 ≤θ≤12π.kis calculated as

    Figure 4:Changing the values of a and b to generate different polar rose function outputs

    um iterations itersmax.5:Set Q=best agent position 6:while t ≤itersmax do 7: for(i=1:i ≤n)do 8: Select three random solutions Xo1,Xo2,and Xo3 9: Set z=1-images/BZ_804_607_2563_638_2609.png t itersmaximages/BZ_804_779_2563_810_2609.png2(Continued)

    Algorithm 1:Continued 10: Update position of current search agent as X(t+1)=w1*Xo1+z*w2*(Xo2-Xo3)+(1-z)*w3*(Q-X(t))11: end for 12: Update Solutions in exploration group(n1)and exploitation group(n2)13: if(Best Fn is same for three iterations)then 14: Increase solutions of exploration group(n1)15: Decrease solutions of exploitation group(n2)16: end if 17: for(i=1:i ≤n1)do(exploration group update)18: update three random solutions Xo1,Xo2,Xo3,and Q(The best solutions were elitism)19: if(Q <Any of the best solutions)then 20: Mutate the solution by X(t+1)=k+images/BZ_805_803_1106_834_1152.png∑Xo1+Xo2+Xo3 ezkimages/BZ_805_1192_1106_1223_1152.png, k=2- 2×t2(itersmax)2 21: else 22: Update agent position by X(t+1)=w1*Xo1+z*w2*(Xo2-Xo3)+(1–z)*w3*(Q-X(t))23: end if 24: end for 25: for(i=1:i ≤n2)do(exploitation group update)26: update three random solutions Xo1,Xo2,Xo3,and Q(The best solutions were elitism)27: if(Q <Any of the best solutions)then 28: Move towards the best solution by X(t+1)=w1*Xo1+z*w2*(Xo2-Xo3)+(1-z)*w3*-(Q-X(t))29: else 30: Search around the best solution X(t+1)=k sinimages/BZ_805_913_1905_938_1951.pngaimages/BZ_805_996_1905_1021_1951.pngbθ 31: end if 32: end for 33: Amend solutions 34: Update fitness 35: end while 36: Return best agent Q

    3.3 The Binary AD-PRS-Guided WOA Algorithm

    The output solution is updated to a binary solution using (0 or 1) in case of a feature selection problem.The sigmoid function is used in this paper to update the continuous solutions of the optimizer’s output into binary solutions,as shown in Algorithm 2.

    Algorithm 2:Binary AD-PRS-Guided WOA Algorithm 1: Set AD-PRS-Guided WOA population,parameters,configuration.2: Convert solutions to binary[0,1]3: Calculate objective function and select best solutions 4: Train k-NN and calculate error 5: while t ≤itersmax do 6: Apply AD-PRS-Guided WOA algorithm 7: Convert updated solution to binary 8: Calculate fitness 9: Update parameters 10: end while 11: Return best solution

    4 Results and Discussion

    The results in this section are explained as follows.The results, based on the Decision Tree,Multilayer Perceptron(MLP),KNN,Support Vector Regression(SVR),Random Forest,regressors in addition to the Average Ensemble and the proposed Ensemble model based on Random Forest regressor, before applying the feature selection technique are discussed.Then the results are shown after using feature selection to deliver the performance of the proposed model.Tab.2 shows the configuaration of the AD-PRS-Guided WOA algorithm.

    Table 2: Configuration of the AD-PRS-Guided WOA algorithm

    4.1 Performance Metrics

    The performance metrics used in this work are Root Mean Squared Error (RMSE), Mean Absolute Error(MAE),Mean Absolute Error(MBE),and the correlation coefficient(r)[22].Tab.3 shows the different performance metrics whereHp,iindicates a predicted value,Hirepresents the observed value,andnis the total number of observations.andindicate the average predicted and observed values,respectively.

    Table 3: Performance metrics for classification[22]

    4.2 Results Before Applying Feature Selection

    The results based on the bandwidth features of the tested dataset before applying the feature selection technique are shown in Tab.4.Tab.4 shows that the proposed Ensemble model using Random Forest results based on the bandwidth features of RMSE of (0.0320), MAE of (0.0231),MBE of (-0.0069), and r of (0.9752) are better than other compared models.The results using the gain features of the dataset before applying the feature selection are shown in Tab.5.

    Table 4: Results based on the bandwidth features of the dataset before applying feature selection

    Table 5: Results based on the gain features of the dataset before applying feature selection

    Tab.5 shows that the proposed Ensemble model using Random Forest results based on the gain features of RMSE of(0.0982),MAE of(0.0231),MBE of(-0.0152),and r of(0.9165)are better than other compared models.Fig.5 shows the actual and the predicted values for the bandwidth prediction from the tested dataset based on the AD-PRS-Guided WOA algorithm before applying the feature selection process.While Fig.6 shows the actual and predicted values by the AD-PRS-Guided WOA algorithm for the gain prediction before applying the method of feature selection.

    Figure 5:The actual values,in green color,and predicted values,in red color,by the proposed ensemble algorithm for the bandwidth before applying the feature selection

    Figure 6:The actual values,in green color,and predicted values,in red color,by the proposed ensemble algorithm for the gain before applying the feature selection

    4.3 Results After Applying Feature Selection

    After applying the feature selection technique,the results of the bandwidth features from the tested dataset are shown in Tab.6.Tab.6 shows that the proposed Ensemble model using Random Forest results of RMSE of(0.0102),MAE of(0.0344),MBE of(-0.0032),and r of(0.9932)are much better than other compared models.The results of the gain features from the dataset after applying the feature selection are shown in Tab.7.

    Table 6: Results based on the bandwidth features of the dataset after applying feature selection

    Tab.7 shows that the proposed Ensemble model using Random Forest results of the gain features as RMSE of(0.0891),MAE of(0.0234),MBE of(-0.0161),and r of(0.9443)which are much better than other compared models.Fig.7 shows the actual values and predicted values by the AD-PRSGuided WOA algorithm for the bandwidth after applying the feature selection.While Fig.8 shows the actual and predicted values by the AD-PRS-Guided WOA algorithm for the gain after applying the feature selection.

    Table 7: Results based on the gain features of the dataset after applying feature selection

    Figure 7:The actual values,in green color,and predicted values,in red color,by the proposed ensemble algorithm for the bandwidth after applying the feature selection

    Figure 8:The actual values,in green color,and predicted values,in red color,by the proposed ensemble algorithm for the bandwidth after applying the feature selection

    5 Conclusion

    Machine learning methods are already a significant component of ongoing research and are anticipated to play a critical role in today’s technology.The accuracy of the forecast is mostly determined by the model used.This paper uses the AD-PRS-Guided WOA method to pick the optimal features from the metamaterial antenna dataset.Metamaterial antennas can overcome the bandwidth and gain constraints associated with tiny antennas.Machine learning is receiving much interest in optimizing solutions in a variety of areas.The optimal ensemble model achieved good results for predicting the bandwidth and gain of the metamaterial antenna.The basic models have investigated SVM,Random Forest,K-Neighbors Regressor,and Decision Tree Regressor.The AD-PRS-Guided WOA algorithm was utilized to pick the optimal features from the datasets.The suggested model was compared to models based on five variables and to the average ensemble model.The findings indicated that the suggested AD-PRS-Guided WOA algorithm-based model is superior to others and can accurately predict antenna bandwidth and gain.The presented algorithm will be compared with CST software in future work.

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    欧美xxxx性猛交bbbb| 高清黄色对白视频在线免费看| 一区二区av电影网| 大片免费播放器 马上看| 天堂俺去俺来也www色官网| 老女人水多毛片| 熟女av电影| 精品熟女少妇av免费看| 亚洲国产精品专区欧美| 国模一区二区三区四区视频| av黄色大香蕉| 一级毛片黄色毛片免费观看视频| av免费在线看不卡| 午夜福利影视在线免费观看| 亚洲av在线观看美女高潮| 在线精品无人区一区二区三| 如日韩欧美国产精品一区二区三区 | 日本午夜av视频| 成人18禁高潮啪啪吃奶动态图 | 老司机影院毛片| 婷婷色综合大香蕉| 久久久久久久精品精品| 国产精品蜜桃在线观看| 亚洲经典国产精华液单| 日韩中字成人| 在线观看免费高清a一片| 一边摸一边做爽爽视频免费| 久久av网站| 日韩一本色道免费dvd| xxx大片免费视频| 一区二区三区乱码不卡18| 蜜桃久久精品国产亚洲av| 欧美激情国产日韩精品一区| 国产精品一国产av| 亚洲国产精品一区三区| 日本黄色片子视频| 91精品一卡2卡3卡4卡| 国产精品 国内视频| 午夜激情久久久久久久| 久久精品夜色国产| 欧美激情 高清一区二区三区| 精品人妻偷拍中文字幕| 男女高潮啪啪啪动态图| 建设人人有责人人尽责人人享有的| 久久久精品免费免费高清| 天天操日日干夜夜撸| 777米奇影视久久| av不卡在线播放| 亚洲国产毛片av蜜桃av| 午夜福利在线观看免费完整高清在| 色婷婷av一区二区三区视频| 一二三四中文在线观看免费高清| 十八禁高潮呻吟视频| 国产免费现黄频在线看| 99久久中文字幕三级久久日本| 最后的刺客免费高清国语| 亚洲图色成人| 国产成人精品在线电影| 少妇人妻久久综合中文| 我要看黄色一级片免费的| 国产亚洲精品第一综合不卡 | 成人国产av品久久久| 成年女人在线观看亚洲视频| 久久人妻熟女aⅴ| 女人精品久久久久毛片| 亚洲国产色片| kizo精华| 久久99蜜桃精品久久| 99九九线精品视频在线观看视频| 亚洲国产欧美日韩在线播放| 久久女婷五月综合色啪小说| 国产精品国产三级国产av玫瑰| 午夜老司机福利剧场| 久久精品国产鲁丝片午夜精品| 黑丝袜美女国产一区| 亚洲综合色惰| 久久久久精品性色| 中国美白少妇内射xxxbb| 午夜日本视频在线| 国产片内射在线| 国产精品国产三级国产专区5o| 蜜桃在线观看..| 2022亚洲国产成人精品| 欧美性感艳星| 久久久久久人妻| 老司机影院毛片| 中国三级夫妇交换| 国产精品一区www在线观看| 精品一品国产午夜福利视频| 男女啪啪激烈高潮av片| 9色porny在线观看| 亚洲av在线观看美女高潮| 插逼视频在线观看| 国产精品欧美亚洲77777| 欧美精品亚洲一区二区| 亚洲,欧美,日韩| 免费观看a级毛片全部| 亚洲精品av麻豆狂野| 自线自在国产av| 亚洲人成77777在线视频| 亚洲av男天堂| 欧美xxxx性猛交bbbb| 尾随美女入室| 菩萨蛮人人尽说江南好唐韦庄| av国产久精品久网站免费入址| 亚洲美女搞黄在线观看| 欧美精品一区二区大全| 精品少妇久久久久久888优播| 香蕉精品网在线| 五月开心婷婷网| 国产精品秋霞免费鲁丝片| 午夜91福利影院| 一个人免费看片子| 亚洲av中文av极速乱| 久久午夜综合久久蜜桃| 狠狠精品人妻久久久久久综合| 欧美最新免费一区二区三区| √禁漫天堂资源中文www| 少妇人妻精品综合一区二区| av有码第一页| 又粗又硬又长又爽又黄的视频| 国产 精品1| 国产成人午夜福利电影在线观看| 又大又黄又爽视频免费| 色婷婷久久久亚洲欧美| 在线精品无人区一区二区三| 亚州av有码| 下体分泌物呈黄色| 亚洲在久久综合| 成人国产麻豆网| 我要看黄色一级片免费的| 一级毛片aaaaaa免费看小| 亚洲精品自拍成人| 国产av国产精品国产| 亚洲精品一区蜜桃| 久久久午夜欧美精品| av国产精品久久久久影院| 免费黄网站久久成人精品| 亚洲图色成人| 久久久久久久久久久久大奶| 免费观看无遮挡的男女| 美女中出高潮动态图| 亚洲激情五月婷婷啪啪| 嫩草影院入口| av视频免费观看在线观看| 免费人妻精品一区二区三区视频| 一级毛片我不卡| 欧美97在线视频| 视频在线观看一区二区三区| 视频中文字幕在线观看| 在线观看一区二区三区激情| 久久久亚洲精品成人影院| 男女边吃奶边做爰视频| 另类精品久久| 大陆偷拍与自拍| 精品久久久久久久久av| 精品99又大又爽又粗少妇毛片| 在线天堂最新版资源| 九色成人免费人妻av| 国产视频内射| 高清午夜精品一区二区三区| 一级二级三级毛片免费看| 久久久久久久国产电影| 欧美精品人与动牲交sv欧美| 黄色毛片三级朝国网站| 久久久精品免费免费高清| 日本午夜av视频| 婷婷色综合www| 免费看不卡的av| 日韩精品有码人妻一区| 久久人人爽人人片av| 久久鲁丝午夜福利片| 七月丁香在线播放| 成人二区视频| 人妻夜夜爽99麻豆av| 18禁在线播放成人免费| 久久精品国产鲁丝片午夜精品| 91久久精品电影网| 丝袜美足系列| 国产毛片在线视频| 十分钟在线观看高清视频www| a 毛片基地| 91精品三级在线观看| 亚洲av男天堂| 亚洲精品456在线播放app| 成人亚洲欧美一区二区av| 午夜久久久在线观看| 飞空精品影院首页| 亚洲精品亚洲一区二区| 最后的刺客免费高清国语| av视频免费观看在线观看| 日韩中字成人| 秋霞在线观看毛片| 插逼视频在线观看| 久久青草综合色| 国产色爽女视频免费观看| 亚洲av中文av极速乱| 精品少妇内射三级| 精品人妻在线不人妻| 欧美日韩精品成人综合77777| 国产在视频线精品| 国产成人freesex在线| 中国三级夫妇交换| 久久久久久久大尺度免费视频| 亚洲欧美精品自产自拍| 91精品伊人久久大香线蕉| 青春草视频在线免费观看| 如日韩欧美国产精品一区二区三区 | 亚洲av不卡在线观看| 永久网站在线| 啦啦啦视频在线资源免费观看| 久久国产精品男人的天堂亚洲 | xxxhd国产人妻xxx| 午夜免费观看性视频| 精品久久久久久久久亚洲| 亚洲av免费高清在线观看| 欧美+日韩+精品| 各种免费的搞黄视频| 99热这里只有是精品在线观看| 欧美日韩综合久久久久久| 伦理电影免费视频| 新久久久久国产一级毛片| 只有这里有精品99| 高清欧美精品videossex| 欧美人与善性xxx| 亚洲国产欧美在线一区| 亚洲国产精品国产精品| 日本av免费视频播放| 老司机亚洲免费影院| 免费看光身美女| 精品午夜福利在线看| 欧美 日韩 精品 国产| 边亲边吃奶的免费视频| 夜夜骑夜夜射夜夜干| 国产精品99久久久久久久久| 国产精品人妻久久久影院| 丝袜在线中文字幕| 欧美精品一区二区大全| 国产精品久久久久成人av| 精品少妇黑人巨大在线播放| 又粗又硬又长又爽又黄的视频| 在线亚洲精品国产二区图片欧美 | 18禁动态无遮挡网站| av网站免费在线观看视频| 91在线精品国自产拍蜜月| 国产色婷婷99| 日韩不卡一区二区三区视频在线| 欧美3d第一页| 18在线观看网站| 一级毛片我不卡| 亚洲久久久国产精品| 啦啦啦在线观看免费高清www| 亚洲国产成人一精品久久久| 久久99蜜桃精品久久| 女性被躁到高潮视频| 黄色一级大片看看| 狂野欧美激情性xxxx在线观看| 久久精品国产鲁丝片午夜精品| 在线观看免费日韩欧美大片 | av播播在线观看一区| 热99国产精品久久久久久7| 不卡视频在线观看欧美| 国产精品三级大全| 精品一区二区三卡| av免费在线看不卡| 亚洲av在线观看美女高潮| 在线观看免费日韩欧美大片 | 亚洲熟女精品中文字幕| 麻豆精品久久久久久蜜桃| 日本黄大片高清| 毛片一级片免费看久久久久| 国产在线视频一区二区| 人人澡人人妻人| 国产免费又黄又爽又色| 亚洲av.av天堂| 亚洲精品中文字幕在线视频| 蜜臀久久99精品久久宅男| 高清欧美精品videossex| av有码第一页| 91在线精品国自产拍蜜月| 少妇的逼水好多| 最近最新中文字幕免费大全7| 婷婷成人精品国产| 日产精品乱码卡一卡2卡三| 春色校园在线视频观看| 欧美日韩综合久久久久久| 亚洲精品久久午夜乱码| 国产精品99久久久久久久久| 中文字幕最新亚洲高清| 赤兔流量卡办理| 五月玫瑰六月丁香| 老女人水多毛片| 又大又黄又爽视频免费| 中文字幕亚洲精品专区| 久久久午夜欧美精品| 亚洲精品日本国产第一区| 夫妻性生交免费视频一级片| 男男h啪啪无遮挡| 美女xxoo啪啪120秒动态图| 亚洲三级黄色毛片| 777米奇影视久久| 亚洲国产精品国产精品| 婷婷色综合大香蕉| 欧美成人精品欧美一级黄| 亚洲精品日韩在线中文字幕| 国产精品久久久久久精品电影小说| 欧美日韩综合久久久久久| 国精品久久久久久国模美| 国产毛片在线视频| 黑人欧美特级aaaaaa片| 亚洲国产精品999| 九色成人免费人妻av| 国产精品麻豆人妻色哟哟久久| 亚洲欧洲国产日韩| 国产一级毛片在线| 91aial.com中文字幕在线观看| 国产精品一区www在线观看| 狠狠婷婷综合久久久久久88av| 日日爽夜夜爽网站| 免费大片黄手机在线观看| av天堂久久9| 99久久精品一区二区三区| 亚洲精品色激情综合| 高清毛片免费看| 69精品国产乱码久久久| 婷婷成人精品国产| 国产 一区精品| 日韩一区二区三区影片| 亚洲精品,欧美精品| 国产成人aa在线观看| 日本-黄色视频高清免费观看| 能在线免费看毛片的网站| 久久久久久久久久久免费av| 大片免费播放器 马上看| 欧美激情极品国产一区二区三区 | 999精品在线视频| 亚洲一区二区三区欧美精品| 99热全是精品| 最新的欧美精品一区二区| 成年人午夜在线观看视频| 国产熟女欧美一区二区| 最近手机中文字幕大全| 免费观看在线日韩| 久久国内精品自在自线图片| 亚洲av日韩在线播放| 人妻人人澡人人爽人人| 国产av码专区亚洲av| 99九九在线精品视频| 亚洲av二区三区四区| 一区二区三区四区激情视频| www.av在线官网国产| 日本爱情动作片www.在线观看| 久久久久久久久久成人| 人人澡人人妻人| 色5月婷婷丁香| 亚洲国产精品一区三区| 亚洲久久久国产精品| 国产精品女同一区二区软件| 在线精品无人区一区二区三| 国产av国产精品国产| 人妻制服诱惑在线中文字幕| 在线观看免费高清a一片| 五月开心婷婷网| 高清不卡的av网站| 亚洲成色77777| 亚洲成人手机| 99国产综合亚洲精品| 一级毛片我不卡| 精品国产一区二区三区久久久樱花| 精品卡一卡二卡四卡免费| 久久久国产精品麻豆| 日日摸夜夜添夜夜爱| 成年人免费黄色播放视频| 日本av手机在线免费观看| 在线精品无人区一区二区三| 国精品久久久久久国模美| 国产欧美亚洲国产| 18禁在线无遮挡免费观看视频| 波野结衣二区三区在线| 性色avwww在线观看| 大陆偷拍与自拍| av电影中文网址| 全区人妻精品视频| 国产片特级美女逼逼视频| 满18在线观看网站| 欧美xxxx性猛交bbbb| 亚洲av中文av极速乱| 韩国av在线不卡| 只有这里有精品99| 国产精品蜜桃在线观看| 极品人妻少妇av视频| 中文字幕人妻熟人妻熟丝袜美| 七月丁香在线播放| 国产色婷婷99| 丰满乱子伦码专区| 日韩成人伦理影院| 日日爽夜夜爽网站| 大陆偷拍与自拍| 春色校园在线视频观看| 成人毛片a级毛片在线播放| 在线 av 中文字幕| a级毛片在线看网站| 国产成人aa在线观看| freevideosex欧美| 香蕉精品网在线| 最新中文字幕久久久久| 精品亚洲乱码少妇综合久久| 一本色道久久久久久精品综合| 一个人免费看片子| 一级a做视频免费观看| 考比视频在线观看| 欧美性感艳星| 女人久久www免费人成看片| 丝袜美足系列| 大话2 男鬼变身卡| 狂野欧美白嫩少妇大欣赏| 一区二区三区精品91| 欧美亚洲日本最大视频资源| 日韩精品有码人妻一区| 国产色爽女视频免费观看| 国产亚洲欧美精品永久| 久久久欧美国产精品| 青青草视频在线视频观看| 黄色配什么色好看| 一本久久精品| 天天躁夜夜躁狠狠久久av| 国产精品国产三级国产专区5o| 国产 一区精品| 在线免费观看不下载黄p国产| 国产有黄有色有爽视频| 美女cb高潮喷水在线观看| 亚洲av日韩在线播放| 18禁在线无遮挡免费观看视频| 国产精品99久久久久久久久| 国产成人a∨麻豆精品| 国产有黄有色有爽视频| 九色亚洲精品在线播放| 成人黄色视频免费在线看| 蜜桃久久精品国产亚洲av| 亚洲av.av天堂| 男人添女人高潮全过程视频| 丰满迷人的少妇在线观看| 一个人看视频在线观看www免费| 久久韩国三级中文字幕| 欧美日韩一区二区视频在线观看视频在线| 久久久久精品性色| 国产精品无大码| 国产欧美日韩一区二区三区在线 | 久久这里有精品视频免费| 亚洲av电影在线观看一区二区三区| 亚洲精品美女久久av网站| 久久午夜福利片| av.在线天堂| 国产 精品1| 欧美精品一区二区免费开放| 高清在线视频一区二区三区| 日韩三级伦理在线观看| 蜜桃在线观看..| 国产av国产精品国产| 99视频精品全部免费 在线| 亚洲欧美中文字幕日韩二区| 国产 一区精品| 久久久久久久久久久丰满| 啦啦啦在线观看免费高清www| 久久久欧美国产精品| av国产精品久久久久影院| 又粗又硬又长又爽又黄的视频| 成人午夜精彩视频在线观看| av天堂久久9| 精品酒店卫生间| 99久久精品国产国产毛片| 久久久亚洲精品成人影院| 美女视频免费永久观看网站| 色吧在线观看| 80岁老熟妇乱子伦牲交| 国产黄片视频在线免费观看| 最近中文字幕2019免费版| 中文乱码字字幕精品一区二区三区| 国产极品天堂在线| 久久精品久久久久久久性| 日本wwww免费看| 男女无遮挡免费网站观看| 国产精品一区二区在线不卡| 成人亚洲精品一区在线观看| 亚洲精品日本国产第一区| 久久99蜜桃精品久久| av线在线观看网站| 国产国拍精品亚洲av在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 中文欧美无线码| 亚洲精品一区蜜桃| 久久久精品94久久精品| 人人澡人人妻人| 波野结衣二区三区在线| 久久久久视频综合| 精品亚洲成国产av| 久久午夜综合久久蜜桃| 亚洲人成77777在线视频| 欧美日韩av久久| 国产一区二区三区av在线| 亚洲国产精品国产精品| 久久久精品94久久精品| 看十八女毛片水多多多| 丝袜脚勾引网站| 制服诱惑二区| tube8黄色片| 国产日韩一区二区三区精品不卡 | 国国产精品蜜臀av免费| 九草在线视频观看| 2021少妇久久久久久久久久久| 日产精品乱码卡一卡2卡三| 黑人巨大精品欧美一区二区蜜桃 | 水蜜桃什么品种好| 国产极品粉嫩免费观看在线 | av免费在线看不卡| 国产精品不卡视频一区二区| 午夜91福利影院| 91午夜精品亚洲一区二区三区| 欧美日韩亚洲高清精品| 午夜激情久久久久久久| 亚洲国产日韩一区二区| 中文乱码字字幕精品一区二区三区| 国产精品无大码| 少妇精品久久久久久久| 国产成人av激情在线播放 | 中文字幕av电影在线播放| 寂寞人妻少妇视频99o| 韩国高清视频一区二区三区| 成人国语在线视频| a级片在线免费高清观看视频| 毛片一级片免费看久久久久| 久久久亚洲精品成人影院| 成年av动漫网址| 亚洲欧洲日产国产| videosex国产| 国产精品99久久99久久久不卡 | 日韩精品免费视频一区二区三区 | 精品一区二区三区视频在线| 69精品国产乱码久久久| 国产淫语在线视频| 一区二区三区四区激情视频| 交换朋友夫妻互换小说| 熟妇人妻不卡中文字幕| 久久久精品94久久精品| 久久久久久久久久人人人人人人| 亚洲精品第二区| 亚洲综合色惰| 日日摸夜夜添夜夜添av毛片| 最近手机中文字幕大全| 制服诱惑二区| 男人添女人高潮全过程视频| 久久 成人 亚洲| 精品人妻偷拍中文字幕| 亚洲精品一区蜜桃| 丰满迷人的少妇在线观看| 国产精品久久久久久久电影| 建设人人有责人人尽责人人享有的| 最近最新中文字幕免费大全7| 国产成人一区二区在线| 高清欧美精品videossex| 亚洲色图 男人天堂 中文字幕 | 久久精品国产亚洲av涩爱| 热99国产精品久久久久久7| av免费观看日本| 日韩电影二区| 亚洲成人手机| 久久99精品国语久久久| 一级爰片在线观看| 亚洲,一卡二卡三卡| 成人毛片a级毛片在线播放| 高清毛片免费看| 搡老乐熟女国产| 国产精品久久久久久久电影| 嘟嘟电影网在线观看| 午夜激情久久久久久久| 国产免费现黄频在线看| 国产乱来视频区| 亚洲精品乱久久久久久| 看免费成人av毛片| 狂野欧美激情性bbbbbb| 一级毛片 在线播放| 国产毛片在线视频| 老司机亚洲免费影院| 99热国产这里只有精品6| 午夜免费男女啪啪视频观看| 能在线免费看毛片的网站| 亚洲色图 男人天堂 中文字幕 | 亚洲国产日韩一区二区| 亚洲欧美一区二区三区国产| av免费在线看不卡| 精品人妻熟女毛片av久久网站| 丝袜脚勾引网站| 亚洲综合色惰| 不卡视频在线观看欧美| 日韩 亚洲 欧美在线| 精品久久久久久电影网| 欧美激情 高清一区二区三区| 国产精品熟女久久久久浪| 久久精品久久久久久噜噜老黄| 国产又色又爽无遮挡免| 亚洲四区av| 成人国产麻豆网| 色5月婷婷丁香| 久久久久精品性色| 日日撸夜夜添| 伊人久久精品亚洲午夜| 欧美xxxx性猛交bbbb| 一本—道久久a久久精品蜜桃钙片| 精品少妇黑人巨大在线播放| 国产成人aa在线观看| 国产精品国产三级国产av玫瑰| 岛国毛片在线播放| 国产日韩欧美视频二区| av又黄又爽大尺度在线免费看| 女人久久www免费人成看片|