• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Coronavirus Detection Using Two Step-AS Clustering and Ensemble Neural Network Model

    2022-08-23 02:22:54AhmedHamzaOsman
    Computers Materials&Continua 2022年6期

    Ahmed Hamza Osman

    Department of Information System,Faculty of Computing and Information Technology King Abdulaziz University Rabigh,Saudi Arabia

    Abstract:This study presents a model of computer-aided intelligence capable of automatically detecting positive COVID-19 instances for use in regular medical applications.The proposed model is based on an Ensemble boosting Neural Network architecture and can automatically detect discriminatory features on chest X-ray images through Two Step-As clustering algorithm with rich filter families, abstraction and weight-sharing properties.In contrast to the generally used transformational learning approach, the proposed model was trained before and after clustering.The compilation procedure divides the datasets samples and categories into numerous sub-samples and subcategories and then assigns new group labels to each new group,with each subject group displayed as a distinct category.The retrieved characteristics discriminant cases were used to feed the Multiple Neural Network method, which was then utilised to classify the instances.The Two Step-AS clustering method has been modified by pre-aggregating the dataset before applying Multiple Neural Network algorithm to detect COVID-19 cases from chest X-ray findings.Models for Multiple Neural Network and Two Step-As clustering algorithms were optimised by utilising Ensemble Bootstrap Aggregating algorithm to reduce the number of hyper parameters they include.The tests were carried out using the COVID-19 public radiology database,and a cross-validation method ensured accuracy.The proposed classifier with an accuracy of 98.02%percent was found to provide the most efficient outcomes possible.The result is a lowcost,quick and reliable intelligence tool for detecting COVID-19 infection.

    Keywords:Two step-AS clustering;ensemble learning;bootstrap aggregating;multiple neural network;covid-19;X-ray images

    1 Introduction

    Coronavirus is a wide family of viruses that may infect people and cause serious illness[1].While certain coronaviruses are familiar to humans,the present epidemic is the consequence of a novel animal illness[2].The term new here refers to the fact that humans have not yet been exposed to this virus,while anthropogenic refers to the virus spreading from animals to people[3].Due to the virus’novelty,people seem to lack an inherent degree of protection,which serves to limit the spread and impact of other viruses.Viruses, particularly those newly discovered, have the potential to develop into either local or broad epidemics [4].In this article, a pandemic is defined as an outbreak of any infectious illness that substantially increases mortality and morbidity over a larger geographic region, while a pandemic is defined as a disease that spreads over a short period of time.Recently,the Severe Acute Respiratory Syndrome(SARS)virus affected 8,096 individuals and killed over 770,while the smallpox epidemic infected millions Region [4].In 2002, the SARS-CoV virus started to spread; this virus was identified in Guangdong,China.In 2012,another coronavirus epidemic Middle East respiratory syndrome coronavirus (MERS-CoV) started in the Middle East, resulting in an acute respiratory illness dubbed Middle East Respiratory Syndrome[5].This virus claimed the lives of 858 individuals and infected 2494 others.The globe is now battling another coronavirus,which seems to have begun spreading in December 2019,but this is still being debated.COVID-19 is an infectious illness that is transmitted mostly via direct or indirect contact with an infected person,respiratory droplets generated when a human source is provided or when infection has already occurred, or droplets (airborne transmission)[6].Early signs include a dry cough,a high temperature and difficulty breathing,which may progress to multiple organ failure or severe respiratory distress;in extreme instances,death may ensue as well [7,8].Due to the ease with which this virus spreads, and the rate at which it develops substantially and sustainably among people, our capacity to fight it is restricted.To put it another way,there are only a limited number of physicians,health care professionals,and when the epidemic reaches its height of infection,there may not be enough capacity to handle the pandemic completely.As a result, there is an obvious demand for tools that may assist these experts in doing their jobs more effectively.This may involve the development of contact tracking apps, dashboards, statistical visualisations,machine learning models and other artificial intelligence-based tools.

    The motivation of this study is to offer a technique for accurately classifying X-ray images for COVID-19 by combining the strength of two technologies.To begin, define new images in terms of frames.Second,extract the features from the dataset of images using textural and statistical characteristics.By using chest X-ray images,this research presents an integrated Two Step-AS clustering method with Ensample Multiple Neural Network algorithm(MNN)for predicting pneumonia in COVID-19 patients.Pneumonia is a viral infection that often results in mortality.COVID-19 individuals who get pneumonia also suffer a slew of health problems.This study aids in the detection of pneumonia in COVID-19 patients,allowing them to be isolated from less severe patients for life-saving therapy.The description and prediction of this intelligent model is used to classify chest X-ray images of COVID-19 and pneumonia patients, as well as to diagnose positive COVID-19 cases with pneumonia.The primary contributions of this research are the following:

    1.When combined with certain supervised and unsupervised machine learning technologies,the proposed COVID-19 prediction approach may enhance diagnostic accuracy and decrease misdiagnosis error.

    2.The Two Step-AS clustering method has been modified by pre-aggregating the dataset before applying MNN algorithm to detect COVID-19 cases from chest X-ray findings.

    3.We use the Two Step-AS aggregation technique on pre-learned models with multi-and singleclass datasets.The compilation procedure divides the datasets samples and categories into numerous sub-samples and subcategories and then assigns new group labels to each new group,with each subject group displayed as a distinct category.

    4.When building a MNN diagnostic model, the similarity and diversity of these groups are emphasised in dataset instances,assisting in identifying distinctions between dataset members and aiding the classification and learning processes.

    5.This Ensemble Boosting learning algorithm and MNN model was used with the Two Step-AS clustering method in order to group all of the comparable samples into various groups,once the feature extraction procedure from the COVID-19 X-ray images was completed.

    6.The Ensemble Boosting learning algorithm technique is used to improve the accuracy of chest X-rays in a variety of situations,including Normal,positive COVID-19 and pneumonia cases.

    Nevertheless,the suggested approach has a limitation as it is restricted to the chest X-ray dataset,while other medical datasets may be utilised to identify COVID-19.

    The remainder of this work is divided into sections.The second part discusses relevant studies on this topic.The third part describes the planned proposed system.The fourth part considers the strategy and technique.The fifth part examines the experimental findings and the dataset.Part six contains a summary of the findings,discussion and analysis,while part seven summarises the research and outlines future work.

    2 Related Works

    Machine learning has shown superior performance in a wide variety of image fusion processing applications, including image segmentation [9], image analysis [10,11] and image classification [12].The classification of images is accomplished by extracting important characteristics from images using descriptors and image moment [13] and SIFT [14], then using the extracted features in prediction tasks with classification devices such as SVM [15].In contrast, the drawbacks of the image fusion techniques is that it reduces the quality of the images and the amount of noise in the final fused output image.Additionally, not suitable for real time applications when the images will be blurred.Furthermore, color distortion and spectrum deterioration were observed in the color images.In comparison to handcrafted features, the approaches system based on deep neural networks [16]performs very well at categorising images based on the extracted characteristics.According to ML Characteristics, many attempts have been made to categorise chest X-ray pictures in the COVID-19 patient group or the normal case category using machine learning techniques.These attempts included methods based on deep learning.For instance,the authors developed a Convolutional Neural Network(CNN)model for diagnosing COVID-19 spontaneously from chest X-ray images[17].Classification accuracy is claimed to be 96.78 percent when utilising the MobileNet architecture[17].Simi Larley’s study[18]used a transfer learning strategy.The stated accuracy rates for InceptionV3 and Inception-ResNetV2 are 97 percent and 87 percent, respectively.Orthogonal moments and their variations have recently become very effective tools in a variety of pattern recognition applications and image processing.The exploiting of features from images using image moments has been shown to be effective in a variety of applications in [19,20].For example, integrating orthogonal quaternion harmonic transformation moments with image demonstration and feature selection optimisation methods is effective in categorising images of colour galaxies [21].The study conducted in [22] aimed to build and construct an artificial intelligence-based programmable tomography analysis tool.The researchers included various datasets and performed tests to determine the development of the COVID-19 illness in each patient over time.This was accomplished via the use of 3D volume assessment,resulting in the generation of a score dubbed the“Corona Score.”A total of 157 individuals with universal Computed Tomography (CTs) were included in the research as the test indicated.The suggested A subsystem analyses nodules or segments of focal opacities and case volumes in three dimensions using preexisting methods.Subsystem B is a newly developed two-dimensional assay of each slice that allows for the separation and confinement of ground glass infiltration as well as greater diffuse opacities.Additionally,a remedy on a case-by-case basis has been suggested to treat the supplementary opacity produced by illnesses.

    A survey study by Rasheed et al.[23] examined medical and technological aspects in the battle against the COVID-19 pandemic, which will be of assistance to virologists, infectious disease researchers and policymakers.Additionally,the study addressed the use of different technological tools within the context of COVID-19,and examined a range of artificial intelligence methods that have been suggested to assist in the COVID-19 pandemic,ranging from early diagnosis via picture diagnostics to models that may explain the spread of the disease and predict new possible outbreak locations.Predictive diagnostic machine learning techniques have lately piqued the interest of the medical sector as a valuable resource for doctors such as deep learning,a prevalent area of artificial intelligence(AI),which enables end-to-end models to be built in order to generate anticipated outcomes utilising input data without the need to extract features manually.Sethy et al.[24] used X-ray images to identify the features derived from different CNN models, and then a support vector machine to identify the features(SVM).According on their findings,the ResNet50 classifier combined with the SVM model yielded the best results.To conclude,several recent COVID-19 studies included a range of CT image deep learning models[25]in their analysis.

    The research studies by[11,24,26–30]are used to develop these state-of-the-art techniques,which are based on deep learning approaches and utilising chest X-ray images.Machine learning approaches rely heavily on knowledge in the selection and extraction of applicable information and have limited performance when compared to deep learning approaches.Consequently,machine learning techniques have become increasingly popular in recent years,owing to significant advantages such as(i)the ability to make maximum use of formless data,(ii)the exclusion of the requirement for engineering feature,(iii)the aptitude to provide superior performance,(iv)the eradication of unnecessarily high costs,(v)the exclusion of the requirement for data labelling.Machine learning methods are widely used these days to extract important characteristics from an item of interest automatically in order to categorise it appropriately.With the VGG19 architecture,Apostolopoulos and Bessiana were able to obtain 97.8 percent accuracy in the categorisation of COVID-19 [26].Ozturk et al.[11] demonstrated that the categorisation of coronavirus,pneumonia no-findings,and finding had an accuracy of 87 percent[15].Sethy et al.[24] worked on a classification system for positive coronavirus and negative coronavirus patients.However, although the relevant studies identified hitherto are not intended to distinguish coronavirus caused pneumonia patients from other viral induced pneumonia cases, this kind of identification is necessary to prevent misdiagnosis of coronavirus infection as a common viral illness,since coronavirus disease requires a different line of therapy from a typical viral infection.Abhiyev et al.[31] and colleagues, Tariq et al.[32] and colleagues, Bharati et al.[32] and Apostolopoulos et al.[26] suggested pulmonic chest infection categorisation by using deep learning methods.The identification of COVID-19 patients with a range of other pulmonary illnesses,such as edema,fibrosis and effusion,is the focus of current research.

    3 Materials and Methods

    In this section, the materials and methods that have been used to build the proposed solution is described sufficient details.The whole system for identifying COVID-19 from chest X-ray images consists of a few critical steps: dataset collection, data pre-processing, data set classification, model training, model assessment and analysis and model validation and improvement.Fig.3 depicts the entire system architecture for COVID-19 detection using Two Step-AS Ensemble Boosting Neural Network (TSEBNN), as well as the components of the system.Initially, the dataset required for training and model validation is gathered and organised in preparation for use.For the purpose of maintaining consistency, the gathered data is then changed, scaled and normalised.Following this phase, all data is categorised in accordance with the model’s categorisation scheme.After that,all models are trained and verified using the same dataset and in the same context as the previous models.Finally,the trained models are evaluated using accuracy measures,and the receiver operating characteristic curve for training and testing process.Fig.1 shows the framework of the TSEBNN System.

    Figure 1:TSEBNN diagnosis system

    Fig.1 illustrates the basic framework of the TSEBNN Diagnosis System.The proposed approach is divided into three stages:imbalance of the raw dataset and extraction of the feature,instances data clustering using their closeness to the cases’characteristics by a Two Step-AS algorithm and diagnosis using a MNN classifier throughout the learning and testing phases.The proposed approach classifies X-ray images as Pneumonia, COVID-19, or Non-COVID-19.The dataset modelling as well as the suggested TSEBNN modelling are discussed in detail below.

    3.1 COVID-19 Dataset

    This study makes use of open-source picture databases[33],in order to carry out its research.Fig.1 shows a few representative chest X-ray pictures of all three cases examined:normal,pneumonia and COVID-19.The chest X-ray images of patients infected with COVID-19 were taken and annotated by Dr.Joseph Cohen, who has a GitHub repository containing annotated chest X-ray and CT scan images of COVID-19,Acute Respiratory Distress Syndrome(ARDS),SARS and MERS.This collection includes 250 chest X-ray pictures of COVID-19 viral infection,which has been verified.The chest radiographs of healthy individuals, as well as patients suffering from bacterial and other viral pneumonia,were taken from the Kaggle repository.

    Another COVID-19 courps is called National Institutes of Health Chest X-Ray Dataset(NIH).The dataset contains 112,120 X-ray images with illness classifications from 30,805 different individuals.For the purpose of creating these labels, the authors employed Natural Language Processing to text-mine illness categories from the radiological reports that were connected with them.Approximately 90 percent of the labels are projected to be correct, making them appropriate for use in unsupervised learning situations.

    3.2 Feature Extraction Process

    ·Statistical Feature

    Upon closer inspection of the X-ray images, we can observe that the excellent texture and statistical combinations are most likely the most prominent visual element inside.Numerous academics have started to employ textural and statistical characteristics to model classification issues in recent years, and this trend is expected to continue.The popularity of such employment is down to its simplicity, as opposed to software engineering labour, which is often a time-consuming process that requires extensive understanding of issue classes as well as methods that enable hand design descriptors.This function is not required.However,although unmanufactured descriptors offer certain benefits,it is important to note that handcrafted descriptors have particular characteristics that may be very helpful for a wide range of classification tasks.For instance, in this case, the advantages of using handmade features outweigh the disadvantages since these methods are more powerful because they typically operate in a more deterministic manner to capture patterns linked to an issue.A more precise explanation of the patterns created by the handmade characteristics of the pictures is more possible when handcrafted features are used, rather than those unpolished.Although efforts have shifted to the usage of these two groups in feature extraction,this was not the case in the past.As a result,we may test the two independently and then combine the results of many experimental groups to obtain a final result.In this way, we may utilise the complementarity among the methods of the descriptors,which has been shown in[34,35]to prevent them from making the same mistakes,while executing a certain classification job.The adjectives used to describe the work are briefly mentioned in this section.Specific texture descriptors were chosen in order to obtain excellent performance in general applications or,more particularly,in medical image analysis applications.

    When it came to the Texture features group, the Gray-Level Co-Occurrence Matrix (GLCM)technique was used.Sebastian et al.[36] proposed the concept of GLCM, which is a link between pixels in a matrix widely employed in the study of textures.When two pixels are next to one another,the relationship is measured in terms of the distance between two pixels and the angle between their respective axes.Because of this,the GLCM parameters are the size and angles of the space.The GLCM functions quantify an image’s texture by determining the frequency with which a pair of pixels with differing values and in a certain spatial relationship occur in the picture.The GLCM generates a matrix of paired pixels with different values and in a given spatial relationship,and then extracts statistical measures from this matrix.The statistical measurements of texture filter functions,as well as the spatial connections of pixels in the picture, were found to be insufficient for providing information about shape in texture features,as previously stated.The GLCM feature set is constructed based on statistics of the second order.To calculate the reflection,the overall average of degrees of resemblance between pixel pairs in various ways(homogeneity,uniformity,etc.)may be utilised.The pixel separation is one of the most important variables affecting the discriminating capabilities of the GLCM.When distance 1 is taken into consideration, the connection between pixel values (i.e., short-term neighbourhood connectedness)is represented.Instead,the change in the value of the distance reflects the change in the number of corresponding pixels.

    ·GLCM Features

    As outlined in statistical and structural texture methods [36], GLCM produces functions that accurately represent the adjacency relationship among pixels in the texture picture.Some formulae for extracting characteristics from co-occurrence matrices are dependent on the features to be observed.Based on the properties of the X-ray imaging collection,such as correlation,homogeneity,energy and contrast,we chose the four most important Haralick texture elements for further study.The formulas for computing the statistical and GLCM features are discussed and presented by Osman et al.[37].

    A.Imbalance Data Management

    When he had read it the governor was certainly a little astonished; but he was told in the letter to ask no questions, and he knew how to obey orders

    The imbalance data was handled in the first step as proposed by Osman et al.[37]by using the raw input characteristics of X-ray pictures owing to their uneven sample distributions.To address this issue,the whole dataset is divided into equal portions for each class.For example,the number of confirmed cases for those with COVID-19 is 125,whereas the number of confirmed cases for those who do not have COVID-19 is 500,and those with pneumonia is also 500.The non-infected cases and pneumonia patients were split into four equal-sized groups,each with 125 samples,and the samples from each of these four groups were equivalent to the samples from the group of individuals with COVID-19.We performed the COVID-19 sample joining procedure for each group individually and utilised them as crossover with other produced non-infected and pneumonia groups.Each produced group includes 375 cases,with 125 infected with COVID-19 and labelled as class 1,125 non-infected with COVID19 and 125 pneumonia cases labeled as class 2 and class 3.

    B.Two Step-AS Cluster Algorithm

    Many researchers,including[38–40],have adopted the Two Step Clustering algorithm in various fields.Using data from the Smyth research[39],Najjar et al.[38]presented an exploratory analytics approach for evaluating healthcare data based on the findings of the study.To handle categorical and numerical inputs,the suggested approach used a Two Step Clustering methodology for heterogeneous finite mixture models:first,a joint mix of multinomial distribution and Gaussian and,second,a joint mix of multinomial distribution and Gaussian.Then,to handle orders of categorical input,a hidden Markov model was used in conjunction with a mix of other models.The technique was tested on a realworld system,and the findings show its effectiveness in locating health services for people with large families.A technique for identifying outliers and determining the impact factor in diabetes patients was suggested by Deneshkumar et al.[40],who used a Two Step Clustering algorithm as well as other data mining approaches.For the purpose of gaining new therapeutic information, the researchers attempted to identify patterns and connections among vast amounts of medical data.Associated with the Two Step-AS clustering algorithm is a new technique to reveal natural clusters (or groupings)inside a knowledge collection, which may be apparent [41].This exploratory technique, known as Two Step-AS Cluster,is intended to uncover natural groups(or clusters)inside a data collection that might otherwise go undetected.Such a method makes use of an algorithm that has many beneficial characteristics,which distinguish it from conventional clustering procedures.

    1.Dealing with variables that are either categorised or continuous.A joint multinomial-normal distribution may be used for categorical and continuous data if the variables are assumed to be independent of one another.

    2.The number of clusters is automatically selected.It is possible to find automatically the optimum number of clusters using an optimisation method,which compares values of a modelchoice criteria across various clustering solutions.

    3.Scalability.In order to examine huge data files,the Two Step-AS method constructs a Cluster Feature(CF)tree that summarises the entries in each cluster.

    For example, retail and consumer goods businesses often use clustering methods to analyse data on their consumers’purchasing patterns, gender, age, income level and other characteristics.The marketing and product development strategies of these businesses are tailored to each specific consumer segment in order to boost sales and create brand loyalty among customers.Pre-clustering is performed by scanning each data record,and determining whether the current record can be assigned to one of the preconceived clusters or whether it needs to be added to a new cluster based on the distance criterion.Clustering is performed after the pre-clustering step.In this research, we utilised the Two Step-AS method log-likelihood distance in conjunction with the log-likelihood distance.The pre-clustering process is carried out by constructing a data structure known as the CF(cluster feature)tree,which includes the cluster centres and other relevant information.Nodes are arranged in levels,with each level containing a number of participants for each node.A leaf entry is the last sub-cluster of a cluster.Each record is searched for by recursively descending the CF tree, beginning with the root node and progressing down to the closest child node.When the algorithm reaches a leaf node,it searches for the leaf entry that is closest to the leaf node.A record is added to the closest leaf entry if it is within a certain distance of the leaf entry.The CF tree is updated if the record is within that distance.If this is not the case,it generates a new value for the root node.If there is enough space in the leaf node to accommodate another value that leaf is split into two values,with each being distributed to one of the two leaves.The farthest pair serve as seeds and the remaining values are distributed based on the closeness criterion,as shown in the following diagram.

    With the sub-clusters obtained from the pre-cluster phase as input(along with the noises,if the alternative step was utilised), the clustering stage may arrange the sub-clusters into the appropriate number of clusters.The use of traditional clustering techniques may be effective in this situation since the set of sub is much less than the set of original data.It employs an agglomerative hierarchical approach that automatically calculates the number of clusters to be used in a given situation.The loglikelihood distance determines the distance between two clusters of interest.For both continuous and categorical data,the log-likelihood distance may be used to determine a relationship.As two clusters are grouped into one,the distance between them is linked to the reduction in the natural logarithm of probability function, which indicates that they are closer together.The likelihood measure assigns the variables a probability distribution based on their values.Categorical variables are considered multinomial in distribution, while continuous variables are regularly distributed.It is assumed that all variables are independent of one another.The clusters distance between I and j is described as[42]:

    where

    These formulations have the following parameters:

    KAdenotes the range category number of inputs features,KBis the symbolic number category of the inputs features, Lk is the type number for thekth symbolic features,Nvis the instances number in clusterv,Nυklis the number of instances in clusterv–which is similar to thelth type of thekth symbolic feature–is the probable variance of thekth continuous features for all instances,is the probable variance of the kth continuous features for instances in the vth cluster and<i,j >is an index representing the cluster moulded by merging clustersiandj.

    The coldness between clustersiandjwould be accurately equal to reduce in log likelihood once the two clusters are joint,ifis ignored in the expression forξvandis disregarded in the expression forv.By including this term,we can avoid the issue created by=0,which would result in the natural logarithm existence indeterminate.The technique is divided into two phases,the first of which is used to define automatically the clusters number.Second,for each clusters number from a given range,the indicator Schwarz’s Bayesian Information Criterion(BIC)is computed;this indicator is then utilised to determine an initial estimation for the clusters number in the second.

    The Two Step Clustering differs from the traditional clustering techniques in terms of certain features with several advantages.First,the variables used for clustering can be discrete or continuous variables,which allows for a broader range of applications.Second,the Two Step Clustering method requires less memory resources and calculates faster.Third,statistics are used as a distance index for clustering,and,at the same time,the data can be“automatically”reorganised with the best number of clusters.For this reason,the Two Step Clustering technique is nominated and examined to integrate with the MNN and Ensemble Bootstrap aggregating learning algorithm.

    C.Ensemble Bootstrap Aggregating Learning Algorithm

    Boosting refers to a group of procedures that have the ability to turn poor learners into strong learners.Models that are just slightly better than random predicting,such as tiny decision trees,are the foundation for improvements.The alteration of a collection of soft trainers to weighted data forms serves as the central concept of improvement.More weight is given to cases incorrectly categorised as “error” by previous rounds of review [43].The classifiers are then merged to produce the final prediction, which is determined by either weighted common prediction or a weighted total voting(classification) (regression).The most significant variance between the techniques of bagging and boosting, for instance, is that the basic learners are sequenced using weighted data [44], which has a fault ratio lower than that of random selection[45].AdaBoost is the first to create the soft C1(x),a decision stump in most instances.When the weight of an observation is raised–or when at least one of the classification techniques makes a mistake–the second classifier is rebuilt using the new weight of the observation.All classification systems’predictions are merged using weighted majority voting methods,resulting in a final forecast that may be computed as follows:

    where a1, a2,..., and am denote numbers produced by the boosting method to enhance the sequence[46].

    The most often used approaches for ensemble learning are bagging and boosting,both of which are concerned with increasing diversity by changing the training set in such a way that the learning algorithm is performed repeatedly across a range of training conditions.Each boosting step increases the amount of weight that is assigned to each of the training data points.By using substitution,bagging creates a random sample of the data for basic apprenticeship learning, bootstrap sampling creates subsets of the data for basic apprenticeship learning,voting and averaging are used to combine the performance of basic apprentices and voting and average regression are used to measure the results of specific students.When boosting, the weights of these weights are altered randomly and substituted for the weighted data in order to increase the significance of previously unclassified samples,which are subsequently categorised.An ensemble classification system is a generic name for a system that combines multiple classification algorithms in order to enhance the prediction effectiveness of the system[47].Several researchers have previously utilised classification ensembles and disputed their superiority to individual categorization [48–53].The following diagram depicts the Ensemble Bootstrap aggregating learning algorithm.

    Ensemble Bootstrap aggregating(Bagging)Learning algorithm Ba denotes the number of “bags”or fundamental hypotheses.L denotes the fundamental training algorithm.Bootstrap(samples,Ba,L)1.For i ←1 to Ba 2.examplesi←a Bagging example of samples 3.hi ←apply L to examplesi 4.return h1,h2,...,hB

    D.Multiple Neural Network Approach Based Ensemble Bootstrap Aggregating Classifier

    The proposed method for Covid-19 diagnosis integrated a MNN method with an Ensemble Bootstrap aggregating(Bagging)Learning algorithm.It was discovered that the ensemble approach imitates human reasoning,namely,multiple perspectives are considered before making a final decision.This was decided by a unanimous vote since the real-world implementation of this research requires a high level of confidence, given the separation of patients with Covid-19 into bio-classes, and the employment of a range of decision-making fusion techniques,all of which are discussed in the paper.The primary goal is to enhance the learning level by gathering Covid-19 samples with similar patterns together.By doing so,the complexity is decreased,and the accuracy of the diagnostic interpretation,as well as the diagnosis, increased.Fig.2 depicts the integration structure of the ensemble Bagging Learning technique and the MNN.

    Figure 2:Organisation of MNN-ensemble bagging learning method

    The hybrid module combines the Ensemble Bootstrap aggregating classifier with the MNN to provide a more accurate classification.When classifying different kinds of X-ray Covid-19 datasets,this module adopts a hybrid combination technique to combine predictions from separate classifiers based on their relevance, in order to improve classification accuracy.The hybrid method makes use of tenfold cross-validation to divide datasets for learning and testing samples into two groups, one of which includes Ensemble Bootstrap aggregating learning and the other, which does not.The MNN classifier in conjunction with the output of the Ensemble Bootstrap aggregating learning algorithm achieves the highest feasible accuracy.X-ray Covid-19 dataset characteristics are used as input variables in each of the training and testing experiments, which are then fed into the MNN.Then,the target field is a characteristic of a certain class(Non-COVID,COVID-19,or Pneumonia).When the MNN method categorises the dataset with Ensemble Bootstrap aggregating learning output,the findings of the MNN classifier with Ensemble Bootstrap aggregating learning demonstrates an increase in performance over the previous MNN technique.

    A combination of winner-takes-all and weighted-most-majority methods, on the other hand,refers to the combination of the Ensemble Bootstrap aggregating learning algorithm and other techniques.The goal of this combined technique is to decrease the number of misdiagnoses that have occurred as well as to improve the accuracy of healthy COVID-19 diagnosis.In the weighted majority rule, the majority model with modest value forecasts would gain from the minority model with considerably higher value predictions,as opposed to the minority model with tiny value projections.The prediction coefficients of most models with suitably big values are lost in the winning process,as opposed to the prediction coefficients of the single model with the highest value.It is at the learning step of the Ensemble Bootstrap aggregating process that the integrated module is constructed.For each cross-validation fold in the dataset, each MNN retrieves a prediction result from the dataset.This prediction must then be incorporated into the overall prediction model to complete the final classification scheme.

    Bootstrap aggregation (bagging) generates duplicates of the learning data by sampling with replacement from the original data and then aggregating those replicates together.Beneficially, this generates bootstrap samples that are the same size as the original dataset.In order to produce occurrence weights,the method is run repeatedly overk=1,...,K and m=1,...,Miterations based on Eq.(8):

    where:

    fk=Occurrence weight assigned to thekth record,is the simulated occurrence weight for thekth record of themth bootstrap sample.Kis the number of distinct records in the learning dataset.Nis the total number of records.

    Then, for each duplicate, a model is constructed.The combination of these models is referred to as an ensemble model.The ensemble model generates new records by using one of the techniques listed below;the options available depend on the measure level of the target being scored.Accuracy is calculated for the ensemble model related to each ensemble technique and base models using Eq.(9):

    where:

    yk is the target rate for thekth record, ?ykis the modal category for the target values.

    4 Experimental Design and Dataset

    This section describes how the suggested MNN was evaluated and the experimental setting was accomplished using the Ensemble Bootstrap aggregating classifier with the MNN technique.The effect of the proposed method on its accuracy and calculation stages is addressed in the computation performance section.All the tests were carried out in the MATLAB environment,using the SPSS IBM modular tools,and the results are reported.

    According to our proposed approach,the current X-ray dataset is improved by adding crossover balanced Covid-19 class pictures as supplement.The purpose of this experiment is to show the detrimental effect of imbalance distributions on the performance of the raw dataset.It is important to note that the Two Step-AS-AS-MNN is modified to conduct a regular training procedure using the best model parameters available.In this study, we provide a prediction technique for Covid-19 diagnoses that uses a hybrid Two Step-AS clustering algorithm with Ensemble Bootstrap aggregating learning and MNN method,to improve the diagnostic precision of the classification and reduce the misdiagnosis error,while also increasing the accuracy of classification.This leads to the development of a novel strategy that combines unsupervised and supervised techniques of learning to create a hybrid model of instruction.A qualified research was carried out on the Ensemble Bootstrap aggregating learning and Two Step-AS clustering data structure on the X-ray chest imaging features extraction using the MNN classification structure.When the results of the clusters were utilised as inputs to the classification model, they were predicted using MNN classifier as predictions for positive instances of Covid-19,pneumonia and Covid-19 cases that were not found.The procedure was followed.The TSEBANN model is used to investigate the impacts of the qualifying process.The X-ray chest data has been linked to many instances due to the large number of cases.The datasets were split into 10 parts for training and testing the TSEBANN technique, which was done via a process known as tenfold cross validation.

    For the detection and categorisation of COVID-19 in X-ray pictures,two distinct scenarios were utilised in conjunction.First, the TSEBANN method was trained to categorise the X-ray images:COVID-19, No-Finding and Pneumonia.Furthermore, two classes were trained in the TSEBANN model: the COVID-19 classes and the groups of No-Findings.The COVID-19 classes were trained in the TSEBANN model.The output of the proposed model is tested with a tenfold cross-validation method for issues involving triple and binary classification.It is used in the training records;90 percent of the X-ray pictures are used as testing stage four times,depending on the balance of the dataset,which is part of the pre-processing phase.It is found that 43 women and 82 men are positive in the study’s population of participants.In this dataset,not all patients have full medical history.The average age of the 26 successful COVID-19 individuals is approximately 55 years,according to the data provided.Wang et al.[54]supplied a library of chest X-ray 8 images,which may be used for both normal and pneumonia images.The random pictures from this batch of 500 no-founds and 500 pneumonia frontal chest X-rays were utilised as a control to ensure that the findings were balanced.The classes of groups created were similar in that each group consisted of 375 cases,with 125 COVID19 cases labelled as class 1,125 non-COVID19 infected patients labelled as class 2 and 125 pneumonia cases labelled as class 3.After the data was balanced,this technique identified the produced groups,which were then used to identify each group separately via diagnostic cluster studies.Experiments were carried out using the TSEBANN learning classifier by tenfold cross validation in order to compare the correlation factor of the X-ray diagnostic classification classifier.The new balanced datasets were split into a total of 10 components.Each component accounted for 10%of the original dataset,allowing each dataset set to be converted into test data.During each round, a total of nine sets of experiments were utilised for training and one set of experiments used for testing.Using the Two Step-AS method,the Chest X-ray dataset was clustered based on non-COVID-19 variables such as pneumonia and COVID19 features of the same kind.

    5 Results Discussion and Analysis

    With the use of Two Step-AS Cluster,the performance of the NN classification algorithm may be enhanced.This is because continuous features tend to perform better when discretized[55].Machine learning method by Yang et al.[56] employs the technique of discretisation to deal with continuous features; discretisation of continuous features may make data more compact and efficient inductive learning methods, while also simplifying and improving the efficiency of the algorithms.Two Step-AS is a clustering method originally created by Chiu et al.[57],and is intended to handle extremely big datasets.It is included in the statistical program SPSS and is a kind of clustering algorithm.It is possible to handle both continuous and categorical data using the Two Step-AS cluster[58,59].Tab.1 shows the Two Step-AS model specifications.

    Table 1: Two Step-AS clustering model specifications

    As demonstrated in Tab.1,when a processed dataset,which is a dataset that has been quantified,is fed into the system, Two Step-AS is used to generate a class label from the processed data.This class label is made up of two labels,cluster-1 and cluster-2,which are grouped together.Following the definition of each class label,the prior probability of each class label for NN calculation is carried out,which is required in the NN calculation.Tab.1 shows that the minimum and maximum numbers of regular clusters generated by the Two Step-AS algorithm is 2 and 15,respectively.The Two Step-AS algorithms employ the BIC Method as Feature Importance nomination,and Log Likelihood measure as Distance Measure.The Two Step-AS model quality Clustering Evaluation is presented in Tab.2.

    Table 2: Two Step-AS clustering model quality

    Tab.2 demonstrates the quality of the Two Step-AS model based on the number of records,goodness and record importance.The goodness is a measure of cluster cohesion and separation.The number of records in cluster-1 is 985 with 0.89 goodness and 1.00 score of record importance,while the number of records in cluster-2 is 416 with-0.25 goodness and 1.00 score of record importance.The overall model goodness is(Average Silhouette Coefficient)=0.76.Where(-1 to 0.2 Poor|0.2 to 0.5 Fair|0.5 to 1 Good).In contrast,the importance is a measure of cluster cohesion achieved as 0 to 0.2 Poor|0.2 to 0.6 Fair|0.6 to 1 Good.The outlier strength is a measure of how different an outlier cluster is from the regular clusters.The outlier interpretation is based on higher and less similarities between the records.

    In constructing the Cluster Feature(CF)tree,the method includes an alternative step that enables the solution of unusual values to be used(outliers).Outliers are records that do not fit well into any of the clusters in which they are found.In SPSS,entries in a leaf are deemed outliers if the total number of records in the leaf is less than a specified proportion(by default,this proportion is 25 percent)of the total number of records in the biggest leaf entry in the clustered CF tree.Prior to constructing the CF tree,the method looks for and removes any potentially unusual values from consideration.Following the reconstruction of the CF tree,the process determines whether these values can be accommodated inside the tree without raising the tree’s size.Finally, numbers that do not fit into any of the other categories are referred to as outliers.If the CF tree becomes larger than the permitted maximum size,it is rebuilt using the current CF tree and the threshold distance is increased to accommodate the larger tree.The updated CF tree is smaller and enables the addition of input records.Tab.3 demonstrates the importance of an input to a particular cluster with centres modes for feature inputs.The importance of an input to a particular cluster with centres modes for feature inputs is shown in Fig.3.

    Table 3: Two Step-AS outlier clustering results

    Fig.3 demonstrates the importance of an input to a particular cluster with centres modes for feature inputs.The scores of standard deviation cluster centre achieved by the important features inputs(feature7,feature4,feature3 and feature1),as shown in Tab.4,are(0.61,0.41,0.32 and-0.16)for the upper cases,and the lower cases scores are achieved with(-0.120,-0.89,-0.75,and-0.23).

    Figure 3:Two Step-AS-AS clusters profile using across important feature

    Table 4: Clusters profile using across important feature

    In addition, the important features achieved 1.0, 0.87, 0.78 and 0.46 standard deviation within cluster1 and cluster2.

    To carry out an experimental research,a COVID-19 dataset was acquired with the goal of learning the data.As previously mentioned, the researchers employed a tenfold cross-validation method for both training and testing the dataset in their investigation.A cross-dataset experiment was carried out,in which the MNN and MBANN classifiers were used both without and with Two Step-AS clustering findings to evaluate the improved outcomes of the hybrid method.The results of the cross-validation procedure were calculated based on Eq.(10)to provide the following diagnostic:

    True Positive(TP)denotes the number of COVID-19 executable correctly classified.False Positive(FP)denotes the number of COVID-19 executable incorrectly classified.True Negative(TN)denotes the number of non-COVID-19 and pneumonia executable incorrectly classified.False Negative(FN)denotes the number of non-COVID-19 and pneumonia executable incorrectly classified.

    A chest X-rays dataset was analysed in order to identify the occurrence cases as either non-COVID-19,pneumonia,or COVID19 patients.The hybrid approach was used to train and evaluate the dataset by combining the Two Step-AS and Multipe Neural Network methods(MNN)in a hybrid fashion.In addition,the classification accuracy of the hybrid technique was improved using Ensemble Bootstrap aggregating.The dataset was then split into two clusters automatically, with each cluster containing a varied number of occurrences,using the Two Step-AS clustering algorithm.The primary goal of clustering in this research is to extract patterns and structures from chest X-rays data by grouping samples with similar patterns.As a result, the complexity of the study is decreased, and the accuracy of the diagnostic interpretation is improved.Findings from the training and testing processes on the dataset are presented in Tab.5,which shows a set of results produced by the Ensemble MNN classifier method without clustering and with clustering using the Two Step-AS algorithm in the absence of clustering.As stated in Section 7, the output of the TwoSetp-AS is added as a new feature to the dataset during the combination process, allowing each instance in the dataset to be labelled with a cluster name.By categorising the data into comparable clusters, this feature has the potential to improve the diagnosis accuracy between the instances.The MNN classifier was used once more with the output of the Two Step-AS and Ensemble Bootstrap aggregating techniques to increase the possibility of achieving high accuracy.In order to evaluate the combined characteristics of the dataset,a tenfold cross-validation procedure was employed throughout the training and testing phase,both with and without clustering.Each training and testing experiment used a different characteristic from the chest X-rays dataset as an input variable to the TSEBANN model.The target field was a characteristic of a certain class(non-COVID-19,pneumonia,or COVID19 patients).The Ensemble MNN classifier’s performance improved when it was combined with clustering, as evident from the results obtained when the MNN method categorised the dataset with Two Step-AS cluster output.As shown in Tab.5,the Two Step-AS clustering method improves the accuracy of diagnosis by a factor of 99.055 percent,which is remarkable.

    Table 5: Performance on the X-ray COVID-19 Dataset Based on MNN Algorithm

    Figs.4 and 5 and Tab.5 show the output of the MNN throughout both the training and testing phases, both without and with clustering using Two-Step-AS Clustering.Cross-validation was performed 10 times, and the average classification results achieved by applying MNN without clustering are 88.73 percent for the training experiments and 84.492 percent for the testing experiments,according to the findings.The results of the MNN classifier with clustering using a Two Step-AS method are likewise shown in Tab.6 and Fig.5,with 99.055 percent accuracy in the training and 97.949 percent accuracy in the testing tests.The training and testing high-performance outcomes obtained in fold number 5 were accomplished without the use of clustering and had an accuracy ratio of 98.51 and 98.11 percent,respectively.In contrast,the low training and testing scores prediction results using clustering were obtained in folds number 10 and 1 with 86.69 and 80.82 percent,respectively.

    Figure 4: Best and Worst Performance COVID-19 accuracy diagnosis based on MNN algorithm without Two Step clustering approach

    Figure 5:Best and worst performance COVID-19 accuracy detection based on MNN algorithm with Two Step clustering approach

    Table 6: Performance on the X-ray COVID-19 dataset based on ensemble MNN algorithm

    Table 6:Continued

    The high training and testing scores prediction results using clustering are obtained in folds number 1 and 4 with 99.3 and 98.71 percent,respectively.Where the low training and testing scores prediction results using clustering are obtained in fold number 10 with 98.49 and 98.28 percent,respectively.The conclusion is that when the Two Step-AS clustering method is used, there is an improvement in performance.When the MNN output is combined with the Two-Step-AS Clustering method, the results of the MNN with clustering are improved, and the accuracy of the breast cancer detection is increased.In addition, the performance on the X-ray COVID-19 dataset based on Ensemble MNN algorithm is demonstrated in Tab.6 and Figs.6 and 7.

    Figure 6: Best and worst performance COVID-19 accuracy detection based on ensemble MNN algorithm with Two Step clustering approach

    Figure 7: Best and worst performance COVID-19 accuracy detection based on ensemble MNN algorithm without Two Step clustering approach

    The same scenario applied with MNN only was repeated with MNN with Ensemble Bootstrap aggregating classifier.The results are reported in Figs.6 and 7,and it is shown the output performance in both training and testing phases with and without Two Step-AS clustering.

    Cross-validation was performed 10 times, and the average classification results achieved by applying Ensemble MNN without clustering were 92.204 percent for the training experiments, and 87.889 percent for the testing experiments,according to the findings.The results of the Ensemble MNN classifier with clustering using Two Step-AS method are likewise shown in Tab.7 and Fig.6, with 99.115 percent accuracy in the training,and 98.062 percent accuracy in the testing tests.The training and testing high-performance outcomes obtained in fold number 5 were accomplished without the use of clustering and had an accuracy ratio of 99.26 and 97.17 percent,respectively.In contrast,the low training and testing scores prediction results using clustering were obtained in fold number 1 with 89.98 and 82.19 percent,respectively.

    The high training and testing scores prediction results using clustering were obtained in folds number 3 and 2 with 99.37 and 98.64 percent,respectively.Where the low training and testing scores prediction results using clustering were obtained in folds number 10 and 1 with 98.49 and 97.26 percent,respectively.The conclusion is that when the Two Step-AS clustering method is used,there is an improvement in performance.When the MNN output is combined with the Two Step-AS clustering method,the results of the MNN with clustering are improved,and the accuracy of the breast cancer detection is increased.

    Table 7: Performance on the TSEBANN and other classifiers based on NIH dataset

    Another experiments based on the NIH dataset was inspected in order to examined the occurrence cases as either COVID-19,or not.The hybrid approach was used to train and evaluate the TSEBANN model and some of the classifiers methods to prove the strength of the proposed model.In addition,the classification accuracy of the hybrid technique was reported in Tab.7.

    In this study,the T-test algorithm determined statistical significance between the results obtained from the first experiment using MNN,and the results obtained from the second experiment using the Ensemble MNN method,and presented the enhancements obtained by employing the Two Step-AS technique.The T-test yielded a modest significance value(usually less than 0.05),indicating that there is a statistically significant difference between the two variables.Based on the acquired findings in Tabs.8 and 9,which show that the significant values(0.000211 and 0.000008)is high,this requirement is highlighted in the evaluation measures developed.Therefore, the TSEBANN obtains statistically significant values when combined with Two Step-AS clustering algorithm.

    Fig.8 depicts a comparison between the TSEBANN method and existing techniques in use.The suggested TSEBANN achieved a high accuracy rating of 0.98 with its implementation.

    Table 8: T-test statistical significance results for MNN

    Table 9: T-test statistical significance results for ensemble MNN

    Figure 8:Comparison between the TSEBANN and current COVID-19 classifier

    6 Conclusion and Future Directions

    The present study is concerned with the development of a new Ensemble MNN-based Two Step-AS clustering method(TSEBNN)for the detection of Covid-19 and pneumonia patients.Clustering techniques are evident in a variety of areas that make use of big datasets in order to uncover hidden patterns in the data.However, because most data collected from the actual world includes both numerical and categorical characteristics, traditional clustering algorithms are unable to perform effectively on such datasets.We demonstrated that the Two Step-AS technique, which is simple to use and calculates the optimum number of clusters automatically, may be utilised to address this issue.With the TSEBNN, clinical cases are categorised into pneumonia, COVID-19 and normal cases, in the first stage.Furthermore, since Covid-19 is caused by a virus, all of the instances tested are divided into three groups–positive COVID-19, pneumonia and negative COVID-19 (normal)–using TSEBNN during the second stage of diagnosis.It is the goal of the TSEBNN method to offer a quick, systematic and reliable computer-aided solution for the description of Covid-19 cases to patients who are admitted to hospitals and undergo initial screening with an X-ray scan of their chest.Inclusive assessments have been carried out to show the efficacy of the suggested approach,using both learning and testing process and tenfold cross validation approach to illustrate the effectiveness of the TSEBNN method.Additionally,a number of tests have been carried out to show the superiority of the TSEBNN in identifying Covid-19 instances when compared to the other Covid-19 methods discussed in state-of-the-art research.Several initiatives might be undertaken in the future to improve on the current performance.A higher-level CNN techniques and different data mining models might be used to more precisely increase the detection of the positive covid-19 from the chest x-ray and CT-scan images.We have the option of rearranging the size of the supplied images.In order to increase the performance even more,machine learning-based image segmentation should be considered.However,to enhance the superiority of the prediction approach in COVID-19 illness,optimising methods based on regression and classification algorithms will be used in conjunction.

    Funding Statement:This work was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University,Jeddah,Saudi Arabia,under Grant No.(DF-770830-1441).The author,therefore,gratefully acknowledge the technical and financial support from the DSR.

    Conflicts of Interest:The author declare that they have no conflicts of interest to report regarding the present study.

    麻豆国产av国片精品| 亚洲免费av在线视频| aaaaa片日本免费| 久久午夜综合久久蜜桃| 日本三级黄在线观看| 欧美另类亚洲清纯唯美| 好看av亚洲va欧美ⅴa在| 岛国在线观看网站| 午夜精品国产一区二区电影| 99久久久亚洲精品蜜臀av| 最好的美女福利视频网| av超薄肉色丝袜交足视频| 亚洲国产毛片av蜜桃av| 女同久久另类99精品国产91| 亚洲专区国产一区二区| 又紧又爽又黄一区二区| 亚洲午夜理论影院| 亚洲国产日韩欧美精品在线观看 | 男女床上黄色一级片免费看| 国产蜜桃级精品一区二区三区| 他把我摸到了高潮在线观看| 一二三四社区在线视频社区8| 亚洲自拍偷在线| av天堂在线播放| 激情在线观看视频在线高清| 99精品在免费线老司机午夜| 亚洲人成电影观看| 久久久久久久精品吃奶| 亚洲精品中文字幕一二三四区| 制服丝袜大香蕉在线| 国产精品精品国产色婷婷| 天堂动漫精品| 久久香蕉国产精品| 久久亚洲精品不卡| 在线免费观看的www视频| 88av欧美| 在线天堂中文资源库| 国产一区二区在线av高清观看| 欧美午夜高清在线| 天堂√8在线中文| 女性生殖器流出的白浆| 色播亚洲综合网| 日韩av在线大香蕉| 午夜福利成人在线免费观看| 老熟妇乱子伦视频在线观看| 99re在线观看精品视频| 午夜亚洲福利在线播放| 性欧美人与动物交配| 精品国产国语对白av| 亚洲熟女毛片儿| 亚洲片人在线观看| 免费人成视频x8x8入口观看| 午夜成年电影在线免费观看| 精品少妇一区二区三区视频日本电影| 久久狼人影院| 日韩视频一区二区在线观看| 欧美黄色淫秽网站| 国产熟女xx| 久久人人97超碰香蕉20202| 精品乱码久久久久久99久播| 十八禁人妻一区二区| 国内精品久久久久久久电影| 欧美中文日本在线观看视频| 国产激情久久老熟女| √禁漫天堂资源中文www| 国产亚洲精品综合一区在线观看 | 91九色精品人成在线观看| 一区二区三区高清视频在线| 天堂动漫精品| 免费在线观看亚洲国产| 免费观看精品视频网站| 热re99久久国产66热| 亚洲精品av麻豆狂野| 欧美日韩精品网址| 精品人妻1区二区| 十八禁网站免费在线| 99在线人妻在线中文字幕| 国产精品日韩av在线免费观看 | 高清在线国产一区| 正在播放国产对白刺激| 怎么达到女性高潮| 日日摸夜夜添夜夜添小说| 国产免费男女视频| 久久香蕉精品热| 韩国精品一区二区三区| 好男人电影高清在线观看| 日本欧美视频一区| 满18在线观看网站| 老司机午夜十八禁免费视频| 国产亚洲精品一区二区www| 午夜影院日韩av| 18禁美女被吸乳视频| 少妇的丰满在线观看| 国产亚洲精品综合一区在线观看 | 亚洲欧美激情在线| 国产黄a三级三级三级人| 欧美人与性动交α欧美精品济南到| 级片在线观看| 纯流量卡能插随身wifi吗| АⅤ资源中文在线天堂| 操美女的视频在线观看| 又黄又粗又硬又大视频| 亚洲国产毛片av蜜桃av| 色精品久久人妻99蜜桃| 欧美最黄视频在线播放免费| 日韩成人在线观看一区二区三区| 欧美日韩乱码在线| 国产人伦9x9x在线观看| 午夜精品国产一区二区电影| 99国产综合亚洲精品| 国产麻豆69| 男男h啪啪无遮挡| 精品人妻1区二区| 制服丝袜大香蕉在线| 亚洲第一电影网av| 亚洲精品中文字幕在线视频| 国产亚洲欧美在线一区二区| 一进一出抽搐动态| 在线十欧美十亚洲十日本专区| 久久人人精品亚洲av| 一个人免费在线观看的高清视频| 狂野欧美激情性xxxx| 曰老女人黄片| 国产精品,欧美在线| 青草久久国产| 男男h啪啪无遮挡| 久久久国产欧美日韩av| 日韩视频一区二区在线观看| 久久天躁狠狠躁夜夜2o2o| 一夜夜www| 成在线人永久免费视频| 久久精品人人爽人人爽视色| 长腿黑丝高跟| 成在线人永久免费视频| 亚洲精品中文字幕一二三四区| 欧美成狂野欧美在线观看| 久久草成人影院| 亚洲男人的天堂狠狠| 一级毛片精品| 一级黄色大片毛片| 亚洲精品在线观看二区| 国产精品久久久久久精品电影 | 久久精品影院6| 午夜免费激情av| 欧美成人免费av一区二区三区| 成人免费观看视频高清| 亚洲国产日韩欧美精品在线观看 | 久久人人爽av亚洲精品天堂| 亚洲精品国产一区二区精华液| 操美女的视频在线观看| 淫妇啪啪啪对白视频| 美女 人体艺术 gogo| 国产成人啪精品午夜网站| 亚洲一区高清亚洲精品| 中文字幕av电影在线播放| 精品久久久精品久久久| 国内久久婷婷六月综合欲色啪| 国产成人免费无遮挡视频| 亚洲免费av在线视频| 成人欧美大片| 精品国产国语对白av| 97碰自拍视频| 久久久久久久久久久久大奶| 国产激情欧美一区二区| 中文字幕人成人乱码亚洲影| 制服诱惑二区| 黄色毛片三级朝国网站| 女人被躁到高潮嗷嗷叫费观| 日本免费a在线| 精品欧美一区二区三区在线| 久久久久久免费高清国产稀缺| 日本 av在线| 露出奶头的视频| 亚洲一区高清亚洲精品| 国产片内射在线| 免费一级毛片在线播放高清视频 | 色精品久久人妻99蜜桃| 国内精品久久久久精免费| 999久久久国产精品视频| 欧美日韩乱码在线| 久久 成人 亚洲| 亚洲国产欧美日韩在线播放| 丝袜美腿诱惑在线| 午夜免费鲁丝| avwww免费| tocl精华| 亚洲第一欧美日韩一区二区三区| 美女免费视频网站| www日本在线高清视频| 免费在线观看影片大全网站| 精品不卡国产一区二区三区| 好男人电影高清在线观看| 日本欧美视频一区| 国产精品免费一区二区三区在线| 精品久久久久久久毛片微露脸| 视频在线观看一区二区三区| 久久久久久亚洲精品国产蜜桃av| 在线播放国产精品三级| av电影中文网址| 18禁观看日本| 亚洲av美国av| 一边摸一边抽搐一进一小说| 精品欧美一区二区三区在线| 看免费av毛片| 欧美不卡视频在线免费观看 | 性少妇av在线| 亚洲五月色婷婷综合| 亚洲精品美女久久久久99蜜臀| 国产成人一区二区三区免费视频网站| 老司机在亚洲福利影院| 大陆偷拍与自拍| 黄色丝袜av网址大全| 亚洲专区中文字幕在线| 又大又爽又粗| 午夜福利影视在线免费观看| 99热只有精品国产| www.精华液| 韩国精品一区二区三区| 亚洲色图 男人天堂 中文字幕| 久久久久久久久中文| 精品国产美女av久久久久小说| 99在线视频只有这里精品首页| 久久国产亚洲av麻豆专区| 国产精品1区2区在线观看.| 中文字幕人妻丝袜一区二区| 多毛熟女@视频| 老汉色∧v一级毛片| 天堂√8在线中文| 给我免费播放毛片高清在线观看| 亚洲av成人一区二区三| 无遮挡黄片免费观看| 国产三级在线视频| 国产成人影院久久av| 成人永久免费在线观看视频| 亚洲中文av在线| 可以在线观看的亚洲视频| 亚洲午夜精品一区,二区,三区| 91精品三级在线观看| 欧美色欧美亚洲另类二区 | 亚洲精品久久国产高清桃花| 一本综合久久免费| 精品一品国产午夜福利视频| 国产精品美女特级片免费视频播放器 | 国产99久久九九免费精品| 老汉色∧v一级毛片| 精品久久久久久,| 香蕉久久夜色| 美女大奶头视频| 久久久久九九精品影院| 精品国内亚洲2022精品成人| 神马国产精品三级电影在线观看 | 欧美中文日本在线观看视频| 91九色精品人成在线观看| 欧美性长视频在线观看| 99久久久亚洲精品蜜臀av| 国产欧美日韩精品亚洲av| 操出白浆在线播放| 韩国av一区二区三区四区| 国产在线观看jvid| 色精品久久人妻99蜜桃| 中文字幕最新亚洲高清| 悠悠久久av| 淫秽高清视频在线观看| 欧美一级毛片孕妇| 在线观看免费视频日本深夜| 亚洲无线在线观看| 欧美丝袜亚洲另类 | 成人亚洲精品av一区二区| 国产亚洲精品av在线| 免费看a级黄色片| or卡值多少钱| 人人妻人人澡人人看| 成熟少妇高潮喷水视频| 91在线观看av| 丁香欧美五月| 亚洲中文av在线| 国产成人一区二区三区免费视频网站| 国产1区2区3区精品| 成人av一区二区三区在线看| 天堂√8在线中文| 热99re8久久精品国产| 50天的宝宝边吃奶边哭怎么回事| 亚洲欧美精品综合一区二区三区| 国产精品九九99| 亚洲欧美精品综合久久99| 97人妻天天添夜夜摸| 男女做爰动态图高潮gif福利片 | 啦啦啦观看免费观看视频高清 | 这个男人来自地球电影免费观看| 亚洲欧洲精品一区二区精品久久久| 中文亚洲av片在线观看爽| 中文字幕人妻丝袜一区二区| 嫁个100分男人电影在线观看| 亚洲人成伊人成综合网2020| 香蕉久久夜色| 久久人人97超碰香蕉20202| 免费看美女性在线毛片视频| 亚洲第一电影网av| 国产欧美日韩一区二区三区在线| 日韩欧美三级三区| 精品熟女少妇八av免费久了| 久久精品国产综合久久久| 久久狼人影院| 亚洲黑人精品在线| 操美女的视频在线观看| 91精品国产国语对白视频| 亚洲全国av大片| 99国产综合亚洲精品| 好男人在线观看高清免费视频 | 国产精品久久电影中文字幕| 91在线观看av| 国产主播在线观看一区二区| 日韩大码丰满熟妇| 国产在线精品亚洲第一网站| 亚洲一区中文字幕在线| 国产又色又爽无遮挡免费看| 国产一区二区三区视频了| 亚洲成人国产一区在线观看| 日本一区二区免费在线视频| 午夜福利影视在线免费观看| 亚洲 国产 在线| 亚洲久久久国产精品| 国产区一区二久久| 最新美女视频免费是黄的| 女人高潮潮喷娇喘18禁视频| 狠狠狠狠99中文字幕| 亚洲精品av麻豆狂野| 亚洲国产毛片av蜜桃av| 午夜精品在线福利| 一边摸一边抽搐一进一出视频| 国产又色又爽无遮挡免费看| 精品熟女少妇八av免费久了| 麻豆成人av在线观看| 国产精品爽爽va在线观看网站 | 亚洲视频免费观看视频| 如日韩欧美国产精品一区二区三区| 精品久久久久久久久久免费视频| 欧美性长视频在线观看| 欧美老熟妇乱子伦牲交| 99精品久久久久人妻精品| 无限看片的www在线观看| 男人舔女人下体高潮全视频| 亚洲精华国产精华精| 人妻久久中文字幕网| 午夜日韩欧美国产| 国产精品久久久久久亚洲av鲁大| 老司机靠b影院| 99国产综合亚洲精品| 国产亚洲av嫩草精品影院| 在线国产一区二区在线| 99久久99久久久精品蜜桃| 亚洲精品在线观看二区| 黄频高清免费视频| aaaaa片日本免费| 女人爽到高潮嗷嗷叫在线视频| 免费看a级黄色片| 国产成人影院久久av| 精品国产国语对白av| 91成人精品电影| 欧美成人一区二区免费高清观看 | √禁漫天堂资源中文www| 91在线观看av| 男人舔女人下体高潮全视频| av超薄肉色丝袜交足视频| 精品国产一区二区久久| 久久精品国产综合久久久| 黑人巨大精品欧美一区二区蜜桃| 午夜福利免费观看在线| 国产精品久久电影中文字幕| 成人特级黄色片久久久久久久| 国产午夜精品久久久久久| 成人三级做爰电影| 女同久久另类99精品国产91| 亚洲视频免费观看视频| 麻豆av在线久日| 欧美日韩亚洲国产一区二区在线观看| 搡老熟女国产l中国老女人| 久久国产精品男人的天堂亚洲| cao死你这个sao货| 99国产精品免费福利视频| 这个男人来自地球电影免费观看| 在线观看日韩欧美| 精品高清国产在线一区| 女人高潮潮喷娇喘18禁视频| 精品卡一卡二卡四卡免费| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美日韩瑟瑟在线播放| 日韩精品免费视频一区二区三区| 久久精品91无色码中文字幕| 高潮久久久久久久久久久不卡| 亚洲 国产 在线| 国产精品爽爽va在线观看网站 | 制服丝袜大香蕉在线| 免费观看精品视频网站| 亚洲全国av大片| 免费人成视频x8x8入口观看| 我的亚洲天堂| 18禁观看日本| 男女之事视频高清在线观看| 日本三级黄在线观看| 女性被躁到高潮视频| 国产在线观看jvid| 国产麻豆成人av免费视频| 亚洲va日本ⅴa欧美va伊人久久| www.999成人在线观看| 欧洲精品卡2卡3卡4卡5卡区| 伊人久久大香线蕉亚洲五| 777久久人妻少妇嫩草av网站| 亚洲少妇的诱惑av| 午夜免费成人在线视频| 最好的美女福利视频网| 欧美成人一区二区免费高清观看 | 19禁男女啪啪无遮挡网站| 欧美丝袜亚洲另类 | 日韩欧美一区二区三区在线观看| 日韩高清综合在线| 在线十欧美十亚洲十日本专区| 久久久久久国产a免费观看| 我的亚洲天堂| 日本精品一区二区三区蜜桃| 国产精品久久电影中文字幕| 日本欧美视频一区| 免费在线观看亚洲国产| 亚洲全国av大片| 在线观看免费日韩欧美大片| 无限看片的www在线观看| 91精品三级在线观看| 夜夜夜夜夜久久久久| 18禁观看日本| 久久午夜亚洲精品久久| 国产一区二区三区视频了| 色播亚洲综合网| 97人妻天天添夜夜摸| 久久人妻福利社区极品人妻图片| 50天的宝宝边吃奶边哭怎么回事| 午夜福利一区二区在线看| 午夜久久久在线观看| 99国产极品粉嫩在线观看| 亚洲人成伊人成综合网2020| 丁香六月欧美| 国产高清videossex| 日本免费一区二区三区高清不卡 | 日日爽夜夜爽网站| 久久亚洲精品不卡| 精品一区二区三区四区五区乱码| 91在线观看av| 国产一区二区三区综合在线观看| 精品国产一区二区久久| 日日夜夜操网爽| 久久精品aⅴ一区二区三区四区| 在线观看日韩欧美| 变态另类成人亚洲欧美熟女 | 日韩有码中文字幕| 亚洲色图av天堂| 一区二区日韩欧美中文字幕| 一本久久中文字幕| 老熟妇乱子伦视频在线观看| 午夜福利免费观看在线| 91老司机精品| 国产精品久久久久久精品电影 | 亚洲一码二码三码区别大吗| 一区二区三区国产精品乱码| 精品乱码久久久久久99久播| 校园春色视频在线观看| 人人妻,人人澡人人爽秒播| 99香蕉大伊视频| 国语自产精品视频在线第100页| 深夜精品福利| 国产单亲对白刺激| 成人国产一区最新在线观看| 欧美乱妇无乱码| 国产视频一区二区在线看| 日本a在线网址| 麻豆一二三区av精品| 国产一卡二卡三卡精品| 老司机午夜十八禁免费视频| 老司机在亚洲福利影院| 国产精品自产拍在线观看55亚洲| 多毛熟女@视频| 91成人精品电影| 如日韩欧美国产精品一区二区三区| 少妇熟女aⅴ在线视频| 国产一区二区在线av高清观看| 亚洲男人的天堂狠狠| 亚洲国产精品999在线| 亚洲欧美激情综合另类| 久久久久久人人人人人| 禁无遮挡网站| 欧美国产精品va在线观看不卡| 黑丝袜美女国产一区| 久久青草综合色| 国产成人精品在线电影| 欧美精品啪啪一区二区三区| 成年人黄色毛片网站| av中文乱码字幕在线| 多毛熟女@视频| 国产成年人精品一区二区| 91在线观看av| 视频在线观看一区二区三区| 少妇粗大呻吟视频| 成人三级做爰电影| 免费高清视频大片| 国产精品乱码一区二三区的特点 | 午夜精品国产一区二区电影| 女人被狂操c到高潮| 久久精品国产清高在天天线| 精品卡一卡二卡四卡免费| 久久久久久大精品| 黄色毛片三级朝国网站| www.999成人在线观看| 长腿黑丝高跟| 亚洲精品国产色婷婷电影| 久久精品aⅴ一区二区三区四区| 免费观看人在逋| netflix在线观看网站| 国产一区二区激情短视频| 天堂影院成人在线观看| 国产午夜福利久久久久久| 一区二区三区精品91| 欧美日韩瑟瑟在线播放| 免费女性裸体啪啪无遮挡网站| 夜夜躁狠狠躁天天躁| 99国产精品免费福利视频| 欧美中文日本在线观看视频| 国产男靠女视频免费网站| 国产麻豆成人av免费视频| 变态另类成人亚洲欧美熟女 | 午夜免费鲁丝| 国产一区二区在线av高清观看| 国内精品久久久久精免费| 一二三四社区在线视频社区8| 色尼玛亚洲综合影院| 国产成年人精品一区二区| 日日摸夜夜添夜夜添小说| 黑丝袜美女国产一区| 日韩大尺度精品在线看网址 | 欧美黄色淫秽网站| 女人高潮潮喷娇喘18禁视频| 国产精品秋霞免费鲁丝片| 亚洲精品在线观看二区| 久久精品国产99精品国产亚洲性色 | 国产亚洲av高清不卡| 国产精品 国内视频| 免费在线观看视频国产中文字幕亚洲| 国产亚洲欧美在线一区二区| 欧美另类亚洲清纯唯美| 精品久久久久久,| 久久草成人影院| 老熟妇仑乱视频hdxx| 国产亚洲欧美98| 巨乳人妻的诱惑在线观看| av福利片在线| 亚洲av五月六月丁香网| 老汉色av国产亚洲站长工具| 最近最新中文字幕大全电影3 | 人人澡人人妻人| 国产亚洲精品第一综合不卡| 精品无人区乱码1区二区| 精品一区二区三区视频在线观看免费| 久久精品人人爽人人爽视色| 丝袜美足系列| 欧美日本中文国产一区发布| 午夜久久久久精精品| 精品久久久久久,| 可以免费在线观看a视频的电影网站| 亚洲国产精品999在线| 日韩欧美在线二视频| 亚洲片人在线观看| 国产精品一区二区在线不卡| 精品乱码久久久久久99久播| 精品久久久久久久人妻蜜臀av | 亚洲国产精品久久男人天堂| 久久精品影院6| 成人精品一区二区免费| 18禁美女被吸乳视频| 又黄又爽又免费观看的视频| 亚洲精品久久国产高清桃花| 午夜福利18| 成人亚洲精品av一区二区| 99re在线观看精品视频| 色尼玛亚洲综合影院| 久久中文字幕人妻熟女| 欧美激情久久久久久爽电影 | 校园春色视频在线观看| 黑人巨大精品欧美一区二区mp4| 夜夜爽天天搞| 亚洲专区国产一区二区| 欧美成人一区二区免费高清观看 | 亚洲一区二区三区不卡视频| 亚洲精品久久成人aⅴ小说| 亚洲一卡2卡3卡4卡5卡精品中文| 97人妻天天添夜夜摸| 色播亚洲综合网| 国产精品一区二区精品视频观看| 啪啪无遮挡十八禁网站| 久久久久久免费高清国产稀缺| 亚洲无线在线观看| 看片在线看免费视频| 欧美日韩乱码在线| av免费在线观看网站| 69精品国产乱码久久久| 此物有八面人人有两片| 97超级碰碰碰精品色视频在线观看| 神马国产精品三级电影在线观看 | 日韩精品青青久久久久久| 久久久久九九精品影院| 老汉色∧v一级毛片| 欧美色欧美亚洲另类二区 | 国产av又大| 日韩欧美国产一区二区入口| 精品日产1卡2卡| 88av欧美| 美国免费a级毛片| 男女之事视频高清在线观看| 精品少妇一区二区三区视频日本电影|