• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Deformation Characteristics of Hydrate-Bearing Sediments

    2024-03-12 11:14:18DONGLinLIYanlongZHANGYajuanHUGaoweiLIAOHualinCHENQiangandWUNengyou
    Journal of Ocean University of China 2024年1期

    DONG Lin , LI Yanlong , , ZHANG Yajuan , HU Gaowei , LIAO Hualin,CHEN Qiang , and WU Nengyou ,

    1) Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266237, China

    2) Laboratory for Marine Mineral Resources, Laoshan Laboratory, Qingdao 266237, China

    3) College of Oceanography, Hohai University, Nanjing 210098, China

    4) College of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266555, China

    Abstract The safe and efficient development of natural gas hydrate requires a deep understanding of the deformation behaviors of reservoirs. In this study, a series of triaxial shearing tests are carried out to investigate the deformation properties of hydrate-bearing sediments. Variations of volumetric and lateral strains versus hydrate saturation are analyzed comprehensively. Results indicate that the sediments with high hydrate saturation show dilative behaviors, which lead to strain-softening characteristics during shearing. The volumetric strain curves have a tendency to transform gradually from dilatation to compression with the increase in effective confining pressure. An easy prediction model is proposed to describe the relationship between volumetric and axial strains. The model coefficient β is the key dominating factor for the shape of volumetric strain curves and can be determined by the hydrate saturation and stress state.Moreover, a modified model is established for the calculation of lateral strain. The corresponding determination method is provided for the easy estimation of model coefficients for medium sand sediments containing hydrate. This study provides a theoretical and experimental reference for deformation estimation in natural gas hydrate development.

    Key words gas hydrate; deformation characteristics; volumetric strain; lateral strain; prediction model

    1 Introduction

    As an alternative energy resource, natural gas hydrate(NGH) has great potential for development due to its wide distribution, abundance, and less pollution (Chonget al.,2016; Cuiet al., 2018; Donget al., 2023a). However, the unreasonable development of NGH can also lead to crucial issues, such as landslides (Liuet al., 2020), wellbore stability (Donget al., 2022b, 2023b), sand production (Wuet al., 2021), and other problems (Yanget al., 2017; Wanet al., 2018). Therefore, the deformation behaviors of hydrate-bearing sediments (HBS) are of practical value for the estimation, prediction, and control of geological problems during NGH development.

    The deformation characteristics of HBS have been deeply studied using combined numerical modeling, experimental tests and theoretical analysis (Liuet al., 2017; Lijithet al., 2019). The deformation characteristics of sand, silt,and clay containing tetrahydrofuran hydrate were investigated and compared, and the results indicate that the deformation behaviors of sediments, including volumetric and lateral strains, are affected by the soil type, stress state, and hydrate concentration (Yunet al., 2007; Priest and Hayley,2019; Nakashimaet al., 2021; Huet al., 2023). Furthermore, the variation laws of deformation behaviors of hydrate-bearing silica sand (Miyazakiet al., 2011), Toyoura sand (Hyodoet al., 2013), and Ottawa sand (Pinkert and Grozic, 2014) were studied based on laboratory tests. The results show a slight contraction at the start of shearing,followed by dilative behaviors at the end. High dilation was observed due to the small porosity of specimens. The volumetric and lateral strains of HBS can be estimated efficiently based on constitutive models (Uchidaet al., 2012;Sánchezet al., 2017; Liuet al., 2021), numerical simulation (Zhouet al., 2018; Sunet al., 2019), and empirical models (Kulhawy, 1975; Miyazakiet al., 2012; Yanet al.,2017). The key parameters of models and determination methods are introduced to ensure the accuracy of calculations (Shaibuet al., 2021). However, these calculation models have limited applications due to the determination of model parameters and assumptions. Therefore, developing an easy and efficient way to estimate the deformation properties of HBS is necessary.

    In this study, the deformation behaviors of HBS are investigated through a series of triaxial shearing tests. The effect of hydrate saturation on volumetric and lateral strains is discussed in detail. Moreover, a prediction model is established to estimate the volumetric strain of specimens.The lateral strain is discussed based on the proposed modified model. This study is important in evaluating and predicting the deformation behaviors of reservoirs during NGH development.

    2 Experimental Methods

    2.1 Experimental Setup

    Fig.1 depicts the triaxial shearing test apparatus for HBS illustrated in our previous work (Liet al., 2018, 2021a;Donget al., 2022a). This equipment can provide high-pressure and low-temperature conditions for hydrate formation and further realize triaxial shearing. The volumetric and lateral displacements can be obtained based on test data to reflect the deformation behaviors of specimens.

    Fig.1 Triaxial shearing test apparatus for hydrate-bearing sediments.

    The specimens are prepared with 192 g quartz sand and 99.9% pure methane gas. The particle size distribution is shown in Fig.2. The sample is mainly composed of clay-free medium sand with a porosity of 40.0%.

    Fig.2 Particle size distribution of the specimens.

    2.2 Experimental Procedure

    The specimen is prepared using thein-situmethod by adding a certain volume of water into the sand for target hydrate saturation (Hyodoet al., 2013; Donget al., 2020).The pressure of methane gas is kept at 4.5 MPa (± 0.1 MPa),and the temperature is set as 1℃ (± 0.1℃) throughout the tests. The specimen preparation is considered completed after no methane gas pressure change is observed. The water in the pore of specimens is considered to be entirely consumed for hydrate formation (Liuet al., 2018). The volume of hydrate is identified from the initial volume of water (Ghiassian and Grozic, 2013; Lijithet al., 2019).The hydrate saturation can be determined through calculation (Liuet al., 2018).

    After hydrate formation, the effective confining pressure is maintained at 1 MPa, 2 MPa, and 4 MPa to reflect the effect of stress states. The specimens containing hydrate are sheared at a speed of 0.9 mm min?1. The shearing process continues before the axial strain reaches 15%. Displacement and load are recorded throughout the shearing tests.

    2.3 Calculations of Volumetric and Lateral Strains

    Volumetric strain is defined as the ratio between the change in volume and the original specimen volume, which is given as

    whereεvrepresents the volumetric strain (%);dandhare the diameter and height of the specimen, respectively (unit:mm); andVis the volume change, which equals the difference between the recorded inlet and outlet surrounding fluid (unit: mL).

    Correspondingly, the lateral strain can be calculated by Eq. (2):

    whereεlandεarepresent the lateral and axial strains, respectively (%).

    3 Experimental Results

    3.1 Volumetric Strain

    Fig.3 illustrates the relationship between the volumetric and axial strains of HBS. The positive volumetric strain indicates that the HBS is in compression, and the negative volumetric strain indicates that dilative behaviors are observed.

    Fig.3 Volumetric deformation behaviors of hydrate-bearing sediments. (a), σ3 = 1 MPa; (b), σ3 = 2 MPa; (c), σ3 = 4 MPa.

    Under low effective confining pressure (σ3= 1, 2 MPa), the high hydrate-saturated specimens show compressive behaviors at small strains and shear dilative behaviors at increasing axial strain. The deformation behaviors during shearing are transformed from shear compression to dilatation with the increase in hydrate saturation. Moreover,the axial strain corresponding to the state transformation point increases with the decrease in hydrate saturation. The hydrate-free specimens show shear compressive behaviors during the shearing tests. Compression deformation is remarkably reduced with the increase in hydrate saturation.

    The volumetric deformation shows a tendency to transform gradually from dilatation to compression with the increase in effective confining pressure. Compared with low hydrate saturation, high hydrate saturation brings in high dilatation. Owing to the inhibition effect of confining pressure on deformation, the dilatation degree decreases with the increase in effective confining pressure.

    3.2 Lateral Strain

    Fig.4 displays the lateral strain of HBS during the tests.The positive lateral strain indicates that the specimens show dilative behaviors during shearing, which is similar to previous studies (Yunet al., 2007; Miyazakiet al., 2011; Pinkert and Grozic, 2014). The maximum lateral strain shows a decreasing trend with the hydrate formation. In particular, the value decreases by about 29% with the increase in hydrate saturation from 0 to 40.0% at the effective confining pressure of 1 MPa. In addition, the confining pressure restrains the lateral expansion during deformation. The maximum lateral strain decreases with the increase in the effective confining pressure.

    Fig.4 Lateral strain of hydrate-bearing sediments. (a), σ3 = 1 MPa; (b), σ3 = 2 MPa; (c), σ3 = 4 MPa.

    3.3 Deformation Mechanism

    The test results indicate that deformation behaviors mainly depend on the hydrate saturation and stress states. Sediment particle movements and hydrate cementation damage occur during shearing, which determines the variations of microstructures and deformation characteristics of HBS.

    In general, deformation is rarely observed in the early axial loading stage and is dominantly triggered by the slight compaction of sediments (Miyazakiet al., 2011). Specimens under loading laterally expand, causing nonhomogeneous lateral expansion in the middle and later stages(Liet al., 2021b). Meanwhile, volumetric deformation shows various characteristics of dilatation and compression during shearing, as shown in Fig.5.

    Fig.5 Deformation behaviors of hydrate-bearing sediments during shearing.

    Hydrate formation enhances the cementation between sediment particles, thus increasing the movement resistance of particles and reducing the breakage of cementation bonds (Donget al., 2022a; Zhaoet al., 2022). Confining pressure can limit particle movement, especially lateral motion under loading (Donget al., 2020; Liet al., 2021a).Hydrate content and confining pressure affect the particle movement and cementation damage, altering the volumetric and lateral deformation of HBS, as depicted in Fig.6.

    Fig.6 Micro-mechanisms controlling the deformation behaviors of hydrate-bearing sediments.

    4 Strain Prediction

    4.1 Volumetric Strain Prediction

    On the basis of the above analysis of deformation behaviors, an easy and efficient prediction model is proposed to simulate the relationship between the volumetric and axial strains of HBS. The model can be expressed as follows:

    whereεvandεarepresent the volumetric and axial strain(%);βis the coefficient related to hydrate saturation and the effective confining pressure, dimensionless;Shrepresents hydrate saturation (%); andσ3is the effective confining pressure (MPa).

    Fig.7 shows the comparison between the test and calculated values ofβ.The results indicate thatβincreases with hydrate saturation and is affected by the effective confining pressure. This empirical model forβprediction can be obtained by fitting the above test data. The model error is determined through Eqs. (5) – (7). The error range ofβis 0.99% – 4.96%, and the average error is 2.72%. In general, the error satisfies the engineering requirements.

    Fig.7 Comparison of experimental and calculated value of β.

    whereemin,emax, andeaveare the minimum, maximum, and average errors, respectively (%);βexpandβcalrepresent the test and calculation values ofβ, dimensionless; andnis the number of groups, dimensionless.

    Fig.8 exhibits the effect ofβon volumetric strain curves.With the increase inβ, the degree of compression increases and that of dilatation decreases. The volumetric strain exhibits a steady trend of increasingversusaxial strain withβless than 0.9, indicating dilatant behaviors during shearing. By contrast, the volumetric strain continues to decrease whenβis greater than or equal to 0.9. Behaviors with shear contraction are observed during the triaxial shearing tests.

    Fig.8 Effect of β on volumetric strain curves.

    The predicted volumetric strain of HBS is obtained based on the above-proposed empirical model, as shown in Fig.9. Comparisons between the test and calculated results prove that this model can be used to predict the volumetric strain of NGH reservoirs with high accuracy.

    Fig.9 Prediction of volumetric strain. (a), σ3 = 4 MPa; Sh = 0 – 40.0%; (b), Sh = 40.0%, σ3 = 1, 2, 4 MPa.

    4.2 Lateral Strain Prediction

    Kulhawy (1975) assumed that the relationship between lateral and axial strains can be described by hyperbolic function. Yanet al. (2017) then used this hyperbolic model to simulate the lateral deformation of HBS while considering the effect of hydrate formation. In general, the lateral strain of HBS can be calculated through Eq. (8).

    wherehandDrepresent the model parameters related to hydrate saturation and effective confining pressure, respectively.

    Furthermore, Eq. (8) can be converted into Eq. (9), showing that the valueεa/εlis linear with axial strainεa.

    Fig.10 demonstrates the variation of model parametershandDversushydrate saturation. With the increase in hydrate formation,hincreases andDdecreases. A high effective confining pressure increasesDand decreasesh.handDshow significant correlations with hydrate content and confining pressure and can be obtained through data fitting,as shown in Eqs. (10) and (11).

    Fig.10 Prediction of model coefficient h and D. (a), parameter h; (b), parameter D.

    whereShrepresents hydrate saturation (%); andσ3represents the effective confining pressure (MPa).

    Errors in prediction results can be identified through Eqs. (5) – (7). The error range ofhis 0.11% – 4.75%, and the average error is 2.35%. The error range ofDis 0.15%– 4.93%, and the average error is 3.13%. By bringing these model parameters into Eq. (14), the lateral strain curves of HBS can be obtained efficiently, as shown in Fig.11. This modified model for lateral strain calculation has advantages such as high accuracy, good applicability, and high simplicity, providing a way to describe and estimate the deformation behaviors of reservoirs during NGH develop- ment.

    Fig.11 Prediction of lateral strain based on the modified Kulhawy’s model. (a), σ3 = 1 MPa; (b), σ3 = 2 MPa; (c), σ3 = 4 MPa.

    Poisson’s ratioνtand initial Poisson’s ratioνican be determined through Eqs. (12) and (13).

    The initial Poisson’s ratio from previous experimental data is 0.24 – 0.55 (Miyazakiet al., 2011, 2012), and the calculated initial Poisson’s ratio based on the proposed model is 0.23 – 0.56. According to the discussion above,the initial Poisson’s ratio models can be calculated efficiently using this modified model by considering the effect of hydrate saturation and stress states, as shown in Fig.12.

    Fig.12 Prediction of the initial Poisson’s ratio based on the modified model.

    5 Conclusions

    The evaluation and prediction of deformation characteristics are necessary precursors to the safe and efficient development of NGH. The deformation characteristics of HBS are investigated through a series of triaxial shearing tests. Volumetric and lateral strains are evaluated and estimated using the proposed prediction model. Correlations between the model coefficients and key factors are discussed in detail. The main conclusions are described as follows:

    The higher the hydrate saturation, the more evident the expansion behaviors. Volumetric deformation shows a tendency to transform gradually from dilatation to compression with an increase in effective confining pressure.

    The deformation behaviors of HBS are mainly controlled by sediment particle movements and hydrate cementation damage. Hydrate formation enhances the cementation between particles. A high confining pressure limits the particle displacements.

    Correlations between volumetric and axial strains can be characterized through the proposed prediction model, which is simple, practical, and convenient. Its coefficientβis the dominating factor for the shape of volumetric strain curves.

    The modified Kulhawy’s model can be used to predict the lateral strain of HBS with high precision. Its coefficients,handD, can be calculated based on the test data to determine the variation of lateral strain curves.

    Acknowledgements

    This research was supported by the Qingdao Natural Science Foundation (No. 23-2-1-54-zyyd-jch), the National Natural Science Foundation of China (Nos. 42076217, 41 976074), the Laoshan Laboratory (No. LSKJ202203506),and the Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University(No. KLE-TJGE-G2202).

    国产精品亚洲av一区麻豆 | 国产一区亚洲一区在线观看| 极品人妻少妇av视频| 久久久精品国产亚洲av高清涩受| 午夜福利影视在线免费观看| 欧美人与性动交α欧美精品济南到| 久久99精品国语久久久| 免费在线观看黄色视频的| 国产亚洲最大av| 一区二区三区四区激情视频| 亚洲一区中文字幕在线| 天堂俺去俺来也www色官网| 在线观看www视频免费| 天天躁夜夜躁狠狠躁躁| 日韩电影二区| 亚洲第一区二区三区不卡| 国产一区二区在线观看av| 欧美精品av麻豆av| 午夜福利影视在线免费观看| 亚洲欧美日韩另类电影网站| 高清在线视频一区二区三区| 国产av一区二区精品久久| 国产欧美亚洲国产| 老鸭窝网址在线观看| 日韩人妻精品一区2区三区| 波多野结衣一区麻豆| xxx大片免费视频| 亚洲 欧美一区二区三区| 国产免费视频播放在线视频| 激情五月婷婷亚洲| 人人妻人人澡人人看| 亚洲色图 男人天堂 中文字幕| 这个男人来自地球电影免费观看 | 黄片播放在线免费| 一级毛片电影观看| 欧美久久黑人一区二区| 日日爽夜夜爽网站| 国产1区2区3区精品| 大片免费播放器 马上看| 日韩中文字幕欧美一区二区 | www.av在线官网国产| 男女免费视频国产| 国产欧美日韩综合在线一区二区| 亚洲欧洲精品一区二区精品久久久 | 久久久久久久久久久久大奶| 日本vs欧美在线观看视频| 亚洲成国产人片在线观看| 91国产中文字幕| 亚洲精品久久午夜乱码| 免费观看性生交大片5| 日日撸夜夜添| 欧美日韩亚洲国产一区二区在线观看 | 久久久久久久久久久免费av| 99国产综合亚洲精品| 最近中文字幕2019免费版| 色94色欧美一区二区| 人妻一区二区av| 女人高潮潮喷娇喘18禁视频| 国产日韩欧美视频二区| 亚洲三区欧美一区| 国产深夜福利视频在线观看| 青春草国产在线视频| 久久99一区二区三区| 天天操日日干夜夜撸| 国产成人精品在线电影| 久久久精品94久久精品| 国产一区二区三区综合在线观看| 精品一品国产午夜福利视频| 男女无遮挡免费网站观看| av国产久精品久网站免费入址| 精品人妻在线不人妻| 亚洲图色成人| 国产精品久久久久久久久免| 亚洲av成人不卡在线观看播放网 | 美女大奶头黄色视频| av网站免费在线观看视频| 99久久精品国产亚洲精品| 久久精品久久精品一区二区三区| 激情视频va一区二区三区| h视频一区二区三区| 岛国毛片在线播放| 欧美精品一区二区免费开放| 操美女的视频在线观看| 毛片一级片免费看久久久久| 麻豆精品久久久久久蜜桃| 精品视频人人做人人爽| 国产女主播在线喷水免费视频网站| av福利片在线| 搡老乐熟女国产| 一级毛片我不卡| 亚洲美女搞黄在线观看| 老汉色av国产亚洲站长工具| bbb黄色大片| 丁香六月欧美| 天天躁夜夜躁狠狠躁躁| 午夜福利免费观看在线| 亚洲欧美成人综合另类久久久| 9色porny在线观看| 丝袜脚勾引网站| 中文字幕制服av| 岛国毛片在线播放| 一级毛片 在线播放| 丝袜美足系列| 一级爰片在线观看| 永久免费av网站大全| 亚洲国产欧美在线一区| netflix在线观看网站| 久久精品国产a三级三级三级| 亚洲人成77777在线视频| 国产精品无大码| 2018国产大陆天天弄谢| 777久久人妻少妇嫩草av网站| 男人添女人高潮全过程视频| 电影成人av| 日韩中文字幕视频在线看片| 亚洲欧美一区二区三区国产| 99re6热这里在线精品视频| 亚洲色图 男人天堂 中文字幕| 中文字幕最新亚洲高清| 欧美亚洲日本最大视频资源| 亚洲国产精品999| 一区二区三区精品91| 一本—道久久a久久精品蜜桃钙片| 日本av免费视频播放| 亚洲 欧美一区二区三区| 人人妻人人添人人爽欧美一区卜| 久久韩国三级中文字幕| 国产在视频线精品| 国产黄频视频在线观看| 中文字幕色久视频| 国产精品久久久久久精品电影小说| 日日啪夜夜爽| 制服丝袜香蕉在线| 日本猛色少妇xxxxx猛交久久| 日日摸夜夜添夜夜爱| av女优亚洲男人天堂| 操美女的视频在线观看| 老司机亚洲免费影院| 精品国产超薄肉色丝袜足j| 亚洲国产精品国产精品| 欧美黑人欧美精品刺激| 欧美日韩一区二区视频在线观看视频在线| 大话2 男鬼变身卡| 99国产精品免费福利视频| 99国产精品免费福利视频| 交换朋友夫妻互换小说| 免费观看a级毛片全部| 国产激情久久老熟女| 欧美久久黑人一区二区| 亚洲av综合色区一区| 男女床上黄色一级片免费看| 日日撸夜夜添| 久热爱精品视频在线9| 99re6热这里在线精品视频| 午夜老司机福利片| 免费黄色在线免费观看| 人妻一区二区av| 男人操女人黄网站| 国产免费一区二区三区四区乱码| 一个人免费看片子| 免费观看av网站的网址| 成人漫画全彩无遮挡| 亚洲欧美一区二区三区国产| 亚洲精品美女久久久久99蜜臀 | 在线观看免费日韩欧美大片| 亚洲色图综合在线观看| 女人高潮潮喷娇喘18禁视频| 麻豆av在线久日| www.熟女人妻精品国产| 亚洲专区中文字幕在线 | 国产亚洲午夜精品一区二区久久| 久久狼人影院| av在线老鸭窝| 久久婷婷青草| 成人亚洲欧美一区二区av| 黄片无遮挡物在线观看| 日本猛色少妇xxxxx猛交久久| 99久久99久久久精品蜜桃| 国产精品一区二区精品视频观看| 国产欧美日韩一区二区三区在线| 99九九在线精品视频| 国产激情久久老熟女| 亚洲自偷自拍图片 自拍| 国产精品熟女久久久久浪| 日日爽夜夜爽网站| 婷婷色综合www| 黑人巨大精品欧美一区二区蜜桃| 下体分泌物呈黄色| 观看美女的网站| 欧美日韩精品网址| 日本欧美国产在线视频| 老司机在亚洲福利影院| 黄色毛片三级朝国网站| 巨乳人妻的诱惑在线观看| 老汉色av国产亚洲站长工具| 婷婷色麻豆天堂久久| 一级片'在线观看视频| 国语对白做爰xxxⅹ性视频网站| 女的被弄到高潮叫床怎么办| 美国免费a级毛片| 最近手机中文字幕大全| 久久精品亚洲熟妇少妇任你| 久久久久久久大尺度免费视频| 精品国产一区二区三区四区第35| 欧美日韩亚洲综合一区二区三区_| 久久久精品国产亚洲av高清涩受| 99久久综合免费| 黄色 视频免费看| 欧美老熟妇乱子伦牲交| 1024视频免费在线观看| 777米奇影视久久| 少妇猛男粗大的猛烈进出视频| 亚洲精品第二区| 午夜福利一区二区在线看| 高清黄色对白视频在线免费看| 各种免费的搞黄视频| 国产1区2区3区精品| 韩国高清视频一区二区三区| 搡老岳熟女国产| 国产成人精品福利久久| 一区二区三区精品91| 成人漫画全彩无遮挡| 秋霞在线观看毛片| 欧美变态另类bdsm刘玥| 一级片免费观看大全| 极品人妻少妇av视频| 丰满少妇做爰视频| 亚洲av成人不卡在线观看播放网 | 韩国av在线不卡| 亚洲熟女毛片儿| 日韩 欧美 亚洲 中文字幕| 美女脱内裤让男人舔精品视频| 如日韩欧美国产精品一区二区三区| 成人国语在线视频| 久久久久网色| 岛国毛片在线播放| 成人国产麻豆网| 午夜影院在线不卡| 国产精品免费视频内射| 国产精品久久久av美女十八| 免费黄色在线免费观看| 男女午夜视频在线观看| 日本黄色日本黄色录像| 国产极品粉嫩免费观看在线| 国产在视频线精品| 久久毛片免费看一区二区三区| 91国产中文字幕| 国产av国产精品国产| 丝袜喷水一区| 又大又爽又粗| 日日爽夜夜爽网站| 伊人久久国产一区二区| 精品免费久久久久久久清纯 | 男女边摸边吃奶| 国产一区二区在线观看av| 99九九在线精品视频| 国产野战对白在线观看| 国产福利在线免费观看视频| 精品国产乱码久久久久久小说| 亚洲成人手机| 亚洲成人免费av在线播放| 亚洲国产日韩一区二区| 国产一区二区在线观看av| 欧美 亚洲 国产 日韩一| 国产野战对白在线观看| 国产免费现黄频在线看| 精品午夜福利在线看| 97人妻天天添夜夜摸| 亚洲人成网站在线观看播放| 最近最新中文字幕大全免费视频 | 日日撸夜夜添| 婷婷色综合www| 久久久精品免费免费高清| 满18在线观看网站| 老熟女久久久| 亚洲精品一区蜜桃| 99国产综合亚洲精品| 性少妇av在线| 国产成人免费无遮挡视频| 国产爽快片一区二区三区| 成人亚洲精品一区在线观看| 亚洲人成电影观看| 日本午夜av视频| 免费观看性生交大片5| 国产精品国产三级国产专区5o| 亚洲视频免费观看视频| 亚洲天堂av无毛| 女人爽到高潮嗷嗷叫在线视频| 天天影视国产精品| 久久人妻熟女aⅴ| 又粗又硬又长又爽又黄的视频| 亚洲欧美日韩另类电影网站| 国产男女超爽视频在线观看| 色婷婷av一区二区三区视频| 丝袜脚勾引网站| 九草在线视频观看| 日韩大片免费观看网站| 天天躁日日躁夜夜躁夜夜| 少妇人妻精品综合一区二区| 欧美黑人欧美精品刺激| 欧美日韩一级在线毛片| 国产精品嫩草影院av在线观看| 乱人伦中国视频| 老司机在亚洲福利影院| 国产xxxxx性猛交| 日韩熟女老妇一区二区性免费视频| 国产免费福利视频在线观看| 一本色道久久久久久精品综合| 久久久久国产精品人妻一区二区| 欧美日韩视频高清一区二区三区二| 日日爽夜夜爽网站| 免费黄网站久久成人精品| 人体艺术视频欧美日本| 爱豆传媒免费全集在线观看| 久久久久国产精品人妻一区二区| 深夜精品福利| 亚洲色图 男人天堂 中文字幕| 精品少妇久久久久久888优播| 婷婷成人精品国产| 久久狼人影院| 亚洲av国产av综合av卡| 午夜免费鲁丝| 久久人人97超碰香蕉20202| 免费女性裸体啪啪无遮挡网站| www.熟女人妻精品国产| 久久精品久久久久久久性| 国产伦人伦偷精品视频| 99九九在线精品视频| 国产在线免费精品| 久久青草综合色| 热99久久久久精品小说推荐| 久久久精品94久久精品| 欧美97在线视频| 成人国语在线视频| av在线老鸭窝| 亚洲综合色网址| 亚洲精品国产av蜜桃| 母亲3免费完整高清在线观看| 中文字幕av电影在线播放| 国产不卡av网站在线观看| 一边亲一边摸免费视频| 国产成人系列免费观看| av.在线天堂| 亚洲国产精品一区三区| 哪个播放器可以免费观看大片| 夫妻性生交免费视频一级片| 成人黄色视频免费在线看| 日本爱情动作片www.在线观看| 韩国精品一区二区三区| 亚洲精品aⅴ在线观看| 我的亚洲天堂| 搡老岳熟女国产| 国产欧美日韩综合在线一区二区| 热99国产精品久久久久久7| 久久鲁丝午夜福利片| 中文字幕色久视频| 精品人妻一区二区三区麻豆| av福利片在线| 建设人人有责人人尽责人人享有的| 免费在线观看完整版高清| 国产人伦9x9x在线观看| avwww免费| 日本猛色少妇xxxxx猛交久久| 国产又爽黄色视频| 一边亲一边摸免费视频| 久久久欧美国产精品| 国产视频首页在线观看| 国产又色又爽无遮挡免| 久久热在线av| 黄色视频不卡| 中文字幕av电影在线播放| www.av在线官网国产| 国产免费视频播放在线视频| 精品国产一区二区三区久久久樱花| 欧美乱码精品一区二区三区| 亚洲七黄色美女视频| 久久久久网色| 这个男人来自地球电影免费观看 | 午夜福利在线免费观看网站| 久久午夜综合久久蜜桃| a级片在线免费高清观看视频| 久久ye,这里只有精品| 亚洲成人国产一区在线观看 | 国产亚洲一区二区精品| 别揉我奶头~嗯~啊~动态视频 | 亚洲图色成人| 国产精品一二三区在线看| 亚洲av欧美aⅴ国产| 毛片一级片免费看久久久久| www.av在线官网国产| 久久久久人妻精品一区果冻| 日日啪夜夜爽| 日本色播在线视频| 欧美日韩视频高清一区二区三区二| 制服人妻中文乱码| 亚洲av综合色区一区| 丝袜人妻中文字幕| 水蜜桃什么品种好| 中文字幕人妻丝袜制服| 精品一区二区三区av网在线观看 | 亚洲国产毛片av蜜桃av| 丝袜人妻中文字幕| 美女福利国产在线| 国产精品久久久人人做人人爽| 亚洲国产av影院在线观看| 日韩一区二区三区影片| 欧美最新免费一区二区三区| 日韩成人av中文字幕在线观看| 国产日韩欧美亚洲二区| 中文欧美无线码| 人妻人人澡人人爽人人| 纵有疾风起免费观看全集完整版| 国产成人av激情在线播放| 日韩一区二区视频免费看| xxx大片免费视频| 亚洲少妇的诱惑av| 欧美日韩视频精品一区| 亚洲国产精品成人久久小说| 国产高清不卡午夜福利| 欧美久久黑人一区二区| 亚洲国产看品久久| 亚洲国产精品一区二区三区在线| 国产高清国产精品国产三级| 韩国高清视频一区二区三区| 亚洲欧美清纯卡通| 亚洲国产精品成人久久小说| 色94色欧美一区二区| 黑人欧美特级aaaaaa片| 极品少妇高潮喷水抽搐| 1024视频免费在线观看| 丁香六月欧美| 国产精品香港三级国产av潘金莲 | 高清黄色对白视频在线免费看| 最近中文字幕高清免费大全6| 日韩精品免费视频一区二区三区| 国产成人91sexporn| 国产一级毛片在线| 日韩一本色道免费dvd| 久久精品亚洲熟妇少妇任你| 日韩av不卡免费在线播放| 国产精品免费视频内射| 午夜av观看不卡| 熟妇人妻不卡中文字幕| 一本—道久久a久久精品蜜桃钙片| av在线老鸭窝| 一级毛片电影观看| 一本一本久久a久久精品综合妖精| 欧美中文综合在线视频| 久久亚洲国产成人精品v| 亚洲国产精品一区三区| 国产乱人偷精品视频| 视频区图区小说| 亚洲国产精品国产精品| 大片电影免费在线观看免费| 考比视频在线观看| 高清不卡的av网站| 国产精品一区二区在线观看99| 夜夜骑夜夜射夜夜干| 男女下面插进去视频免费观看| 国产日韩欧美视频二区| 日本午夜av视频| 男女午夜视频在线观看| 色综合欧美亚洲国产小说| 欧美老熟妇乱子伦牲交| 嫩草影院入口| 亚洲av欧美aⅴ国产| 妹子高潮喷水视频| 色吧在线观看| kizo精华| 丁香六月欧美| 成人毛片60女人毛片免费| 建设人人有责人人尽责人人享有的| 久久精品久久久久久噜噜老黄| 天天躁狠狠躁夜夜躁狠狠躁| 日本猛色少妇xxxxx猛交久久| 亚洲久久久国产精品| 国产1区2区3区精品| 欧美xxⅹ黑人| 免费看av在线观看网站| 国产国语露脸激情在线看| 国产亚洲精品第一综合不卡| 亚洲精品国产色婷婷电影| 在线精品无人区一区二区三| 亚洲精品国产av成人精品| 男女下面插进去视频免费观看| 久久精品久久久久久久性| 国产一区二区在线观看av| 久久婷婷青草| 日日爽夜夜爽网站| 午夜福利网站1000一区二区三区| 欧美亚洲日本最大视频资源| 一本色道久久久久久精品综合| 美女中出高潮动态图| 美女扒开内裤让男人捅视频| 欧美黑人精品巨大| 少妇人妻 视频| 999精品在线视频| 国产女主播在线喷水免费视频网站| av不卡在线播放| 免费观看人在逋| 国产在视频线精品| 精品国产乱码久久久久久男人| 人妻人人澡人人爽人人| 国产有黄有色有爽视频| 婷婷色综合www| 肉色欧美久久久久久久蜜桃| 精品少妇一区二区三区视频日本电影 | 中文字幕另类日韩欧美亚洲嫩草| 麻豆精品久久久久久蜜桃| 亚洲国产av影院在线观看| 精品人妻在线不人妻| 国产日韩一区二区三区精品不卡| 高清视频免费观看一区二区| 精品国产乱码久久久久久小说| 国产男女内射视频| 999久久久国产精品视频| 香蕉丝袜av| 亚洲 欧美一区二区三区| 性高湖久久久久久久久免费观看| 嫩草影院入口| 亚洲成人av在线免费| 好男人视频免费观看在线| 不卡视频在线观看欧美| 亚洲国产欧美网| 丝袜美腿诱惑在线| 国产成人a∨麻豆精品| 99re6热这里在线精品视频| 精品第一国产精品| 亚洲男人天堂网一区| 亚洲欧洲日产国产| 日日爽夜夜爽网站| 巨乳人妻的诱惑在线观看| 在线观看三级黄色| www.自偷自拍.com| 99热网站在线观看| 婷婷色av中文字幕| 国产精品一国产av| 国产精品久久久久久精品古装| 国产片特级美女逼逼视频| 久久久精品区二区三区| av.在线天堂| a级毛片黄视频| 久久av网站| 国产一区二区 视频在线| 三上悠亚av全集在线观看| 亚洲伊人久久精品综合| 韩国精品一区二区三区| 亚洲精品,欧美精品| 国产精品久久久久久精品古装| 欧美xxⅹ黑人| 免费日韩欧美在线观看| 亚洲国产精品一区二区三区在线| 热99国产精品久久久久久7| 国产精品久久久久久人妻精品电影 | 国产日韩欧美亚洲二区| 少妇的丰满在线观看| 精品国产超薄肉色丝袜足j| 国产麻豆69| 免费在线观看视频国产中文字幕亚洲 | 中文天堂在线官网| 亚洲精品第二区| 飞空精品影院首页| 日韩av在线免费看完整版不卡| 久久精品国产综合久久久| 90打野战视频偷拍视频| bbb黄色大片| 欧美日韩精品网址| 国产黄色免费在线视频| 色播在线永久视频| 午夜福利免费观看在线| 一边摸一边抽搐一进一出视频| 中文天堂在线官网| 韩国高清视频一区二区三区| 欧美日韩福利视频一区二区| 人妻人人澡人人爽人人| 夫妻性生交免费视频一级片| 色婷婷久久久亚洲欧美| 亚洲av欧美aⅴ国产| 亚洲综合精品二区| 欧美最新免费一区二区三区| av片东京热男人的天堂| 天天躁狠狠躁夜夜躁狠狠躁| 精品午夜福利在线看| 亚洲欧美色中文字幕在线| 黑人猛操日本美女一级片| 国产又爽黄色视频| 国产亚洲午夜精品一区二区久久| 精品国产超薄肉色丝袜足j| 久久久精品国产亚洲av高清涩受| 国产野战对白在线观看| 免费在线观看黄色视频的| 久久久国产欧美日韩av| 91aial.com中文字幕在线观看| 黄网站色视频无遮挡免费观看| 久久天躁狠狠躁夜夜2o2o | 美女主播在线视频| 乱人伦中国视频| 日韩中文字幕视频在线看片| 国产又爽黄色视频| 国产亚洲最大av| 老汉色av国产亚洲站长工具| 中文字幕高清在线视频| 午夜福利一区二区在线看| 人人妻人人添人人爽欧美一区卜| 国产成人一区二区在线| 成人三级做爰电影| 晚上一个人看的免费电影| 69精品国产乱码久久久| 啦啦啦啦在线视频资源| 国产精品秋霞免费鲁丝片| 久久久久久免费高清国产稀缺| 波多野结衣一区麻豆| 在线观看www视频免费| 亚洲国产av新网站| 亚洲四区av|