• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Slowing down of the summer Southern Hemisphere Annular Mode trend against the background of ozone recovery

    2024-03-04 07:25:08FeiZheng

    Fei Zheng a , b , ?

    a School of Atmospheric Sciences, Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Sun Yat-sen University, Zhuhai, China

    b Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China

    Keywords:

    ABSTRACT Observations show significant trends in Southern Hemisphere extratropical climate in the late 20th century,including a strong positive trend in the austral summer Southern Hemisphere Annular Mode (SAM) accompanied by warming of the Antarctic Peninsula and melting sea ice in the Bellingshausen Sea.Statistical analysis and model simulations have shown that these trends were driven mainly by Antarctic stratospheric ozone depletion.Here,results show that the widely reported summer SAM trend has flattened since around the year 2001 against the background of the ozone recovery, supporting results from previous model simulations that predicted a slowing down of the well-documented positive summer SAM trend.Four SAM indices based on different definitions from different datasets show consistency in this slowdown.Furthermore, changes in surface air temperature (SAT) in the Antarctic and sea-ice concentration (SIC) around the Antarctic are detected.Different from the SAM, in which the signs of trends only slow down but do not reverse after the ozone recovery, the signs of trends in Antarctic SAT and SIC have reversed.The warming of the Antarctic Peninsula has turned into a cooling trend, and the melting of sea ice in the Bellingshausen Sea has turned into an increasing trend.Additional diagnostics studies with observational and model data could go a long way towards enhancing our understanding of changes in Southern Hemisphere surface climate against the background of ozone recovery.

    1.Introduction

    The dominant mode of atmospheric circulation in the Southern Hemisphere extratropics is well-known as the Southern Hemisphere Annular Mode (SAM), otherwise known as the Antarctic Oscillation,which is an intrinsic atmospheric mode and the dynamics involve eddy–zonal mean flow interactions ( Lorenz and Hartmann, 2001 ; Zhang et al.,2012 ).A positive phase of the SAM reflects low-pressure anomalies over high latitudes and high-pressure anomalies over the middle latitudes.The increasing pressure gradient in the positive SAM phase causes poleward movement of the westerly jet, and vice versa ( Gong and Wang, 1998 ; Thompson and Wallace, 2000 ; Li and Wang, 2003 ).The SAM impacts many aspects of Southern Hemisphere climate, including Antarctic surface temperatures, extratropical precipitation, and sea ice( Li and McGregor, 2017 ; Fogt et al., 2022 ).Evidence also shows that tropical climate and even Northern Hemisphere climate are related with the SAM ( Wang and Fan, 2005 ; Gong et al., 2009 ; Zheng et al., 2015 ;Dou and Wu, 2018 ).

    The SAM experienced profound changes in the late 20th century( Thompson et al., 2011 ; Fogt and Marshall, 2020 ).A positive trend was observed in the SAM, which can be mainly attributed to Antarctic stratospheric ozone depletion, with the increasing CO2also playing a role( Gillett and Thompson, 2003 ; Arblaster and Meehl, 2006 ; Polvani et al.,2011a ).The responses of extratropical circulation to increasing CO2exhibit a similar pattern as those to Antarctic ozone depletion, including a strengthening of the polar vortex and a poleward shift of the polar jet, i.e., a positive SAM, but the positive SAM trend is mainly caused by ozone depletion ( Kushner et al., 2004 ; Arblaster and Meehl, 2006 ).Antarctic ozone depletion cools stratospheric air temperatures, resulting in stronger stratospheric westerly winds near 60°S.The anomalies in the stratosphere then transport downwards to the troposphere and lead to a positive SAM phase.The strongest ozone depletion occurs in austral spring, and thus the SAM trend also exhibits clear seasonality,with the strongest positive trend occurring in austral summer, lagging stratospheric ozone depletion by one season ( Thompson et al., 2011 ;Previdi and Polvani, 2014 ; Fogt and Marshall, 2020 ).

    Through the 21st century, however, Antarctic stratospheric ozone is expected to recover thanks to the Montreal Protocol.The emergence of this healing of the Antarctic ozone layer has been observed( Kuttippurath et al., 2013 ; Solomon et al., 2016 ).Model simulations show that ozone recovery is likely to lead to a negative summer SAM( Son et al., 2008 ; Polvani et al., 2011b ), while increasing CO2is likely to result in a positive summer SAM, counteracting the effect of ozone recovery ( Arblaster et al., 2011 ; Polvani et al., 2011b ; McLandress et al.,2011 ).Given that ozone recovery and increasing CO2are expected to have opposing effects on the summer SAM, the well-documented positive trends are predicted by model simulations to be weakened.A negative SAM trend is also expected with the continuous recovery of Antarctic stratospheric ozone, but whether a reversing of the SAM trend will emerge, or when the opposing trend will occur, is a complex question.

    Although model studies have as mentioned predicted a weakening SAM trend against the background of ozone recovery, less attention has been paid to detecting a decrease in the SAM trend in observations due to the limited length of data.However, now that 20 years have passed since the beginning of the ozone recovery in around 2001,it is possible to compare changes in the SAM trend during the ozone depletion and recovery periods.As a matter of fact, changes in stratospheric circulation have been detected in observations: the post-2001 trends of stratospheric temperature and circulation have shown significant changes with the pre-2001 trends, and the underlying reason is attributable to Antarctic stratospheric ozone recovery ( Banerjee et al.,2020 ; Zambri et al., 2021 ).

    This paper focuses on the summer SAM, a major atmospheric circulation signal in the troposphere, and analyzes whether the weakening of the summer SAM trend has emerged in observations against the background of ozone recovery.Given that the extratropical surface climate is largely modulated by the SAM, the changes in summer Antarctic surface air temperature (SAT) and sea-ice concentration (SIC) are also investigated.Austral summer denotes December–January–February.

    2.Data and methods

    2.1.Data

    The atmospheric reanalysis data employed in this study are from the ERA5 dataset, spanning 1979–2021 at monthly time steps with a spatial resolution of 2.5°×2.5°.The variables used to examine atmospheric circulation features are sea level pressure (SLP), zonal wind and meridional wind at 10 m.To cross-validate, monthly averaged SLP data from NCEP/NCAR Reanalysis I with a spatial resolution of 2.5° × 2.5° spanning 1979–2021 are also used.The gridded SIC dataset is from HadISST,with a spatial resolution of 1.0°×1.0°.

    The SAT from the Scientific Committee on Antarctic Research(SCAR) Reference Antarctic Data for Environmental Research (READER)database is utilized.The 47 stations from the SCAR-READER project are listed in Table 1.Temporal coverages of observational records vary among stations.Only stations located south of 60°S with a percentage of valid data in both 1979–2001 and 2001–2021 that reaches 60% are adopted.There are 26 stations that meet these requirements.

    The total column ozone averaged around the polar cap for latitudes south of 60°S with a date range of 13 September to 5 October, together with the mean ozone hole size for 7 September to 13 October, from NASA ( http://ozonewatch.gsfc.nasa.gov/ ),are used to represent the Antarctic ozone.The global mean annual CO2concentration is calculated based on data from NASA( https://gml.noaa.gov/webdata/ccgg/trends/co2/co2_mm_mlo.txt ).

    2.2.Indices

    The variability of the SAM is quantified by the SAM index (SAMI).The station-based SAMI developed by Marshall (2003) was adopted,hereafter referred to as SAMI-Marshall-Stations, using records from six stations at ~65°S and six stations at ~40°S.In addition, the SAMI reported by Nan and Li (2003) was also used, defined as the difference in normalized zonal-mean SLP between 40°S and 70°S.The SLP from both ERA5 and NCEP/NCAR Reanalysis I are used to calculate the SAMI following the definition by Nan and Li (2003) , hereafter referred to as SAMI-Li-ERA5 and SAMI-Li-NCEP/NCAR, respectively.Moreover,to cross-validate, the SAMI defined by Gong and Wang (1998) wascalculated using ERA5, hereafter SAMI-Gong-ERA5, which is defined as the difference in normalized zonal-mean SLP between 40°S and 65°S.

    2.3.Statistical methods

    Both the Theil–Sen method and least-squares method are used to estimate linear trends.The Theil–Sen method is insensitive to outliers.The Mann–Kendall nonparametric test is used for testing the statistical significance of linear trends derived from the Theil–Sen method.Missing values are not allowed when calculating the Theil–Sen trend.Therefore,the least-squares method is applied to estimate linear trends when missing values exist in the time series.

    To estimate the statistical significance of changes in linear trends between two periods, the Chow test is applied, which is a statistical test used to investigate the significance of differences in regression coeffi-cients derived from different samples ( Chow, 1960 ).

    3.Results

    Fig.1.Time series of the summer SAMI (left) and its sliding trend (right; units: (10 yr)- 1 ), with sliding windows of 23 (black), 25 (red), and 27 (blue) years: (a,b) SAMI-Marshall-Stations; (c, d) SAMI-Li-NCEP/NCEP; (e, f) SAMI-Li-ERA5; (g, h) SAMI-Gong-ERA5.In (a, c, e, g), the red and blue numbers are the SAMI trends(units: (10 yr)- 1 ) in 1979–2021 and 2001–2021, respectively, estimated by the Theil–Sen method with significance levels shown in brackets; and the red and blue lines and corresponding formulae denote linear fits derived from the least-squares method, with significance levels shown in brackets.The gray lines in (a, c) are the polar total column ozone (units: DU) and ozone hole area (units: mil km2 ), and those in (e, g) are the CO2 concentration in the atmosphere (units: ppm).Solid circles in (b, d, f, h) mean significance at the 95% confidence level.

    Deepening of the Antarctic stratospheric ozone hole from 1979 to 2001 is clear in Fig.1 , with total column ozone decreasing from 301 DU in 1979 to 174 DU in 2001, a decrease of about 40% ( Fig.1(a) ), with a linear trend of - 54.90 DU/10 yr (significant at the 99% confidence level).The ozone hole area increases from 0.10 mil km2in 1979 to 25.00 mil km2in 2001 ( Fig.1(c) ), with a linear trend of 11.50 mil km2/10 yr(significant at the 99% confidence level).Ozone concentrations increase slowly over 2001–2021, with a positive linear trend of 6.08 DU/10 yr,opposing the trend apparent in the late 20th century ( Fig.1(a) ).The ozone hole area slowly decreases over 2001–2021, with a linear trend of- 1.38 mil km2/10 yr ( Fig.1(c) ).Meanwhile, the global mean annual CO2concentration keeps increasing during the whole period from 1979 to 2021 ( Fig.1(c) ), from ~340 ppm in 1979 to ~415 ppm in 2021.The rates of increase in 1979–2001 and 2001–2021 show no significant changes.

    The SAMI displays a positive trend in summer during the whole period of 1979–2021 ( Fig.1 (a, c, e, g)).The four SAMIs based on different definitions or datasets show high levels of consistency.From 1979 to 2001, during which both the sharply decreasing Antarctic ozone and increasing global mean CO2contribute to an increase in the summer SAMI, a strong positive trend can be seen in the summer SAMI.The average linear trend of the four SAMIs is 1.09/10 yr (above 98% confidence level).However, since the beginning of the 21st century, against the background of ozone recovery, the temporal evolution of SAMI has been more stable, and the magnitude of the trend is only about 50% of that during the late 20th century.For example, the linear trend of SAMIMarshall-Stations from 1979 to 2001 estimated by the Theil–Sen method is 1.07/10 yr, with the 98% confidence level, while the trend from 2001 to 2021 is only 0.59/10 yr, with the 71% confidence level.The trends in summer SAMI are stronger in the late 20th century, with many periods displaying positive trends that are significant at the 95% confidence level and have obviously weakened in the early 21st century, with the trends near to zero and insignificant ( Fig.1(b , d , f , h )).Fig.1 suggests that a model-predicted slowing down of the summer SAMI trend after the recovery of Antarctic ozone has emerged in observations.The sign of the SAMI trend slows down and flattens from about 2001, but a reversal of the SAMI trend has not occurred, i.e., a negative SAMI trend has not been detected.Given the similarity among the four SAMIs, only results based on SAMI-Marshall-Stations are shown in the following analysis.

    Fig.2.(a) Linear trend of the SLP difference between 40°S and 70°S in 1979–2001 (red; units: pa/10 yr) and 2001–2021 (blue; units: pa/10 yr).The thick lines represent significance at the 90% confidence level.The black line is the SAMI-regressed SLP difference between 40°S and 70°S.Red shading indicates the trend in 1979–2001 is stronger than that in 2001–2021, and vice versa for blue shading.(b, c) Linear trend of the zonal and meridional wind at 10 m (vectors; units:m s- 1 /10 yr) in (b) 1979–2001 and (c) 2001–2021.Shading represents the linear trend of the zonal wind (units: m s- 1 /10 yr).Horizontal and vertical hatching denotes significance at the 90% and 95% confidence level, respectively.

    The SAM is closely linked with the Southern Hemisphere extratropical surface climate.The SLP gradient between the middle and high latitudes, measured by the SLP difference between 40°S and 70°S, is directly influenced by the SAM.A positive SAM is related to a stronger SLP gradient, which is true for all longitudes ( Fig.2(a) ).The SLP gradient for all longitudes increases in the ozone depletion era ( Fig.2(a) ).Then, from the beginning of the ozone recovery in 2001, the positive trend in the SLP gradient weakens or slows down at most longitudes( Fig.2(a) ).For example, in 1979–2001, the trend in the SLP gradient at around 60°E is ~260 Pa/10 yr, while that in 2001–2021 is only~130 Pa/10 yr.Consistently, the positive trend in midlatitude westerlies is obviously weaker in 2001–2021 ( Fig.2(c) ) than that in 1979–2001( Fig.2(b) ).Fig.2 suggests that the positive trend in the SLP gradient between the middle and high latitudes and the positive trend in the midlatitude westerlies also slows down, but the signs of the trends remain the same and no opposing trends are apparent.

    Fig.3.(a, b) Linear trend of the SAT (°C/10 yr) in (a) 1979–2001 and (b) 2001–2021 derived from the least-squares method.Both the color and the circle size are used to represent the strength of the linear trend.(c) Time series of SAMI (black) and the average SAT of nine stations in the Antarctic Peninsula (red; units: °C).The red numbers are the SAT trends in 1979–2001 and 2001–2021, with confidence levels shown in brackets.(d) Sliding trend of the average SAT of nine stations in the Antarctic Peninsula, with sliding windows of 23 (black), 25 (red), and 27 years (blue).Solid circles mean significance at the 95% confidence level.(e) Linear trend of the SAT in 1979–2001 (red) and 2001–2021 (blue) for nine stations in the Antarctic Peninsula derived from the least-squares method.(f) Map of the Antarctic Peninsula showing the locations of the nine stations.

    Fig.4.(a, b) Linear trend of the SIC (shading; units: (10 yr)- 1 ) in (a) 1979–2001 and (b) 2001–2021, and (c) the difference between them (shading; units: (10 yr)- 1 ).Hatching indicates significance at the 95% confidence level.(d) The consistency in sign of the linear trends in the two periods.Red shading means the signs of trends in the two periods are opposite.

    Fig.3 shows the Antarctic SAT trend.As extensively studied, a positive phase of the SAM warms the Antarctic Peninsula, because stronger summer westerly winds reduce the blocking effect of the Peninsula and cause the formation of a f?hn wind ( Marshall et al., 2006 ; Turner et al.,2016 ).The warming in the Antarctic Peninsula from 1979 to 2001 is evident ( Fig.3(a) ).In particular, the warming rates at Marambio station(S5) and San_Martin station (S9) are ~0.6 °C/10 yr ( Fig.3(e) ).Different from SAMI and the related SLP gradient and westerlies, in which the signs of trends slow down but do not reverse after the ozone recovery,the signs of SAT trends in the Antarctic Peninsula have reversed.There is a cooling trend in the Antarctic Peninsula from 2001 to 2021 ( Fig.3(b) ).The cooling trend at Marambio station (S5) and San_Martin station (S9)is approximately - 0.3 °C/10 yr ( Fig.3(e) ).The time series of the average SAT of the nine stations on the Antarctic Peninsula is shown in Fig.3(c).The trend from 1979 to 2001 is 0.38 °C/10 yr, with the confidence level of 97%, while that from 2001 to 2021 is - 0.16 °C/10 yr.Although the cooling trend in the Antarctic from 2001 to 2021 is not significant, the signs of the SAT trends have reversed from a warming to cooling trend.Similar results were obtained from ERA5 using 2-m air temperature (not shown).The differences in SAT trends between the two periods are significant at the 95% confidence level, via the Chow test illustrated in Section 2.The reversing trend of the Antarctic Peninsula SAT is clear in Fig.3(d) , which shows the sliding trend of SAT using a shorter time length of 23, 25, and 27 years, and the negative SAT trend becomes significant at the 95% confidence level.

    Similar analysis is carried out for Antarctic SIC ( Fig.4 ).A positive SAM trend corresponds to a deepening of the Amundsen Low, a climatological low-pressure center located over the Amundsen Sea, leading to warm (cold) air advection to the Bellingshausen Sea (Ross/Amundsen Seas), and thus resulting in melting (increasing) SIC anomalies in the Bellingshausen Sea (Ross/Amundsen Seas) ( Zhang and Li, 2023 ).From 1979 to 2001, during which the SAM shows a strong positive trend,the melting sea ice in the Bellingshausen Sea and increasing sea ice in Ross/Amundsen Seas are evident in Fig.4(a).However, against the background of ozone recovery, the melting of the Bellingshausen Sea disappears and turns into a weak increasing trend, and the increasing sea ice around the Ross/Amundsen Seas changes to a decreasing trend( Fig.4(b) ).The differences in SIC trends between the two periods are shown in Fig.4(c) , and the changes in SIC between 1979 and 2001 and 2001–2021 in the Bellingshausen Sea and Ross/Amundsen Seas are significant at the 95% confidence level via the Chow test.In most regions where sea ice shows a clear response to the SAM, the signs of SIC trends have reversed ( Fig.4(d) ).

    3.Summary and discussion

    Depletion of Antarctic stratospheric ozone in the Southern Hemisphere during the late 20th century contributed to a strong positive trend in the SAM.However, Antarctic ozone has been recovering since around 2001 thanks to the implementation of the Montreal Protocol.Here, results show that the widely reported austral summer SAM trend flattened around the year 2001, supporting results from previous model simulations that predicted a weakening of the well-documented positive summer SAM trend.Four SAMIs based on different definitions from different datasets show consistency in this slowdown.

    Furthermore, considering the strong positive SAM trend in the late 20th century contributed to warming of the Antarctic Peninsula and melting (increasing) sea ice in the Bellingshausen Sea (Ross/Amundsen Seas), changes in Antarctic SAT and SIC against the background of ozone recovery can be detected.Different from SAMI and the related SLP gradient and westerlies, in which the signs of trends slow down but do not change sign after the ozone recovery, the signs of trends in Antarctic SAT and SIC have been reversed.The warming of the Antarctic Peninsula has turned into a cooling trend, and the melting (increasing) of sea ice in the Bellingshausen Sea (Ross/Amundsen Seas) has turned into an increasing (decreasing) trend.The differences in SAT and SIC trends in the Antarctic Peninsula between 1979 and 2001 and 2001–2021 are significant at the 95% confidence level via the Chow test.

    The changes in SAT and sea ice against the background of the ozone recovery seem to be stronger than those of the SAM, which may be related to the feedback due to the strong coupling among the atmosphere, ocean and ice, or the synergy with internal variability like the tropical Atlantic SST or tropical Pacific SST ( Li et al., 2014 ).Impacts of the SAM on SAT and SIC take place via regulating surface wind.Local atmosphere–sea-ice–ocean feedbacks may considerably amplify the initial response of SAT and SIC triggered by SAM-related wind forcings ( Li et al., 2023 ).For example, Goosse and Zunz (2014) proposed a positive feedback mechanism that may amplify initial SIC anomalies:when the SIC increases, the mixed-layer depth tends to decrease, and this stronger stratification resulting from the presence of sea ice leads to weakened vertical oceanic heat flux and more heat stored in the ocean,which further contributes to the maintenance of higher SIC anomalies.Besides, SIC anomalies can further amplify SAT anomalies in surrounding regions by triggering atmospheric wind anomalies, especially in austral winter ( Turner et al., 2020 ).Additional diagnostic studies with observational and model data could go a long way towards enhancing our understanding of changes in Southern Hemisphere surface climate against the background of continuous ozone recovery in the future.

    Funding

    This work was supported by the National Key Research and Development Project [grant number 2020YFA0608902 ] and the Natural Science Foundation of Guangdong Province [grant number 2023A1515010889 ].

    免费电影在线观看免费观看| 国产综合懂色| 亚洲国产精品久久男人天堂| 日日夜夜操网爽| 久久人妻av系列| 日日夜夜操网爽| 亚洲午夜精品一区,二区,三区| 欧美不卡视频在线免费观看| 一级毛片高清免费大全| 少妇的丰满在线观看| 国产精华一区二区三区| 噜噜噜噜噜久久久久久91| 成在线人永久免费视频| 免费看美女性在线毛片视频| 色综合亚洲欧美另类图片| 久久久久久九九精品二区国产| 国产精品亚洲av一区麻豆| 欧美zozozo另类| 天天添夜夜摸| 国产高清视频在线观看网站| 97超视频在线观看视频| 日韩欧美一区二区三区在线观看| 999久久久精品免费观看国产| 亚洲欧美日韩东京热| 国产亚洲精品久久久久久毛片| 国产1区2区3区精品| 啦啦啦韩国在线观看视频| 午夜成年电影在线免费观看| 国产成人精品久久二区二区91| 欧美成人性av电影在线观看| 日本a在线网址| 90打野战视频偷拍视频| 黄片小视频在线播放| 免费av不卡在线播放| 亚洲精品一卡2卡三卡4卡5卡| 亚洲色图av天堂| 一级黄色大片毛片| 悠悠久久av| 1024香蕉在线观看| 嫁个100分男人电影在线观看| 午夜成年电影在线免费观看| 精品国产超薄肉色丝袜足j| 他把我摸到了高潮在线观看| 色综合站精品国产| 69av精品久久久久久| 亚洲av熟女| 国产欧美日韩一区二区三| 五月伊人婷婷丁香| 婷婷精品国产亚洲av在线| 又紧又爽又黄一区二区| 一级黄色大片毛片| 99久久久亚洲精品蜜臀av| 日韩免费av在线播放| 久久久久亚洲av毛片大全| 欧美在线黄色| 亚洲av免费在线观看| 亚洲国产欧美人成| 成人午夜高清在线视频| 亚洲欧美日韩卡通动漫| 麻豆国产97在线/欧美| 女生性感内裤真人,穿戴方法视频| 最近最新中文字幕大全免费视频| 99riav亚洲国产免费| 美女高潮的动态| 国产综合懂色| 色老头精品视频在线观看| av在线蜜桃| 香蕉av资源在线| 老鸭窝网址在线观看| 国内精品久久久久久久电影| 国产av一区在线观看免费| 久久久久国产精品人妻aⅴ院| 欧美+亚洲+日韩+国产| 国产高清激情床上av| 天天添夜夜摸| 美女 人体艺术 gogo| 丁香六月欧美| 少妇熟女aⅴ在线视频| 国产精品九九99| 日日摸夜夜添夜夜添小说| 久久久久久久久中文| 欧美三级亚洲精品| 黄色女人牲交| 性色av乱码一区二区三区2| 久久这里只有精品19| 日韩欧美国产在线观看| 国产黄片美女视频| 亚洲国产看品久久| or卡值多少钱| 99精品久久久久人妻精品| 国产aⅴ精品一区二区三区波| 成人永久免费在线观看视频| 国产乱人视频| 久久精品影院6| 男女视频在线观看网站免费| 一边摸一边抽搐一进一小说| 久久九九热精品免费| 中亚洲国语对白在线视频| 亚洲五月天丁香| 亚洲国产精品成人综合色| 日韩高清综合在线| 两人在一起打扑克的视频| 色综合欧美亚洲国产小说| 夜夜躁狠狠躁天天躁| 日日摸夜夜添夜夜添小说| 国产av一区在线观看免费| 在线免费观看不下载黄p国产 | 国产亚洲av高清不卡| 午夜影院日韩av| 99在线人妻在线中文字幕| 国产精品 国内视频| 桃色一区二区三区在线观看| 亚洲欧美精品综合久久99| 亚洲天堂国产精品一区在线| 日日夜夜操网爽| 老司机深夜福利视频在线观看| 精品国产亚洲在线| 97人妻精品一区二区三区麻豆| 国产欧美日韩一区二区三| 噜噜噜噜噜久久久久久91| 一边摸一边抽搐一进一小说| 亚洲国产色片| 亚洲精品456在线播放app | 亚洲成av人片在线播放无| 人妻夜夜爽99麻豆av| 久久久久久大精品| 免费在线观看亚洲国产| 免费看光身美女| 最新中文字幕久久久久 | 亚洲国产日韩欧美精品在线观看 | 国产男靠女视频免费网站| 亚洲美女视频黄频| 长腿黑丝高跟| 九九热线精品视视频播放| 日韩欧美免费精品| 在线观看午夜福利视频| 亚洲欧美激情综合另类| 无限看片的www在线观看| 男人舔女人下体高潮全视频| 亚洲欧美日韩高清专用| 日韩国内少妇激情av| 草草在线视频免费看| 久久午夜亚洲精品久久| netflix在线观看网站| 巨乳人妻的诱惑在线观看| 成人无遮挡网站| 高潮久久久久久久久久久不卡| 免费在线观看影片大全网站| 国产精品女同一区二区软件 | 男女下面进入的视频免费午夜| 中国美女看黄片| 99热精品在线国产| 热99在线观看视频| 久久久色成人| 亚洲午夜精品一区,二区,三区| 97超视频在线观看视频| 欧美丝袜亚洲另类 | 亚洲精华国产精华精| 真实男女啪啪啪动态图| 久久久国产欧美日韩av| 亚洲精品中文字幕一二三四区| 精品久久久久久成人av| 午夜福利高清视频| 久久中文字幕人妻熟女| 午夜成年电影在线免费观看| 国产三级中文精品| 丝袜人妻中文字幕| 一本综合久久免费| 久久中文看片网| 国产真实乱freesex| 91九色精品人成在线观看| 国产不卡一卡二| 黄片大片在线免费观看| 一本综合久久免费| 亚洲18禁久久av| 亚洲人与动物交配视频| av天堂中文字幕网| av天堂中文字幕网| 少妇人妻一区二区三区视频| 岛国在线免费视频观看| 亚洲欧美日韩高清在线视频| 国产不卡一卡二| 真人一进一出gif抽搐免费| 国产亚洲精品av在线| 草草在线视频免费看| 99精品久久久久人妻精品| 不卡av一区二区三区| 亚洲av免费在线观看| av片东京热男人的天堂| 人妻夜夜爽99麻豆av| 91av网站免费观看| 国产精品野战在线观看| 色吧在线观看| 色av中文字幕| 最近最新免费中文字幕在线| 日韩大尺度精品在线看网址| 少妇丰满av| 久9热在线精品视频| 欧美绝顶高潮抽搐喷水| 亚洲av成人av| 欧美中文综合在线视频| 不卡一级毛片| 亚洲18禁久久av| 小说图片视频综合网站| 亚洲精品在线美女| 男女下面进入的视频免费午夜| 国产精品av久久久久免费| 狂野欧美白嫩少妇大欣赏| 天堂av国产一区二区熟女人妻| 小说图片视频综合网站| 一区福利在线观看| www.www免费av| 国产综合懂色| 日韩精品青青久久久久久| 久久亚洲真实| 韩国av一区二区三区四区| 久久婷婷人人爽人人干人人爱| 欧美日韩一级在线毛片| 中文亚洲av片在线观看爽| 舔av片在线| 久久人妻av系列| 亚洲成人精品中文字幕电影| 一进一出抽搐动态| 国产精品99久久99久久久不卡| 国产午夜精品久久久久久| 老司机福利观看| 国产爱豆传媒在线观看| 日本一二三区视频观看| h日本视频在线播放| a级毛片a级免费在线| 国产精品 欧美亚洲| 久久久久久九九精品二区国产| 国产精品久久久久久人妻精品电影| 国产精品永久免费网站| 巨乳人妻的诱惑在线观看| 国产真实乱freesex| 欧美日韩精品网址| 天天添夜夜摸| 99国产精品99久久久久| 亚洲av免费在线观看| 91麻豆av在线| 欧美+亚洲+日韩+国产| 久久久久国内视频| 亚洲欧美日韩东京热| 女生性感内裤真人,穿戴方法视频| 日本三级黄在线观看| 国产av在哪里看| 十八禁人妻一区二区| 国产午夜精品论理片| 美女高潮喷水抽搐中文字幕| www.精华液| www.自偷自拍.com| 在线观看午夜福利视频| 一个人看视频在线观看www免费 | 可以在线观看的亚洲视频| 成人18禁在线播放| 亚洲精品在线美女| 国产精品一及| 亚洲精华国产精华精| 九色国产91popny在线| 国产亚洲av高清不卡| 亚洲,欧美精品.| a在线观看视频网站| 观看免费一级毛片| 身体一侧抽搐| 亚洲18禁久久av| 成年人黄色毛片网站| 免费在线观看日本一区| 久久久久亚洲av毛片大全| 观看美女的网站| 国产精品久久电影中文字幕| 成人特级黄色片久久久久久久| a级毛片a级免费在线| 99热这里只有是精品50| 国产免费av片在线观看野外av| xxxwww97欧美| 欧美+亚洲+日韩+国产| 嫁个100分男人电影在线观看| 岛国在线观看网站| а√天堂www在线а√下载| 久久久久久久久中文| 五月玫瑰六月丁香| 久久国产精品人妻蜜桃| 久久精品国产清高在天天线| 国产精品永久免费网站| 久久精品aⅴ一区二区三区四区| 欧美丝袜亚洲另类 | 操出白浆在线播放| 一进一出抽搐gif免费好疼| 嫩草影院入口| 国产黄片美女视频| 99久久无色码亚洲精品果冻| 成人国产综合亚洲| 99国产精品一区二区蜜桃av| 欧美精品啪啪一区二区三区| 免费观看人在逋| 精品久久久久久久人妻蜜臀av| 岛国视频午夜一区免费看| www.精华液| 美女大奶头视频| 精品一区二区三区四区五区乱码| 伊人久久大香线蕉亚洲五| 一本一本综合久久| 精品不卡国产一区二区三区| 国模一区二区三区四区视频 | 午夜精品在线福利| 久久香蕉精品热| 国产成人精品久久二区二区91| 韩国av一区二区三区四区| 亚洲精品粉嫩美女一区| 日日摸夜夜添夜夜添小说| 日本精品一区二区三区蜜桃| 高清在线国产一区| 麻豆成人午夜福利视频| 国产毛片a区久久久久| 亚洲狠狠婷婷综合久久图片| 波多野结衣巨乳人妻| 岛国视频午夜一区免费看| 国产av一区在线观看免费| 亚洲国产看品久久| 亚洲avbb在线观看| 亚洲美女视频黄频| 国内久久婷婷六月综合欲色啪| 欧美在线黄色| 日韩有码中文字幕| 国产精品一区二区精品视频观看| 亚洲18禁久久av| 丝袜人妻中文字幕| 亚洲av片天天在线观看| 国产亚洲精品久久久久久毛片| 岛国视频午夜一区免费看| 两人在一起打扑克的视频| 国产伦一二天堂av在线观看| 一进一出好大好爽视频| 三级毛片av免费| 老司机在亚洲福利影院| 麻豆国产97在线/欧美| xxxwww97欧美| 国产毛片a区久久久久| 亚洲av成人一区二区三| 无遮挡黄片免费观看| 99riav亚洲国产免费| 91九色精品人成在线观看| 日本 av在线| 1024手机看黄色片| 久久精品亚洲精品国产色婷小说| 国产91精品成人一区二区三区| 亚洲精品粉嫩美女一区| 亚洲欧美精品综合久久99| 人妻夜夜爽99麻豆av| 免费看十八禁软件| 国产伦在线观看视频一区| 日韩欧美三级三区| 日韩欧美一区二区三区在线观看| 欧美日韩中文字幕国产精品一区二区三区| 国产成人aa在线观看| 不卡av一区二区三区| 欧美黑人欧美精品刺激| 久久久国产成人精品二区| 成年女人看的毛片在线观看| 精品国产乱码久久久久久男人| 国产精品一区二区免费欧美| 97人妻精品一区二区三区麻豆| 久久午夜亚洲精品久久| 1000部很黄的大片| 一进一出抽搐动态| 亚洲精品一区av在线观看| 亚洲人成伊人成综合网2020| 女人高潮潮喷娇喘18禁视频| 亚洲精品456在线播放app | 精品一区二区三区四区五区乱码| 免费看a级黄色片| 国产日本99.免费观看| 日韩欧美国产一区二区入口| 夜夜夜夜夜久久久久| 日韩欧美国产一区二区入口| 国产69精品久久久久777片 | 亚洲人成网站高清观看| 老汉色av国产亚洲站长工具| 亚洲中文日韩欧美视频| 天天添夜夜摸| 天天一区二区日本电影三级| 日本 欧美在线| 黄色日韩在线| 国产亚洲av嫩草精品影院| 国产99白浆流出| 美女cb高潮喷水在线观看 | 国内精品久久久久久久电影| 日韩成人在线观看一区二区三区| 亚洲avbb在线观看| 国产私拍福利视频在线观看| 免费在线观看日本一区| 亚洲av电影在线进入| 国产亚洲精品综合一区在线观看| 黄频高清免费视频| 国语自产精品视频在线第100页| 亚洲五月天丁香| 国产亚洲av高清不卡| 嫁个100分男人电影在线观看| 国产午夜福利久久久久久| 国产精华一区二区三区| 国内少妇人妻偷人精品xxx网站 | 国产一区二区在线观看日韩 | 日日夜夜操网爽| 久久精品综合一区二区三区| 国产精品亚洲美女久久久| 日韩欧美免费精品| 老司机在亚洲福利影院| 嫁个100分男人电影在线观看| 国产99白浆流出| 国产真实乱freesex| 伊人久久大香线蕉亚洲五| xxxwww97欧美| 午夜a级毛片| 天堂影院成人在线观看| 床上黄色一级片| 午夜日韩欧美国产| 狠狠狠狠99中文字幕| 国产精品国产高清国产av| 狠狠狠狠99中文字幕| 国产精品一区二区精品视频观看| 国产亚洲av嫩草精品影院| 一区二区三区高清视频在线| 中文字幕精品亚洲无线码一区| 亚洲精品在线观看二区| 亚洲欧美精品综合久久99| 草草在线视频免费看| 国产高清三级在线| 女生性感内裤真人,穿戴方法视频| 欧美高清成人免费视频www| av在线天堂中文字幕| 亚洲欧美日韩东京热| 久久天躁狠狠躁夜夜2o2o| 欧美三级亚洲精品| 国产成人一区二区三区免费视频网站| 成人三级黄色视频| 日韩欧美国产在线观看| 成年女人永久免费观看视频| 久久精品亚洲精品国产色婷小说| 亚洲五月天丁香| 亚洲精品在线美女| 国内精品久久久久久久电影| 国产精品香港三级国产av潘金莲| 日韩欧美国产在线观看| 久久精品综合一区二区三区| 亚洲欧美日韩东京热| 18美女黄网站色大片免费观看| 亚洲中文字幕一区二区三区有码在线看 | 最近最新免费中文字幕在线| 我的老师免费观看完整版| 三级毛片av免费| 成人三级黄色视频| 久久午夜综合久久蜜桃| 欧美日韩中文字幕国产精品一区二区三区| 老司机深夜福利视频在线观看| 亚洲国产欧美一区二区综合| 999久久久精品免费观看国产| 午夜激情欧美在线| 一a级毛片在线观看| 99久久精品国产亚洲精品| 亚洲成人久久性| 又大又爽又粗| 不卡一级毛片| 国产亚洲欧美98| 久久亚洲精品不卡| 国产又黄又爽又无遮挡在线| 欧美性猛交黑人性爽| 国产精品乱码一区二三区的特点| 成人无遮挡网站| 亚洲成人久久性| 在线国产一区二区在线| 禁无遮挡网站| 国产午夜精品论理片| 国内毛片毛片毛片毛片毛片| 国产亚洲精品av在线| 国产黄a三级三级三级人| 成人欧美大片| 亚洲精品美女久久久久99蜜臀| 伦理电影免费视频| 美女大奶头视频| 国产视频内射| 男人舔女人的私密视频| 成人av在线播放网站| 久久精品91蜜桃| 国产精华一区二区三区| 亚洲中文字幕日韩| 男插女下体视频免费在线播放| 欧美日韩综合久久久久久 | 丰满人妻一区二区三区视频av | 日本五十路高清| 欧美大码av| 久久99热这里只有精品18| 久久精品aⅴ一区二区三区四区| 校园春色视频在线观看| 99re在线观看精品视频| 久久这里只有精品19| av中文乱码字幕在线| 亚洲人成电影免费在线| 国产亚洲精品久久久久久毛片| 美女cb高潮喷水在线观看 | 色吧在线观看| 国产精品一区二区免费欧美| 午夜a级毛片| 亚洲国产精品久久男人天堂| 国产精品 欧美亚洲| 成人特级黄色片久久久久久久| 国产黄色小视频在线观看| 看黄色毛片网站| 精品免费久久久久久久清纯| 午夜福利在线观看免费完整高清在 | 好男人电影高清在线观看| 老司机福利观看| 一二三四社区在线视频社区8| 中文资源天堂在线| 俺也久久电影网| 精品人妻1区二区| 黄色丝袜av网址大全| 视频区欧美日本亚洲| 白带黄色成豆腐渣| 日韩有码中文字幕| 久久精品aⅴ一区二区三区四区| 窝窝影院91人妻| 亚洲av熟女| 12—13女人毛片做爰片一| 欧美一级毛片孕妇| 亚洲av成人av| 亚洲国产精品合色在线| 别揉我奶头~嗯~啊~动态视频| 五月伊人婷婷丁香| 欧美最黄视频在线播放免费| 99国产精品一区二区蜜桃av| 日韩免费av在线播放| 熟女少妇亚洲综合色aaa.| 19禁男女啪啪无遮挡网站| 国产精品一区二区三区四区免费观看 | 两性夫妻黄色片| 日韩成人在线观看一区二区三区| 亚洲在线自拍视频| 亚洲七黄色美女视频| 999久久久精品免费观看国产| 国产单亲对白刺激| 国产成年人精品一区二区| 亚洲自偷自拍图片 自拍| 欧美xxxx黑人xx丫x性爽| 国产精品久久久久久亚洲av鲁大| av黄色大香蕉| 国内毛片毛片毛片毛片毛片| 国产极品精品免费视频能看的| 国产单亲对白刺激| АⅤ资源中文在线天堂| 真人做人爱边吃奶动态| 这个男人来自地球电影免费观看| 天堂网av新在线| 久久中文字幕人妻熟女| 在线观看66精品国产| 黄色片一级片一级黄色片| 久久久成人免费电影| 看片在线看免费视频| 欧美在线一区亚洲| 日韩免费av在线播放| 成人18禁在线播放| 叶爱在线成人免费视频播放| 国产99白浆流出| 成人三级做爰电影| 欧美性猛交黑人性爽| 国产亚洲av高清不卡| 国产精品亚洲av一区麻豆| 波多野结衣高清作品| 婷婷亚洲欧美| x7x7x7水蜜桃| 亚洲精品色激情综合| 日韩精品中文字幕看吧| 国产精品美女特级片免费视频播放器 | 免费在线观看成人毛片| 精品乱码久久久久久99久播| 老司机深夜福利视频在线观看| 99在线视频只有这里精品首页| 亚洲片人在线观看| 91在线观看av| 亚洲五月天丁香| 免费在线观看影片大全网站| 国产成人aa在线观看| 亚洲成人精品中文字幕电影| 99热这里只有精品一区 | 亚洲av成人精品一区久久| 两个人视频免费观看高清| 亚洲成人久久性| 日本在线视频免费播放| 黄色视频,在线免费观看| 999久久久精品免费观看国产| 美女扒开内裤让男人捅视频| 90打野战视频偷拍视频| 成年女人看的毛片在线观看| 色av中文字幕| 久久久精品欧美日韩精品| 999久久久精品免费观看国产| 校园春色视频在线观看| 天天添夜夜摸| 麻豆久久精品国产亚洲av| 国产久久久一区二区三区| 久久中文字幕一级| 日韩欧美 国产精品| 国产久久久一区二区三区| 国产精品女同一区二区软件 | 欧美中文日本在线观看视频| 99在线人妻在线中文字幕| 一级黄色大片毛片| 精品久久蜜臀av无| 国产精品日韩av在线免费观看| 一级黄色大片毛片| 精品久久蜜臀av无| 90打野战视频偷拍视频| 不卡一级毛片| 国内久久婷婷六月综合欲色啪| 日本免费a在线|