• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ascending phase of solar cycle 25 tilts the current El Ni?o–Southern oscillation transition

    2024-03-04 07:25:12WenjuHuoZiniuXioLingZhoFeiLiu

    Wenju n Huo , , , Ziniu Xio , Ling Zho , Fei Liu c

    a GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany

    b State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences,Beijing, China

    c School of Atmospheric Sciences, Sun Yat-Sen University, Key Laboratory of Tropical Atmosphere–Ocean System, Ministry of Education, and Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China

    Keywords:

    ABSTRACT A La Ni?a condition in the equatorial Pacific began in the early summer of 2020 and has lasted more than two and a half years (referred to as the 2020 La Ni?a hereafter).Predicting its temporal evolution had attracted a lot of attention.Considering the possible phase-locked impact of the 11-year solar cycle on the tropical Pacific variability, in this study the authors present the possible modulations by the solar cycle 25 (SC25) started from December 2019, on the future temporal evolution of the 2020 La Ni?a.Based on statistical features of historical solar cycles, the authors propose three possible scenarios of the timing of the SC25 maximum year and discuss its possible impacts on the temporal evolution of the 2020 La Ni?a in the next two years.The ongoing ascending phase of SC25 dampens the development of a super El Ni?o condition to some extent in 2023.

    1.Introduction

    El Ni?o–Southern Oscillation (ENSO), one of the most important climate phenomena in the tropical Pacific, has broad teleconnections and hence a global impact ( Taschetto et al., 2020 ).The oscillation of its two opposite extreme phases, i.e., El Ni?o (warm event) and La Ni?a (cold event), is referred to as the ENSO cycle, which has an irregular period of 3–7 years ( Wang et al., 2016 ).This natural interannual tropical Pacific variability can be internally generated by atmosphere–ocean coupling( Jin, 1997a,b ; Suarez and Schopf, 1988 ) or produced by external forcings, such as increasing greenhouse gases ( Cai et al., 2021 ), volcanic eruptions ( Khodri et al., 2017 ; Liu et al., 2022 ), and the 11-year solar cycle ( van Loon et al., 2007 ; Meehl et al., 2009 ; Huo and Xiao, 2017a ).

    In our previous work, we found significant 11-year solar cycle footprints in the central equatorial Pacific, which then maintain and extend into the eastern Pacific via air–sea interactions and oceanic dynamical heat transport processes ( Huo et al., 2021 ).The responses to the 11-year solar cycle are confined to the upper ocean layers above the main thermocline ( Wang et al., 2019 ; Huo et al., 2021 ), which can modulate the variability of tropical Pacific ocean heat content (OHC) ( Huo and Xiao, 2017b ; Huo et al., 2023 ), Pacific Walker circulation ( Xiao et al.,2016 ; Misios et al., 2019 ), and the Central Pacific El Ni?o ( Huo and Xiao, 2017b ; Lin et al., 2021 ).A phase-locked decadal covariation between tropical Pacific OHC anomalies and the 11-year solar cycle has been found in previous studies ( Huo and Xiao, 2017b ; Wang et al.,2015 ; Wang et al., 2020 ; Huo et al., 2023 ).In the solar cycle’s ascending (declining) phase, La Ni?a-like (El Ni?o-like) OHC anomalies show up ( Huo et al., 2023 ).Therefore, the 11-year solar cycle has been noted in several studies as a potential source of decadal prediction skill( Zanchettin, 2017 ; Misios et al., 2019 ; Huo et al., 2023 ).

    Due to the worldwide influence of ENSO phenomena, its skillful prediction holds considerable public interest and has appreciable impacts on the predictability of global climate anomalies ( Luo et al., 2016 ).However, predicting ENSO events effectively is a challenge because of their diversity, asymmetry, irregularity, and interactions with physical processes on other temporal and spatial scales (e.g.the Pacific Decadal Variability ( Deser et al., 2012 ; Power et al., 2021 )).Considering the phase-locked impact of the 11-year solar cycle on the tropical Pacific,the phases of the solar cycle could also modulate ENSO’s temporal behavior, especially its phase transition.Therefore, in this work, we carry out a case study of the impact of the current solar cycle, i.e., solar cycle 25 (SC25), on the ongoing La Ni?a event that began in September 2020(referred to as the 2020 La Ni?a hereafter).The 2020 La Ni?a is the first“triple-dip ”La Ni?a of the 21st century ( Jones, 2022 ) and has been gradually weakening in 2023 ( https://www.cpc.ncep.noaa.gov ; accessed 6 April 2023).Meanwhile, SC25 started in December 2019 and is currently still in its ascending phase ( https://www.sidc.be/silso/home , accessed 6 April 2023).The phase transition of SC25 could influence the current ENSO evolution to some extent.In this context, the present case study,along with a detailed discussion, may provide some hints for predicting the remaining evolution of the current ENSO state, as well as related seasonal predictions.

    2.Data and methods

    The observed monthly sunspot number (SSN) from 1850 to the present is used as an index of solar activity, which can be obtained from the World Data Center’s Sunspot Index and Long-term Solar Observations (WDC-SILSO) dataset via their website ( https://www.sidc.be/silso/datafiles ).The monthly sea surface temperature (SST) from NOAA’s ERSST.v5 dataset (1854–present;Huang et al.(2017) ) and monthly OHC from the Institute of Atmosphere Physics ocean analysis dataset (1940–present; Cheng et al.(2017) )are used to estimate changes in the ocean thermal state according to the phases of the solar cycle.Note that, because the 11-year solar cycle signals are observed in the upper ocean layers(above 300 m) ( Wang et al., 2019; Huo et al., 2021), the OHC integral from the surface to a depth of 300 m is used here.Besides, the surface zonal winds from the NCEP–NCAR Reanalysis-1 project (1948–present) are also used in this study, as provided by NOAA PSL, Boulder, Colorado, USA, available via their website at https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html.

    Following the method used in WDC-SILSO, the dates of the minimum and maximum of each solar cycle are determined by the 13-month smoothed monthly SSN (cyan line in Fig.S1(a)).We take the year of the minimum (maximum) as the beginning of the ascending (declining)phase for each solar cycle.The ascending (declining) phase ends one year before the maximum (the following minimum).As the solar cycle has a predominant period of 11 years on average, we define the phases of the 11-year solar cycle based on the mean values (blue line in Fig.S1(b)) of all the historical solar cycles since 1850, to estimate averaged climate responses to the solar cycles in the past.Therefore, on average,the ascending phase includes 4 years (i.e., indicated by A(0)–A(3)) and the declining phase includes 7 years (i.e., indicated by D(0)–D(6)).Here,the phase evolution of the averaged 11-year solar cycle just presents the gradual change in the solar irradiance strength, not the real temporal evolution.It is important to note that the length of solar cycles can vary between 9 and 13 years.The years included in the phases of individual solar cycles could be different from the averaged 11-year solar cycle.Therefore, for the case study of SC25, its ascending phase starts from the minimum year of SC25 (2020-DJF (December, January, February))and continues in the following years until the present.The phase evolution of SC25 can be identical to the real temporal evolution.

    In this study, we performed a composite analysis based on the 11-year solar cycle and estimated the 90% statistical confidence level of composites via a 1000-fold bootstrapping test with replacement( Diaconis and Efron, 1983 ).Ni?o3.4 is used as the ENSO index in this study, which was calculated based on the SST anomalies (from ERSST here) averaged in the Ni?o3.4 region (5°N–5°S, 170°–120°W).Note that,different from the ENSO events defined by the Climate Prediction Center (CPC), NOAA (i.e., a threshold of ± 0.5°C), here we take the positive(negative) seasonal mean Ni?o3.4 as an El Ni?o (La Ni?a) event to facilitate discussion.A similar result can be achieved based on the CPC Ni?o3.4 index (not shown).Considering the observational reliability of the climate data, we use the data from 1950 onwards for composite analysis.The seasonal means (i.e., DJF-mean, MAM (March, April,May)-mean, JJA (June, July, August)-mean, and SON (September, October, November)-mean) are calculated from the monthly data, and the anomaly is defined as the departure from the deseasonalized mean value of the period 1950–2014.In this study, we took the winter season (DJFmean) as the first season of the year.

    3.Results

    Fig.1 (a) shows the annual mean SST anomalies and the anomalous SST zonal gradient during the 11-year solar cycle in the past(1950–2019).Consistent with previous studies ( Huo and Xiao, 2017a ;Huo et al., 2023 ), significant SST anomalies appear in the central equatorial Pacific, resembling a La Ni?a event in the ascending phase (A(0)–A(3) in Fig.1 ) and an El Ni?o event in the declining phase (D(0)-D(6) in Fig.1 ).It is worth noting that the negative (positive) SST anomalies in the far eastern Pacific (east of 120°W) during the ascending (declining)phase can be interrupted by the SST annual variability (e.g., the positive SST anomalies in A(1) and negative SST anomalies in D(2) in Fig.1 ).The negative SST anomalies in the central equatorial Pacific reduce (increase) the westward SST zonal gradient in the eastern (western) Pacific(contours in Fig.1 (a)), leading to anomalous westerly (easterly) winds over the eastern (western and central) Pacific (contours in Fig.1 (b)).The positive SST zonal gradient anomalies as well as the easterly wind anomalies extend into the central and eastern Pacific around the solar maximum (A(3)–D(0) in Fig.1 (a, b)).Similar to the surface anomalies,La Ni?a-like OHC anomalies appear in the upper ocean layers above 300 m (color shaded contours in Fig.1(b)) in the solar cycle ascending phase, showing maximum positive (negative) anomalies around 150°E(150°W).Along with the positive OHC anomalies extending into the central equatorial Pacific around the solar maximum (D(0)–D(1) in Fig.1 ),the thermal zonal gradient in the western and central Pacific is reduced.As a result, anomalous westerly winds appear over the western and central Pacific and provide positive feedback to the El Ni?o-like SST and OHC anomalies during the solar cycle declining phase (D(1)–D(5) in Fig.1 ).

    We performed the same analysis on the current SC25 (since December 2019), as shown in Fig.2.The 2020 La Ni?a SST anomalies (color shaded contours in Fig.2 (a) first appear in 2020-JJA (summer of A(0))and sustain until the present (A(1)–A(3)).The westward SST zonal gradient anomalies increase in the western and central equatorial Pacific(contours in Fig.2 (a)), accompanied by anomalous easterly winds prevailing across almost the entire equatorial region (contours in Fig.2 (b)).As a result, the warm water volume builds up in the western Pacific by the strengthened trade winds and leads to positive OHC anomalies in the western equatorial Pacific (color shaded contours in Fig.2 (b)).These anomalies of the ocean thermal state and surface zonal wind in SC25 are consistent with the averaged anomalies during past solar cycles.Therefore, here, we anticipate the possible evolution of the 2020 La Ni?a event based on the evolution of SC25.

    The Ni?o3.4 index, as one of the most popular ENSO indexes, can capture ENSO’s temporal evolution in the simplest way.We calculated the seasonal mean Ni?o3.4 index during the 11-year solar cycle in history and during SC25, as shown in Fig.3.A La Ni?a (El Ni?o) event exists in most of the years during the solar cycle ascending (declining)phase.Except for the end year of the ascending phase (A(3)), the La Ni?a event is very weak in most of the summer (JJA) and close to a neutral state in autumn (SON).The La Ni?a event achieves its maximum in the winter of the solar maximum (DJF of D(0)) and decays in the subsequent seasons.An El Ni?o event appears in the second year of the ascending phase and maintains in the following years ( Fig.3 (a)).

    Fig.1.Ocean thermal state and surface zonal wind anomalies during the 11-year solar cycle in history (1950–2019): (a) composite annual mean SST anomalies(color shaded contours; units: °C) and SST zonal gradient anomalies (contours; units: °C/100 km; westward is positive) averaged within 10°S–10°N; (b) composite annual mean OHC (color shaded contours; units: 108 J m- 2 ) and surface zonal wind anomalies (contours; units: m s- 1 ) averaged within 10°S–10°N.The black-dotted regions are above the 90% confidence level based on bootstrapping for (a) SST anomalies and (b) OHC anomalies.The regions with white hatching are above the 90% confidence level for the SST zonal gradient.

    Fig.2.(a) Composite of seasonal mean SST anomalies (color shaded contours; units: °C) and SST zonal gradient anomalies (contours; units: °C/100 km; westward is positive) averaged within 10°S–10°N during the ongoing solar cycle 25 (from 2020-DJF).(b) As in (a) but for the OHC and zonal wind anomalies.

    According to ENSO’s evolution during the “average ”11-year solar cycle ( Fig.3 (a)), the current 2020 La Ni?a event will continue in 2023 and decay in 2024 ( Fig.3 (b)).However, the duration of the ascending phase of SC25 could be shorter (or longer) than the average value.As summarized in Table S1, the duration of the ascending phase is between 38 to 64 months and approximately 50 months on average.Based on current predictions of SC25 and the statistics of historical solar cycles,we put forward three possible scenarios of the SC25 ascending phase to discuss its possible modulation of the current ENSO evolution, i.e.,the shortest, longest, and averaged duration.A detailed discussion is presented in the next section.

    4.Discussion

    Fig.3.Seasonal mean Ni?o3.4 index during the 11-year solar cycle in (a) historical records (1950–2019) and (b) the ongoing solar cycle 25 (from 2020-DJF).

    In this study, we investigated the possible impacts of SC25 on the temporal evolution of the 2020 La Ni?a event based on a statistical analysis of the historical connections between the 11-year solar cycle and anomalies in the equatorial Pacific.On average, a La Ni?a condition exists in the solar cycle’s ascending phase and changes into an El Ni?o condition after the solar cycle phase transition into a declining phase.Although this phase-locked covariation happens on the decadal time scale, it can tilt the ENSO phase transition to some extent.For example, the negative SST anomalies in the central equatorial Pacific in the solar cycle ascending phase can dampen the appearance and development of an El Ni?o condition during this period.It is worth noting that the maximum SST response to the solar cycle forcing (about 0.5°C) is smaller than half of the internal variability, and thus we cannot expect a dominant role of the solar cycle forcing in ENSO’s evolution.However, it may have a significant impact on ENSO’s phase transition when the internal variability (or anomalies) is (are)relatively small.We carried out a case study on the 2020 La Ni?a event based on the same statistical method and summarize the influence of SC25 on the evolution of the 2020 La Ni?a under three possible scenarios.

    The current ascending phase of SC25 is expected to achieve its maximum between September 2023 and January 2025 ( Dani and Sulistiani, 2019 ; Zhu et al., 2023 ).Based on solar cycles in the past, what is now the Space Environment Prediction Center, Center for Space Science and Applied Research, Chinese Academy of Sciences ( http://www.sepc.ac.cn/SCF\_chn.php ; accessed 7 April 2023),and WDC-SILSO ( https://www.sidc.be/silso/forecasts ; accessed 7 April 2023) both predicted the maximum SSN will be achieved around February of 2024.The current forecasts of the SC25 ascending phase indicate its variation is among the historical values.Therefore, we propose the following three scenarios of the SC25 ascending phase to discuss its possible impacts on the near-future ENSO state:

    (1) With a similar duration as the historical shortest ascending phase (i.e., SC22), SC25 would reach its maximum around the summer of 2023.Under this scenario, the westward SST zonal gradient and the trade winds would continue to relax in the summer of 2023.As a result, the 2020 La Ni?a condition would decay into a neutral state in the autumn of 2023 and El Ni?o could show up in the winter of 2024.

    (2) With a similar duration as the averaged value, SC25 would reach its maximum in the spring of 2024.Under this scenario, the current prevailing trade winds would last for the rest of 2023 but with a reduced speed.The OHC in the western Pacific would reach its maximum and slowly migrate into the central equatorial Pacific in the second half of 2023.As a result, the SST in the central Pacific would increase, and an El Ni?o condition (or Central Pacific El Ni?o condition) could be expected in the summer of 2024.

    (3) With a similar duration as the longest ascending phase (i.e.,SC24), SC25 would reach its maximum in the spring of 2025.The persistence of the SC25 ascending phase in 2023 and 2024 would dampen the chance of an El Ni?o event occurring, or reduce its strength to some extent, in these two years.

    In terms of predicting the 2020 La Ni?a event, the World Meteorological Organization’s Global Producing Centres of Long-Range Forecasts predicts that there is a 90% chance for a transition to ENSO-neutral during March–May 2023, with just a small chance of about 10% that La Ni?a will continue further.A following El Ni?o developing gradually during JJA carries a chance of around 55% ( https://public.wmo.int/en/our-mandate/climate/el-ni?ola-ni?aupdate ; accessed 6 April 2023).We should point out here that the solar effect is small but not negligible compared to the large interannual variability in the tropical Pacific.Based on a spectral analysis of the detrended historical Ni?o3.4 index (figure not shown), the variance of the Ni?o3.4 SST anomaly at the decadal time scale (periodicity of 12 years)is approximately half of its maximum interannual variance, which includes both the response to external forcing and the internal variability.In addition, with the prediction of the SC25 maximum having at least a one-year uncertainty, roughly, it is impossible to predict the 2020 La Ni?a event accurately based on SC25.Nevertheless, our study shows that the ongoing ascending phase of SC25 may inhibit the emergence of a super El Ni?o this year, and the solar cycle could be a potential source for ENSO prediction skill.

    Funding

    This work is supported by the National Natural Science Foundation of China [42075040 and 42274217 ].

    Acknowledgments

    Here we are grateful to all the anonymous reviewers and all the reanalysis datasets providers.

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.aosl.2023.100397.

    美女午夜性视频免费| 亚洲精品久久国产高清桃花| 宅男免费午夜| 亚洲 欧美 日韩 在线 免费| 热99re8久久精品国产| 中文资源天堂在线| 欧美大码av| 国产精品久久电影中文字幕| 嫁个100分男人电影在线观看| 精品久久久久久久毛片微露脸| 国产成年人精品一区二区| 村上凉子中文字幕在线| 国产伦在线观看视频一区| www国产在线视频色| 国产日本99.免费观看| aaaaa片日本免费| 制服诱惑二区| 免费女性裸体啪啪无遮挡网站| 一进一出好大好爽视频| 日韩免费av在线播放| 亚洲av五月六月丁香网| 午夜免费鲁丝| 国产v大片淫在线免费观看| av福利片在线| 69av精品久久久久久| 欧美激情高清一区二区三区| 成人三级黄色视频| 好男人在线观看高清免费视频 | 国产亚洲欧美在线一区二区| 亚洲美女黄片视频| 日本成人三级电影网站| 看片在线看免费视频| 国产av一区在线观看免费| 一本一本综合久久| 欧美在线一区亚洲| 精品国产美女av久久久久小说| 亚洲成人免费电影在线观看| 成人18禁在线播放| 国产精品日韩av在线免费观看| 亚洲成人久久性| 熟妇人妻久久中文字幕3abv| 成人永久免费在线观看视频| 久久香蕉国产精品| 大型黄色视频在线免费观看| 中文资源天堂在线| 久久 成人 亚洲| 波多野结衣巨乳人妻| 日日爽夜夜爽网站| 欧美乱码精品一区二区三区| 法律面前人人平等表现在哪些方面| 在线观看免费日韩欧美大片| a级毛片a级免费在线| 午夜免费观看网址| 97人妻精品一区二区三区麻豆 | 熟女电影av网| 日日爽夜夜爽网站| 成人亚洲精品av一区二区| 亚洲国产精品成人综合色| 啪啪无遮挡十八禁网站| 欧美在线一区亚洲| 母亲3免费完整高清在线观看| 欧美在线黄色| 亚洲中文字幕一区二区三区有码在线看 | 亚洲中文字幕日韩| 色av中文字幕| 亚洲一卡2卡3卡4卡5卡精品中文| 免费人成视频x8x8入口观看| 亚洲av日韩精品久久久久久密| 国产精品,欧美在线| 亚洲精品美女久久久久99蜜臀| 亚洲久久久国产精品| 国产不卡一卡二| 999久久久国产精品视频| 老司机深夜福利视频在线观看| 国产精品一区二区免费欧美| 国产精品亚洲av一区麻豆| 后天国语完整版免费观看| 一夜夜www| 香蕉av资源在线| 日韩欧美国产一区二区入口| 国产高清视频在线播放一区| 国产亚洲av高清不卡| 色老头精品视频在线观看| 中文资源天堂在线| 我的亚洲天堂| 欧美国产日韩亚洲一区| 欧美丝袜亚洲另类 | 日韩大码丰满熟妇| 大型av网站在线播放| 18禁美女被吸乳视频| 亚洲黑人精品在线| 黄频高清免费视频| 亚洲精品美女久久av网站| 午夜福利一区二区在线看| 亚洲国产精品999在线| 精华霜和精华液先用哪个| 人人妻人人澡欧美一区二区| 亚洲国产欧美日韩在线播放| 国产亚洲精品久久久久久毛片| 一二三四在线观看免费中文在| 不卡av一区二区三区| 日本一本二区三区精品| 日韩大尺度精品在线看网址| 亚洲中文日韩欧美视频| 一级毛片女人18水好多| 非洲黑人性xxxx精品又粗又长| 午夜激情福利司机影院| 国产精品亚洲av一区麻豆| 国产亚洲欧美精品永久| 男人操女人黄网站| 日本 欧美在线| 国产伦人伦偷精品视频| 91麻豆精品激情在线观看国产| 午夜a级毛片| 精华霜和精华液先用哪个| 在线观看一区二区三区| 午夜福利欧美成人| 国产高清激情床上av| 欧美+亚洲+日韩+国产| 欧美日本视频| 久久国产精品人妻蜜桃| 国产v大片淫在线免费观看| xxxwww97欧美| 在线观看免费午夜福利视频| 在线观看免费午夜福利视频| 欧美色欧美亚洲另类二区| 一卡2卡三卡四卡精品乱码亚洲| 国产亚洲欧美98| 久久久久国产一级毛片高清牌| 真人一进一出gif抽搐免费| 在线观看免费日韩欧美大片| 一边摸一边抽搐一进一小说| 亚洲aⅴ乱码一区二区在线播放 | 黄色女人牲交| 日韩精品免费视频一区二区三区| 精品久久久久久,| 最好的美女福利视频网| 久久精品人妻少妇| 国产一区二区三区视频了| 日韩精品青青久久久久久| 午夜两性在线视频| 久久精品人妻少妇| 亚洲片人在线观看| АⅤ资源中文在线天堂| 国产精品日韩av在线免费观看| 美女高潮喷水抽搐中文字幕| 国产精品九九99| 天天添夜夜摸| 日韩大码丰满熟妇| 国产成人欧美在线观看| 91老司机精品| 亚洲 欧美一区二区三区| 怎么达到女性高潮| 欧美日韩瑟瑟在线播放| 午夜两性在线视频| 国产野战对白在线观看| 国产在线观看jvid| 亚洲国产精品sss在线观看| 亚洲自拍偷在线| 欧美黑人精品巨大| 琪琪午夜伦伦电影理论片6080| av超薄肉色丝袜交足视频| 精品无人区乱码1区二区| 一卡2卡三卡四卡精品乱码亚洲| 法律面前人人平等表现在哪些方面| 亚洲精品av麻豆狂野| 亚洲va日本ⅴa欧美va伊人久久| 少妇熟女aⅴ在线视频| 老汉色∧v一级毛片| 亚洲国产看品久久| 日韩三级视频一区二区三区| 欧美成人一区二区免费高清观看 | 成人欧美大片| 精品久久久久久久人妻蜜臀av| 一二三四在线观看免费中文在| 亚洲av成人不卡在线观看播放网| 老司机靠b影院| 国产高清视频在线播放一区| 免费看a级黄色片| 亚洲国产精品sss在线观看| 午夜福利一区二区在线看| 日本精品一区二区三区蜜桃| 国产精品九九99| 国产伦人伦偷精品视频| 青草久久国产| 亚洲av电影不卡..在线观看| 国产成人啪精品午夜网站| 国内久久婷婷六月综合欲色啪| 欧美国产日韩亚洲一区| 久久人妻av系列| 精品国内亚洲2022精品成人| 久久国产亚洲av麻豆专区| 韩国av一区二区三区四区| 欧美乱码精品一区二区三区| 国产免费男女视频| 亚洲中文字幕日韩| 国产av在哪里看| 哪里可以看免费的av片| 亚洲精品中文字幕一二三四区| 操出白浆在线播放| 国产片内射在线| 在线播放国产精品三级| 夜夜躁狠狠躁天天躁| 欧美日本视频| 不卡一级毛片| 精品国产美女av久久久久小说| 99国产综合亚洲精品| 久久亚洲精品不卡| 日韩精品免费视频一区二区三区| 色综合站精品国产| www.www免费av| aaaaa片日本免费| 性欧美人与动物交配| 久久久久精品国产欧美久久久| 国产熟女xx| 丝袜在线中文字幕| 午夜福利一区二区在线看| 欧美日韩乱码在线| 99riav亚洲国产免费| 精品一区二区三区四区五区乱码| 九色国产91popny在线| 又黄又粗又硬又大视频| 久久香蕉精品热| 午夜影院日韩av| 亚洲人成77777在线视频| 后天国语完整版免费观看| 欧美中文综合在线视频| 国产av一区在线观看免费| 国内久久婷婷六月综合欲色啪| 久久久久久久久免费视频了| 欧美激情久久久久久爽电影| 国产一区二区三区视频了| 在线观看免费日韩欧美大片| 精品午夜福利视频在线观看一区| 一级毛片高清免费大全| 日韩中文字幕欧美一区二区| 精品电影一区二区在线| 男人舔女人下体高潮全视频| 久久久水蜜桃国产精品网| 满18在线观看网站| 在线观看日韩欧美| 国产精品久久电影中文字幕| 亚洲国产欧美网| 久久久久久九九精品二区国产 | 少妇熟女aⅴ在线视频| 不卡一级毛片| 成人三级黄色视频| 亚洲男人天堂网一区| av在线天堂中文字幕| 久久精品91无色码中文字幕| 久99久视频精品免费| 国产高清videossex| 久久久久久久久中文| 亚洲国产欧美日韩在线播放| 18禁国产床啪视频网站| 麻豆av在线久日| 精品欧美一区二区三区在线| 正在播放国产对白刺激| 久久青草综合色| 中文亚洲av片在线观看爽| 丰满的人妻完整版| 国产色视频综合| 最新美女视频免费是黄的| 欧美日韩精品网址| 国内揄拍国产精品人妻在线 | 国产色视频综合| 级片在线观看| 又紧又爽又黄一区二区| 麻豆久久精品国产亚洲av| 国产蜜桃级精品一区二区三区| 一二三四社区在线视频社区8| a级毛片a级免费在线| 亚洲精品久久国产高清桃花| 国产视频内射| 成人欧美大片| 亚洲av成人不卡在线观看播放网| 成人免费观看视频高清| 国产极品粉嫩免费观看在线| 久久 成人 亚洲| 动漫黄色视频在线观看| 久久中文看片网| 亚洲国产精品成人综合色| 成人18禁在线播放| 欧美激情久久久久久爽电影| 日韩精品青青久久久久久| 久久久国产精品麻豆| 国产国语露脸激情在线看| 窝窝影院91人妻| 丝袜在线中文字幕| av在线天堂中文字幕| 久久这里只有精品19| 久久国产精品人妻蜜桃| 欧美日韩瑟瑟在线播放| 波多野结衣av一区二区av| 露出奶头的视频| 很黄的视频免费| 成人永久免费在线观看视频| 亚洲第一av免费看| 国产一卡二卡三卡精品| 国产黄色小视频在线观看| 国产真实乱freesex| 久久热在线av| 婷婷精品国产亚洲av| 美女免费视频网站| 90打野战视频偷拍视频| 一级作爱视频免费观看| 亚洲天堂国产精品一区在线| 国语自产精品视频在线第100页| av欧美777| 日韩大码丰满熟妇| 最新美女视频免费是黄的| 午夜激情av网站| 色在线成人网| 国产精品九九99| 午夜福利视频1000在线观看| 亚洲avbb在线观看| 亚洲国产日韩欧美精品在线观看 | 国产精品98久久久久久宅男小说| 国产男靠女视频免费网站| 99精品欧美一区二区三区四区| 大型av网站在线播放| 免费在线观看亚洲国产| 啦啦啦观看免费观看视频高清| 亚洲三区欧美一区| 一区福利在线观看| 免费搜索国产男女视频| 国产精品 欧美亚洲| 久久国产精品影院| 国产精品,欧美在线| 黄片大片在线免费观看| 精品欧美一区二区三区在线| 欧美乱色亚洲激情| 人人妻,人人澡人人爽秒播| 嫩草影院精品99| 人妻久久中文字幕网| 一二三四在线观看免费中文在| 国产精品一区二区三区四区久久 | 丰满人妻熟妇乱又伦精品不卡| 国产精品1区2区在线观看.| 久久精品国产清高在天天线| 日韩高清综合在线| 亚洲人成网站高清观看| 久久久久久免费高清国产稀缺| 久久久久久久久久黄片| 麻豆av在线久日| 一级毛片女人18水好多| 村上凉子中文字幕在线| 一边摸一边抽搐一进一小说| 夜夜躁狠狠躁天天躁| 亚洲精品在线美女| 91成人精品电影| 日韩欧美免费精品| xxx96com| 午夜视频精品福利| 黑丝袜美女国产一区| 欧美中文日本在线观看视频| 侵犯人妻中文字幕一二三四区| 亚洲精品美女久久av网站| 亚洲人成电影免费在线| 一级毛片高清免费大全| 人人妻,人人澡人人爽秒播| 国产高清有码在线观看视频 | 99国产综合亚洲精品| 特大巨黑吊av在线直播 | 日韩av在线大香蕉| 两个人看的免费小视频| 伊人久久大香线蕉亚洲五| 精品久久久久久久毛片微露脸| xxxwww97欧美| 欧美绝顶高潮抽搐喷水| 久久狼人影院| 大型av网站在线播放| 最近最新中文字幕大全电影3 | 香蕉av资源在线| 免费搜索国产男女视频| 欧美国产日韩亚洲一区| 欧美成人午夜精品| 岛国视频午夜一区免费看| 麻豆成人午夜福利视频| 一区二区三区国产精品乱码| 国产av在哪里看| 日日干狠狠操夜夜爽| www.熟女人妻精品国产| 妹子高潮喷水视频| 女性生殖器流出的白浆| 国内精品久久久久久久电影| 国产伦一二天堂av在线观看| 国产免费av片在线观看野外av| 国产色视频综合| 亚洲 欧美一区二区三区| 精品电影一区二区在线| 亚洲av电影在线进入| 在线看三级毛片| 国产免费男女视频| av在线播放免费不卡| 久久精品91无色码中文字幕| 中文字幕最新亚洲高清| 亚洲中文字幕一区二区三区有码在线看 | 精品久久久久久久毛片微露脸| 国产97色在线日韩免费| 国产精品乱码一区二三区的特点| av欧美777| 久久久久九九精品影院| 啦啦啦观看免费观看视频高清| 18禁观看日本| av在线天堂中文字幕| 熟女少妇亚洲综合色aaa.| 久久国产精品影院| 在线天堂中文资源库| 夜夜夜夜夜久久久久| 精品不卡国产一区二区三区| 亚洲无线在线观看| 日本在线视频免费播放| 国产一级毛片七仙女欲春2 | 成人三级做爰电影| 女同久久另类99精品国产91| 变态另类丝袜制服| 婷婷丁香在线五月| 国产成人欧美| 69av精品久久久久久| 丁香六月欧美| 国产真人三级小视频在线观看| 日韩大码丰满熟妇| 99久久99久久久精品蜜桃| 男女做爰动态图高潮gif福利片| 亚洲成人久久爱视频| av免费在线观看网站| 亚洲性夜色夜夜综合| 欧美久久黑人一区二区| 亚洲全国av大片| 90打野战视频偷拍视频| 可以免费在线观看a视频的电影网站| 老熟妇乱子伦视频在线观看| 国产欧美日韩精品亚洲av| 国产v大片淫在线免费观看| 黄色 视频免费看| 日本a在线网址| 啦啦啦韩国在线观看视频| 美女午夜性视频免费| tocl精华| 搞女人的毛片| 天堂动漫精品| 亚洲男人的天堂狠狠| 久久久久亚洲av毛片大全| 日本a在线网址| 精品第一国产精品| 人人妻人人澡欧美一区二区| 亚洲五月婷婷丁香| 一本综合久久免费| 亚洲av成人av| 美女扒开内裤让男人捅视频| 欧美一区二区精品小视频在线| 欧美激情高清一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 久久婷婷成人综合色麻豆| 国产高清有码在线观看视频 | 久久久久国内视频| 国产伦一二天堂av在线观看| 男人舔奶头视频| 久久人人精品亚洲av| 久久精品91无色码中文字幕| 国产精品野战在线观看| 精华霜和精华液先用哪个| 成年人黄色毛片网站| 精品福利观看| 成人午夜高清在线视频 | 中文字幕人妻丝袜一区二区| aaaaa片日本免费| 一级黄色大片毛片| 成人免费观看视频高清| 俺也久久电影网| 国产亚洲精品综合一区在线观看 | 2021天堂中文幕一二区在线观 | 99国产精品一区二区三区| 亚洲av美国av| 久久久国产成人精品二区| 精品国产亚洲在线| 制服丝袜大香蕉在线| 欧美久久黑人一区二区| 久久久国产欧美日韩av| 亚洲五月婷婷丁香| 国产免费男女视频| www.999成人在线观看| 欧洲精品卡2卡3卡4卡5卡区| 人人妻,人人澡人人爽秒播| 一本久久中文字幕| 一本大道久久a久久精品| 日本成人三级电影网站| 久久精品国产亚洲av香蕉五月| e午夜精品久久久久久久| 99国产极品粉嫩在线观看| 久久性视频一级片| 国产免费男女视频| 99在线人妻在线中文字幕| 午夜久久久在线观看| 精品久久久久久,| 久久精品成人免费网站| 日本熟妇午夜| 国产精品自产拍在线观看55亚洲| 成人一区二区视频在线观看| 中文字幕人妻丝袜一区二区| 一本精品99久久精品77| 美女午夜性视频免费| 国内精品久久久久久久电影| 亚洲中文字幕一区二区三区有码在线看 | 欧美日韩一级在线毛片| 国产精品99久久99久久久不卡| 免费高清在线观看日韩| 一级毛片女人18水好多| 一区二区日韩欧美中文字幕| 日本撒尿小便嘘嘘汇集6| 又紧又爽又黄一区二区| 精品国产乱码久久久久久男人| 人妻丰满熟妇av一区二区三区| 丰满的人妻完整版| 国产精品久久电影中文字幕| 亚洲国产精品sss在线观看| 夜夜夜夜夜久久久久| 成人国产一区最新在线观看| 欧美人与性动交α欧美精品济南到| 婷婷精品国产亚洲av| 90打野战视频偷拍视频| 正在播放国产对白刺激| 男女下面进入的视频免费午夜 | 国产成人av激情在线播放| 午夜福利欧美成人| 午夜精品久久久久久毛片777| 亚洲 欧美 日韩 在线 免费| 在线观看午夜福利视频| 国产精品免费视频内射| 母亲3免费完整高清在线观看| 色婷婷久久久亚洲欧美| 欧美性猛交╳xxx乱大交人| 亚洲精品av麻豆狂野| 欧美黑人欧美精品刺激| 国产精品亚洲av一区麻豆| 国产高清视频在线播放一区| 麻豆国产av国片精品| 亚洲精品中文字幕在线视频| 青草久久国产| 久久精品91蜜桃| 一本久久中文字幕| 午夜两性在线视频| 久久久久国内视频| 又黄又爽又免费观看的视频| 国产精品精品国产色婷婷| 久久 成人 亚洲| 亚洲熟妇熟女久久| 久久久久久久久免费视频了| 亚洲激情在线av| 欧美中文综合在线视频| 巨乳人妻的诱惑在线观看| av片东京热男人的天堂| 亚洲全国av大片| 在线观看免费午夜福利视频| 久久婷婷成人综合色麻豆| 青草久久国产| 亚洲三区欧美一区| 免费看十八禁软件| 亚洲色图av天堂| 日韩视频一区二区在线观看| 成人一区二区视频在线观看| 19禁男女啪啪无遮挡网站| 可以在线观看毛片的网站| 天堂动漫精品| 久久久久久久久免费视频了| 久久天堂一区二区三区四区| www.精华液| 国产又色又爽无遮挡免费看| 精品久久蜜臀av无| 午夜影院日韩av| 两人在一起打扑克的视频| 精品电影一区二区在线| 一级作爱视频免费观看| 黄色 视频免费看| 久久久国产成人免费| 亚洲国产欧美日韩在线播放| 一区二区三区精品91| 中文亚洲av片在线观看爽| 亚洲五月婷婷丁香| 精品一区二区三区视频在线观看免费| 一区二区三区精品91| 日本黄色视频三级网站网址| 久久九九热精品免费| 亚洲一区二区三区色噜噜| 久久九九热精品免费| 动漫黄色视频在线观看| 一级片免费观看大全| 欧美精品亚洲一区二区| 欧美黑人巨大hd| 熟女电影av网| 麻豆成人午夜福利视频| 午夜福利在线在线| e午夜精品久久久久久久| 国产在线观看jvid| 欧美另类亚洲清纯唯美| 草草在线视频免费看| 黄色丝袜av网址大全| 国产91精品成人一区二区三区| 一本精品99久久精品77| 国产成年人精品一区二区| 99精品在免费线老司机午夜| a级毛片a级免费在线| 亚洲专区字幕在线| 欧美zozozo另类| 女同久久另类99精品国产91| 午夜精品在线福利| 好男人电影高清在线观看| 久久这里只有精品19| 村上凉子中文字幕在线| 桃色一区二区三区在线观看| 久久久国产欧美日韩av| 中出人妻视频一区二区| av在线播放免费不卡| 欧美国产日韩亚洲一区|