• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Comparison between ozonesonde measurements and satellite retrievals over Beijing, China

    2024-03-04 07:25:10JinqingZhngYujinXunJinhunBinHolgrmlYunshuZngZhixunBiDnLiHonginChn

    JinqingZhng , , , Yujin Xun , Jinhun Bin , , , Holgr V?ml , Yunshu Zng , ,Zhixun Bi ,Dn Li ,Hongin Chn

    a Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

    b College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China

    c College of Atmospheric Sciences, Lanzhou University, Lanzhou, China

    d National Center for Atmospheric Research, Boulder, CO, USA

    e Electronic Engineering College, Chengdu University of Information Technology, Chengdu, China

    Keywords:

    ABSTRACT The authors built an electrochemical concentration cell ozonesonde and have been launching it weekly from Beijing on the North China Plain since 2013.This study is the first to use ozonesonde measurements collected over Beijing during 2013–2019 to evaluate vertical ozone profiles derived from the Atmospheric Infrared Sounder(AIRS) onboard the Aqua satellite and Microwave Limb Sounder (MLS) onboard the Aura satellite.The total column ozone calculated from the ozonesonde measurements is also compared with retrievals from AIRS and the Ozone Monitoring Instrument (OMI) onboard the Aura platform.Overall, the ozonesonde measurements and satellite retrievals show similar variability in the ozone profiles (with a relative difference mostly < 10%),albeit with a relatively large discrepancy arising at certain levels.The total column ozone derived from the three instruments shows reasonable agreement and similar annual variation.The annual average total column ozone is 351.8 ± 18.4 DU, 348.8 ± 19.5 DU, and 336.9 ± 14.2 DU for the ozonesonde, AIRS, and OMI, respectively.Further comparative analysis of ozonesonde data collected in the future from multiple sites in China will improve the understanding of their consistency with satellite retrievals over different regions in China.

    1.Introduction

    Atmospheric ozone has a significant impact on human health, atmospheric chemistry, and climate change ( Lefohn et al., 2018 ).At present,ozone concentrations are primarily observed by a ground-based monitoring network in China (e.g., Li et al., 2021 ), which provides limited insight into the upper-layer ozone variability associated with vertical atmospheric variability.Technologies that detect the vertical ozone distribution, such as electrochemical concentration cell (ECC) ozonesondes ( Komhyr, 1969 ), ground-based ozone lidars ( Xing et al., 2017 ),microwave radiometers ( Sauvageat et al., 2022 ), aircraft ( Ding et al.,2008 ), and satellite platforms ( Aumann et al., 2003 ; Waters et al., 2006 ),play an important role in understanding tropospheric ozone variability and stratospheric ozone depletion.Long time series of vertical ozone profiles extending from the ground to ~35 km in altitude have been provided by hundreds of ozonesonde stations around the world in operation since 1960.These datasets have been widely used to investigate the trends of variation in ozone and evaluate model simulations and satellite retrievals (e.g., Terao and Logan, 2007 ; Bian et al., 2007 ;Thompson et al., 2011 ).

    In China, the Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, successively developed two types of ozonesondes –namely, the Brewer-Mast type GPSO3 ozonesonde ( Wang et al.,2003 ; Xuan et al., 2004 ) and the subsequent IAP ECC ozonesonde( Zhang et al., 2014 ).They have been used since 2001 to conduct ozonesonde observations once per week in Beijing.By using the singlecell GPSO3 data collected during 2002–2005, Bian et al.(2007) assessed coincident vertical ozone profiles retrieved from the Atmospheric Infrared Sounder (AIRS), version 4, onboard the Aqua satellite, and Microwave Limb Sounder (MLS), version 1.5, onboard the Aura satellite,which indicated that both satellite datasets could reproduce the gradients and variability of ozone in the upper troposphere and lower stratosphere (largely with a difference < 10%).Due to the better detection performance of the ECC ozonesonde, this type of ozonesonde was built by the IAP starting in 2013 ( Zhang et al., 2014 ; Zheng et al., 2018 ) to replace the single-cell ozonesonde.The ECC ozonesonde measurements over Beijing have been widely used to study the vertical ozone distribution and trends of variation in ozone at different time scales and altitudinal levels (e.g., Zhang et al., 2020 , 2021 ; Tang et al., 2021 ; Hong et al.,2022 ; Liao et al., 2023 ; Zeng et al., 2023 ).In November 2021, the China Meteorological Administration employed this ozonesonde for pilot operations at five domestic stations (i.e., Beijing, Chongqing, and Nanjing in Jiangsu Province, Qingyuan in Guangdong Province, and Shaowu in Fujian Province).

    To date, Beijing station has provided a unique long-term ozonesonde dataset for mainland China, based on which the vertical distribution and trends of variation in ozone have been widely investigated at different time scales (daily, monthly, seasonal, annual, etc.) (e.g., Zhang et al.,2020 , 2021 ; Tang et al., 2021 ; Liao et al., 2023 ).Moreover, clustering techniques have also been applied to Beijing ozonesonde data to characterize the main characteristics of the variation in ozone profiles and explore the forcing mechanisms of the clustering results, such as meteorological and chemical processes, pollutant transport, and stratospheric intrusion ( Liao et al., 2023 ; Zeng et al., 2023 ).

    Given that so many studies as listed above have investigated the temporal variability of ozone by using Beijing ozonesonde data, such similar analysis is beyond the scope of this study.The GPSO3 ozonesonde data have been compared with satellite retrievals ( Bian et al., 2007 ).However, in contrast to the wide use of ECC ozonesonde data to study the temporal variability of ozone mentioned above, a comparison between ECC ozonesonde data and satellite products is still lacking, which is therefore the research objective of the current study.Specifically, this study employs ECC ozonesonde measurements collected from Beijing during 2013–2019 to compare, for the first time, with satellite-retrieved vertical ozone profiles from AIRS and MLS.Moreover, the total column ozone calculated from the ozonesonde measurements is also compared with that retrieved from AIRS and the Ozone Monitoring Instrument(OMI) onboard the Aura platform.

    The rest of the paper is organized as follows: the ozonesonde measurement and satellite retrieval datasets are described in Section 2 ; comparisons between the two datasets are presented in Section 3 ; and conclusions are summarized in Section 4.

    2.Data and methods

    2.1.Ozonesonde measurements

    The ECC ozonesonde was routinely launched once a week during 2013–2019 to provide the ozone partial pressure (which is converted to ozone concentration in ppbv in this study) from the ground to a height of~35 km at the Nanjiao Meteorological Observatory (39.81°N, 116.47°E;31 m in altitude) in Beijing.The release time was ~1400 CST (China Standard Time, UTC + 8) when the maximum surface ozone concentration and highest mixed layer occurred.The average deviation of the ozone partial pressure originally measured by our ozonesonde and Environmental Science (ENSCI) Corporation produced ENSCI-Z ozonesonde was < 0.3 mPa, and the relative difference in the total column ozone from our ozonesonde and ground-based Brewer spectrophotometer was 6% ( Zhang et al., 2014 ).

    The ozonesondes use the 1% full buffered sensing solution type SST1.0 and were prepared following the standard recommendations for ECC ozonesondes.The average background current used in the initial processing was 0.02 ± 0.017μA.The average time to pump 100 ml of air (flowrate time) was 29.6 ± 2.14 s.The average response time measured after the ozone conditioning was 24.7 ± 4.1 s.The ozonesonde data were initially processed using the standard ECC equation (e.g.,Johnson et al., 2002 ).No empirical efficiency correction has been established for the ECC built at IAP.Such empirical efficiency corrections have been well established for the ECC built by Science Pump Corporation (SPC) using the SST1.0 ( Komhyr, 1986 ) and the ECC built by ENSCI using SST0.5 ( Komhyr et al., 1995 ).Instead of determining a new set of empirical efficiency corrections, we reprocessed all profiles using the time response corrections of V?mel et al.(2020).This method attributes the required efficiency corrections at high altitudes and low pressures during a sounding to the time response of the secondary reactions within the ECC.It also considers the time response of the fast primary reactions between potassium iodide and ozone.Laboratory measurements and field data have shown good results replacing the empirical efficiency corrections with the time response correction considering the reaction kinetics within the ECC ( V?mel et al., 2020 ).In the time response correction algorithm, we used a solution efficiency correction factor of 1.08 for the higher buffered SST1.0.The time response constant for the fast KI reaction used the measured response time during the sonde preparation.The time response constant for the slower secondary reactions used a value of 25 min.We used a constant scaling of the cell current of 4% based on the differences between SPC and ENSCI sondes ( Deshler et al., 2017 ).Lastly, we used the measured true pump efficiency corrections of Zheng et al.(2018) , which virtually agree with those of Johnson et al.(2002) and Nakano and Morofuji (2022)( Fig.1 (c)).

    The average altitude of the first thermodynamic tropopause above Beijing station is ~11 km ( Zhang et al., 2021 ), above which the reprocessed ozone concentration is higher than indicated by the original measurements during 2013–2019 for all 307 ozonesonde profiles selected ( Fig.1 (a, b)).Overall, the average difference of all ozone profiles between the original measurements and processed data seem to be distinct between 20 and 35 km ( Fig.1 (d)), which is primarily induced by the pump efficiency corrections ( Fig.1 (c)) in the processed data.

    2.2.Satellite retrievals and their collocation with ozonesonde measurements

    The vertical ozone profiles derived from the Version 7 Level 3 AIRS and Version 5 Level 3 MLS products are compared with the ozonesonde measurements in this study.To synchronize the vertical resolution of the satellite products, ozonesonde measurements are interpolated onto 20 AIRS pressure levels between 1000 and 5 hPa (i.e., 1000, 925, 850,700, 600, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30, 20, 15, 10,7, and 5 hPa) and 21 MLS pressure levels between 261 and 5.6 hPa(i.e., 261, 215, 178, 147, 121, …, 12, 10, 8.3, 6.8, and 5.6 hPa).The uppermost level of the satellite products is interpolated to the ceiling height of each coincident ozonesonde profile.The local overpass times for AIRS onboard the Aqua satellite are 1330 and 0130 CST, which is 1345 CST for MLS onboard the Aura satellite.The AIRS-based ozone profiles within 1°latitude–longitude around the Beijing site are selected,grouped by day, and averaged for comparison with the ozonesonde profiles collected on corresponding days ( Zhang et al., 2023 ).This spatial collocation criterion is set as 8° for the MLS product given its coarse sampling ( Bian et al., 2007 ).In addition to the vertical ozone profile,this study also compares the total column ozone calculated from the ozonesonde with that retrieved from AIRS and OMI.The ozonesondebased total column ozone is calculated by integrating the ozone up to 10 hPa or balloon burst (whichever comes first) and then using the MLS ozone climatology to estimate the amount of ozone above ( McPeters and Labow, 2012 ; Tarasick et al., 2021 ).

    Fig.1.The (a) original measurements from 307 individual ozonesonde profiles collected over Beijing during 2013–2019, and (b) after processing by correction.(c)Pump efficiency corrections from Zheng et al.(2018) applied to the IAP ozonesonde (blue), from Johnson et al.(2002) applied to the SPC-6A (brown) and ENSCI-2Z(yellow) ozonesondes, and from Nakano and Morofuji (2022) applied to Japan Meteorological Agency (JMA) measurements (purple).(d) Comparison of the vertical average ozone of the original measurements (blue) and processed product (red) in Beijing.

    3.Comparison between ozonesonde measurements and satellite retrievals

    3.1.Vertical ozone profile

    Fig.2 compares 285 matched ozone profiles from the ozonesonde and AIRS.The overall pattern of variation in the vertical ozone structure agrees between the two methods ( Fig.2 (a, b).Specifically, the relative difference of each profile ( Fig.2 (c)) indicates that, compared with the ozonesonde, AIRS widely retrieves lower ozone values near the surface, and, upward from 700 hPa, larger values are consistently presented by AIRS in the troposphere below 300 hPa.Additionally, AIRS seems to frequently underestimate the ozone between 300 and 100 hPa;however, at numerous pressure levels above 100 hPa, AIRS tends to detect higher ozone concentrations.In general, the vertical average of all matched profiles is consistent between the two methods ( Fig.2 (d),mostly with a relative difference of < 10%), which is similar to the agreement presented by Fu et al.(2018) who used ozonesonde data from the World Ozone and Ultraviolet Radiation Data Centre collected in 2006.To be more precise, however, the AIRS retrieval is commonly higher than the ozonesonde measurements below 300 hPa.The tropospheric ozone, especially in the boundary layer, is primarily generated by photochemical reactions involving NOxand volatile organic compounds ( Vermeuel et al., 2019 ) and exhibits distinct spatial variability.The ECC ozonesondes used in this study are mostly released at ~1400 CST from the Beijing site and the spatial coverage of the ozonesonde profile varies due to the balloon’s drift, whereas the satellite products are generally averaged over a wider spatial coverage on the ozonesonde day.A certain spatiotemporal inhomogeneity between the ozonesonde measurements and satellite retrievals may affect their agreement.Although the pump efficiency corrections in Zheng et al.(2018) are applied to the ozonesonde measurements, they still underestimate the ozone concentration above 10 hPa as compared with the AIRS retrieval.Further investigations based on more laboratory tests and field experiments are still needed to acknowledge and solve the deficiency of ozonesonde measurements above 10 hPa.

    Fig.3 displays a similar comparison as described above but for the 245 matched ozone profiles from the ozonesonde and MLS.Again, the general pattern of variability identified by the two methods is consistent ( Fig.3 (a, b)).However, a closer look at their relative differences( Fig.3 (c)) reveals that the ozone values from the MLS below 100 hPa appear to alternate between higher and lower values when compared to the ozonesonde.Nevertheless, their agreement improves between 100 hPa and 10 Pa, above which lower ozone is universally measured by the ozonesonde.The average vertical profiles of the ozonesonde and MLS ( Fig.3 (d)) are highly consistent from 215 hPa to 10 hPa (with a relative difference < 10%).In contrast, higher ozone is detected by MLS at its bottom pressure level (261 hPa), and a deficiency is exhibited by ozonesonde measurements above 10 hPa, as mentioned above.In this study, both the ozonesonde instrument and data processing method have been improved when compared to previous studies (e.g.,Bian et al., 2007 ).For the GPSO3 ozonesondes used in Bian et al.(2007) ,the difference was generally within 10% in the upper troposphere and lower stratosphere (from 400 to 70 hPa), and was 20%–30% in the middle troposphere as compared to AIRS, which was 20% in the lower stratosphere and 30% in the upper troposphere as compared to MLS.The updated ECC ozonesonde and data processing method used in this study result in a difference of mostly < 10% relative to the satellite retrievals(both AIRS and MLS) at their product pressure levels.

    3.2.Total column ozone

    Fig.4 presents the density scatter of the total column ozone derived from the ozonesonde measurements and satellite retrievals.Overall, the results from the ozonesonde and AIRS exhibit reasonable agreement( Fig.4 (a)), as shown by most data points falling along the 1:1 line.The correlation coefficient (R), mean bias error (MBE; sonde minus AIRS),and root-mean-square error (RMSE) between the two datasets are 0.87,3.54 DU, and 21.11 DU, respectively.Similarly, the majority of the data points from the ozonesondes and OMI also fall along or overlap the 1:1 line ( Fig.4 (b)); theirR, MBE, and RMSE are 0.86, 13.67 DU, and 24.51 DU, respectively.

    A comparison of the annual variability in total column ozone is shown in Fig.5.Overall, the ozonesonde, AIRS, and OMI data demonstrate similar annual patterns of variability.It should also be noted that the ozonesonde measurements generally agree with the AIRS data,which is higher than the OMI data.The annual average total column ozone is 351.8 ± 18.4 DU, 348.8 ± 19.5 DU, and 336.9 ± 14.2 DU for the ozonesonde, AIRS, and OMI, respectively.

    Fig.5.Annual variability in total column ozone and its standard deviation from ozonesonde measurements (brown) and AIRS (blue) and OMI (green) satellite retrievals.

    4.Conclusions

    The ozonesonde station at Beijing has provided a unique long-term ozonesonde dataset for mainland China.In this study, ozonesonde measurements collected in Beijing during 2013–2019 are used to evaluate space-borne retrievals of vertical ozone profiles from AIRS and MLS and the total column ozone from AIRS and OMI.In general, the vertical ozone profiles between the ozonesonde and space-borne AIRS and MLS agree (mostly with a relative difference of < 10%); however, a relatively larger discrepancy also arises at more detailed levels, such as an overestimation in the AIRS data below 300 hPa, an overestimation in the MLS data at the lowest pressure level (261 hPa), and a deficiency of the ozonesonde measurements above 10 hPa.The total column ozone exhibits reasonable agreement between the ozonesonde measurements and satellite retrievals.TheR, MBE, and RMSE are 0.87, 3.54 DU, and 21.11 DU for between the ozonesonde and AIRS; and 0.86, 13.67 DU,and 24.51 DU for between the ozonesonde and OMI.The annual average total column ozone is 351.8 ± 18.4 DU, 348.8 ± 19.5 DU, and 336.9 ± 14.2 DU for the ozonesonde, AIRS, and OMI, respectively.The ECC ozonesondes used in this study are mostly released at ~1400 CST from the Beijing site and the spatial coverage of the ozonesonde profile varies due to balloon drift, which will induce a certain spatiotemporal inhomogeneity between the ozonesonde measurements and satellites retrievals and thus may affect their agreement.The ECC ozonesonde measurements from Beijing are compared with satellite retrievals in this study.Future studies based on the data collected by ECC ozonesondes from pilot programs located at multiple sites will help in better understanding their consistency with satellite retrievals over different regions in China.

    Funding

    This work was supported by the National Natural Science Foundation of China [grant numbers 42293321 and 41875183 ].

    Acknowledgments

    The authors appreciate the assistance of the Beijing Nanjiao Meteorological Observatory with the ozonesonde launches.We extend thanks to Xiaowei Wan for launching the ozonesonde in Beijing.The AIRS and MLS products are available online from https://disc.gsfc.nasa.gov/.OMI data are available online from https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/OMI/V03/L2OVP/OMTO3/.

    极品少妇高潮喷水抽搐| 啦啦啦视频在线资源免费观看| 国产男女内射视频| 亚洲婷婷狠狠爱综合网| 成年人免费黄色播放视频| 欧美日韩亚洲高清精品| 一区二区日韩欧美中文字幕| 母亲3免费完整高清在线观看 | 美女福利国产在线| 999精品在线视频| 亚洲国产欧美日韩在线播放| 亚洲视频免费观看视频| 亚洲av欧美aⅴ国产| 精品久久蜜臀av无| 99九九在线精品视频| 少妇人妻精品综合一区二区| 国产又爽黄色视频| 男女免费视频国产| 国产亚洲欧美精品永久| 日本欧美国产在线视频| 日本91视频免费播放| 大香蕉久久网| 亚洲欧美成人综合另类久久久| 黄片播放在线免费| 日韩 亚洲 欧美在线| 丝袜脚勾引网站| 久久久久视频综合| 日韩精品免费视频一区二区三区| 亚洲,欧美,日韩| 欧美老熟妇乱子伦牲交| 妹子高潮喷水视频| 伊人久久大香线蕉亚洲五| 晚上一个人看的免费电影| 亚洲国产毛片av蜜桃av| 亚洲欧美一区二区三区黑人 | 在线免费观看不下载黄p国产| 亚洲国产成人一精品久久久| 人人妻人人爽人人添夜夜欢视频| 丝袜人妻中文字幕| 国产老妇伦熟女老妇高清| av国产精品久久久久影院| 高清黄色对白视频在线免费看| 日本猛色少妇xxxxx猛交久久| 国产欧美日韩综合在线一区二区| 久久精品久久久久久噜噜老黄| 欧美人与性动交α欧美精品济南到 | 青春草视频在线免费观看| 日韩熟女老妇一区二区性免费视频| 国产女主播在线喷水免费视频网站| 一本—道久久a久久精品蜜桃钙片| 大片电影免费在线观看免费| 丰满乱子伦码专区| 人妻 亚洲 视频| 99久久精品国产国产毛片| 国产精品免费大片| www.熟女人妻精品国产| 国产亚洲最大av| 久久久久国产一级毛片高清牌| 久久久久久人人人人人| 免费在线观看完整版高清| 精品人妻偷拍中文字幕| 国产人伦9x9x在线观看 | 精品酒店卫生间| 69精品国产乱码久久久| 王馨瑶露胸无遮挡在线观看| 午夜影院在线不卡| 电影成人av| 欧美中文综合在线视频| 黄网站色视频无遮挡免费观看| 日韩在线高清观看一区二区三区| 久久精品亚洲av国产电影网| 日韩成人av中文字幕在线观看| 亚洲一区中文字幕在线| 亚洲av免费高清在线观看| 深夜精品福利| 两个人看的免费小视频| av在线观看视频网站免费| 亚洲美女视频黄频| 日本猛色少妇xxxxx猛交久久| 成人18禁高潮啪啪吃奶动态图| 亚洲,一卡二卡三卡| 午夜激情av网站| av免费观看日本| 亚洲av日韩在线播放| 如日韩欧美国产精品一区二区三区| 精品一区在线观看国产| 18禁动态无遮挡网站| 五月开心婷婷网| 久久久久精品久久久久真实原创| 国产精品嫩草影院av在线观看| 亚洲第一av免费看| freevideosex欧美| 一区二区三区四区激情视频| 下体分泌物呈黄色| 亚洲,欧美精品.| 精品国产国语对白av| 亚洲欧美清纯卡通| 狂野欧美激情性bbbbbb| 免费观看av网站的网址| 中文字幕人妻丝袜制服| 成人国产av品久久久| 只有这里有精品99| 国产亚洲午夜精品一区二区久久| a 毛片基地| 久久久久久久国产电影| 成年美女黄网站色视频大全免费| 18禁裸乳无遮挡动漫免费视频| 春色校园在线视频观看| 亚洲精品,欧美精品| 亚洲精品国产色婷婷电影| 99久国产av精品国产电影| 精品国产一区二区三区四区第35| 久久精品国产亚洲av高清一级| 成人黄色视频免费在线看| av一本久久久久| av女优亚洲男人天堂| 久久这里有精品视频免费| 大陆偷拍与自拍| 欧美日韩视频精品一区| 久久97久久精品| 侵犯人妻中文字幕一二三四区| 国产伦理片在线播放av一区| 亚洲色图 男人天堂 中文字幕| 91精品伊人久久大香线蕉| 精品第一国产精品| 久久这里只有精品19| 母亲3免费完整高清在线观看 | 狠狠精品人妻久久久久久综合| 亚洲第一区二区三区不卡| 亚洲精品一二三| 国产成人aa在线观看| 国产高清国产精品国产三级| 黄色一级大片看看| 日日爽夜夜爽网站| 夫妻性生交免费视频一级片| 日韩制服丝袜自拍偷拍| 欧美成人精品欧美一级黄| 狂野欧美激情性bbbbbb| 一本大道久久a久久精品| 国产精品一区二区在线不卡| 国产有黄有色有爽视频| 乱人伦中国视频| 99九九在线精品视频| 女人精品久久久久毛片| 欧美日韩精品成人综合77777| 日韩av在线免费看完整版不卡| 秋霞伦理黄片| 一区福利在线观看| 成人免费观看视频高清| 久久av网站| 五月开心婷婷网| 日韩av不卡免费在线播放| 国产97色在线日韩免费| 国产激情久久老熟女| 国产人伦9x9x在线观看 | 精品少妇黑人巨大在线播放| 亚洲激情五月婷婷啪啪| 国产在线一区二区三区精| 在线观看人妻少妇| 国产野战对白在线观看| 男女无遮挡免费网站观看| 国产一区二区三区综合在线观看| 久久这里只有精品19| av国产久精品久网站免费入址| 免费看av在线观看网站| 午夜福利在线观看免费完整高清在| 亚洲一级一片aⅴ在线观看| 一二三四在线观看免费中文在| 欧美97在线视频| 国产精品偷伦视频观看了| 亚洲国产精品一区三区| 日韩中文字幕欧美一区二区 | 秋霞伦理黄片| 国产男女内射视频| 丝袜在线中文字幕| 波野结衣二区三区在线| 午夜激情久久久久久久| 欧美成人午夜精品| 国产精品av久久久久免费| 桃花免费在线播放| 激情视频va一区二区三区| 亚洲第一青青草原| 久久久久国产一级毛片高清牌| 人妻人人澡人人爽人人| 日日啪夜夜爽| 天天操日日干夜夜撸| 亚洲av男天堂| 亚洲成人一二三区av| a级片在线免费高清观看视频| av免费观看日本| 久久 成人 亚洲| 狠狠精品人妻久久久久久综合| 久久精品人人爽人人爽视色| 亚洲av成人精品一二三区| 男女高潮啪啪啪动态图| 免费看av在线观看网站| 亚洲av欧美aⅴ国产| 91久久精品国产一区二区三区| 国产爽快片一区二区三区| 性高湖久久久久久久久免费观看| 国产精品免费大片| 午夜日韩欧美国产| 欧美中文综合在线视频| av福利片在线| 国产成人精品一,二区| xxx大片免费视频| www.熟女人妻精品国产| 大片免费播放器 马上看| 国产精品99久久99久久久不卡 | 这个男人来自地球电影免费观看 | 夫妻午夜视频| 国产成人免费观看mmmm| 看非洲黑人一级黄片| 一级毛片 在线播放| xxx大片免费视频| videossex国产| 18禁观看日本| 亚洲成人一二三区av| av有码第一页| 日韩av免费高清视频| 999久久久国产精品视频| www.av在线官网国产| 精品人妻偷拍中文字幕| 99久国产av精品国产电影| 久久婷婷青草| 美女国产视频在线观看| 国产乱来视频区| 叶爱在线成人免费视频播放| 夫妻午夜视频| 亚洲国产精品国产精品| 久久免费观看电影| 综合色丁香网| 国产又爽黄色视频| 26uuu在线亚洲综合色| av国产久精品久网站免费入址| 欧美在线黄色| 少妇人妻 视频| 一区二区三区乱码不卡18| 国产精品香港三级国产av潘金莲 | 精品少妇一区二区三区视频日本电影 | 亚洲精品第二区| 中文字幕人妻丝袜一区二区 | 中国三级夫妇交换| 久久久久久久久免费视频了| 国产色婷婷99| 大话2 男鬼变身卡| 日本欧美视频一区| 亚洲av欧美aⅴ国产| 免费高清在线观看视频在线观看| 精品国产一区二区久久| 婷婷色综合大香蕉| av网站在线播放免费| 亚洲色图综合在线观看| 老司机影院成人| 狂野欧美激情性bbbbbb| 亚洲国产成人一精品久久久| 亚洲精品aⅴ在线观看| 可以免费在线观看a视频的电影网站 | 亚洲精品国产一区二区精华液| 国产乱来视频区| 亚洲欧美精品自产自拍| 午夜日韩欧美国产| 狂野欧美激情性bbbbbb| 90打野战视频偷拍视频| 天堂8中文在线网| 国产深夜福利视频在线观看| 亚洲精品,欧美精品| 嫩草影院入口| 国产成人精品一,二区| 日韩伦理黄色片| 黄色毛片三级朝国网站| 高清视频免费观看一区二区| 日日撸夜夜添| 久久精品国产亚洲av天美| 在线天堂最新版资源| 国产午夜精品一二区理论片| 91午夜精品亚洲一区二区三区| 久久 成人 亚洲| 九九爱精品视频在线观看| 在线观看免费日韩欧美大片| 国语对白做爰xxxⅹ性视频网站| 精品人妻熟女毛片av久久网站| 亚洲av成人精品一二三区| 啦啦啦啦在线视频资源| 欧美日韩综合久久久久久| 观看美女的网站| 乱人伦中国视频| 免费观看a级毛片全部| 国产淫语在线视频| 日韩制服骚丝袜av| 美女视频免费永久观看网站| 天天操日日干夜夜撸| 丰满少妇做爰视频| 国产精品二区激情视频| 黄片播放在线免费| 亚洲av在线观看美女高潮| 久久精品国产综合久久久| 中文字幕亚洲精品专区| 一级片免费观看大全| 观看美女的网站| 免费看不卡的av| 少妇人妻 视频| 美女视频免费永久观看网站| 伊人亚洲综合成人网| 久久国内精品自在自线图片| 在线天堂中文资源库| 在线观看国产h片| 涩涩av久久男人的天堂| 又大又黄又爽视频免费| 亚洲精品第二区| 久久鲁丝午夜福利片| 久久久久人妻精品一区果冻| 街头女战士在线观看网站| 亚洲情色 制服丝袜| 狠狠精品人妻久久久久久综合| 欧美精品一区二区免费开放| 五月天丁香电影| 国产成人精品在线电影| 精品一区在线观看国产| 蜜桃在线观看..| 七月丁香在线播放| 久久久久久人妻| 亚洲精品自拍成人| 日韩一区二区三区影片| 亚洲第一区二区三区不卡| 9191精品国产免费久久| 亚洲精华国产精华液的使用体验| 亚洲精品国产色婷婷电影| 亚洲av在线观看美女高潮| 国产极品粉嫩免费观看在线| 人妻系列 视频| 久久免费观看电影| 亚洲精品国产av成人精品| 欧美最新免费一区二区三区| av国产精品久久久久影院| 亚洲精品在线美女| 久久久久久久久久久久大奶| 午夜福利影视在线免费观看| 波野结衣二区三区在线| 观看美女的网站| 国产毛片在线视频| 午夜久久久在线观看| 久久国产精品男人的天堂亚洲| 国产精品无大码| 久久人人爽人人片av| 免费在线观看完整版高清| 亚洲av中文av极速乱| 高清av免费在线| 九色亚洲精品在线播放| xxx大片免费视频| 极品少妇高潮喷水抽搐| 另类亚洲欧美激情| 久久久久久久久久久久大奶| 中文精品一卡2卡3卡4更新| 啦啦啦啦在线视频资源| 伦理电影大哥的女人| 久久99蜜桃精品久久| 国产免费视频播放在线视频| 一级黄片播放器| 国产淫语在线视频| 老鸭窝网址在线观看| 各种免费的搞黄视频| 一本大道久久a久久精品| 中文字幕人妻丝袜一区二区 | 亚洲综合色惰| 在线亚洲精品国产二区图片欧美| 国产精品国产三级专区第一集| 在线免费观看不下载黄p国产| 观看av在线不卡| 国产成人av激情在线播放| 国产精品麻豆人妻色哟哟久久| 最新中文字幕久久久久| 在线观看www视频免费| 国产精品av久久久久免费| 亚洲 欧美一区二区三区| 国产在线视频一区二区| 久久午夜综合久久蜜桃| 欧美日韩亚洲高清精品| 欧美xxⅹ黑人| 午夜福利在线免费观看网站| 国产av国产精品国产| 美女国产高潮福利片在线看| 伦精品一区二区三区| 最黄视频免费看| 国产av国产精品国产| 久久精品熟女亚洲av麻豆精品| 欧美日韩视频精品一区| 777久久人妻少妇嫩草av网站| a级片在线免费高清观看视频| 精品国产乱码久久久久久小说| 亚洲精品成人av观看孕妇| videosex国产| 91精品国产国语对白视频| 国产精品二区激情视频| 国产亚洲午夜精品一区二区久久| 国产精品一二三区在线看| 亚洲三区欧美一区| 国产午夜精品一二区理论片| xxx大片免费视频| 一二三四中文在线观看免费高清| 亚洲av综合色区一区| 老汉色av国产亚洲站长工具| 18在线观看网站| 久久久久国产一级毛片高清牌| 男人爽女人下面视频在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日本av免费视频播放| 性色av一级| 老鸭窝网址在线观看| 成人亚洲欧美一区二区av| 人人妻人人添人人爽欧美一区卜| 蜜桃在线观看..| 制服人妻中文乱码| 国产欧美亚洲国产| 两个人看的免费小视频| 伦理电影大哥的女人| 亚洲国产精品一区三区| 亚洲久久久国产精品| 久久 成人 亚洲| 99re6热这里在线精品视频| 一区二区三区四区激情视频| 亚洲久久久国产精品| 久久 成人 亚洲| 亚洲精华国产精华液的使用体验| 亚洲色图综合在线观看| 人体艺术视频欧美日本| 色播在线永久视频| 久久99一区二区三区| 国产精品久久久久久av不卡| 国产在线免费精品| 伊人久久国产一区二区| 制服诱惑二区| 国产在线一区二区三区精| 亚洲成国产人片在线观看| av线在线观看网站| xxx大片免费视频| 免费黄频网站在线观看国产| 亚洲欧洲日产国产| 尾随美女入室| 国产成人av激情在线播放| 黄色一级大片看看| 纵有疾风起免费观看全集完整版| 人人妻人人添人人爽欧美一区卜| 午夜激情av网站| 国产成人午夜福利电影在线观看| 国产激情久久老熟女| 国产精品不卡视频一区二区| 久久ye,这里只有精品| 国产伦理片在线播放av一区| 成人18禁高潮啪啪吃奶动态图| 国产一区二区三区综合在线观看| 两个人看的免费小视频| 五月伊人婷婷丁香| 亚洲精品国产av蜜桃| 一区二区三区精品91| 丝袜在线中文字幕| 日本色播在线视频| 国产亚洲av片在线观看秒播厂| 亚洲综合色网址| 国产日韩欧美在线精品| 国产视频首页在线观看| 亚洲欧美成人精品一区二区| 毛片一级片免费看久久久久| 九草在线视频观看| 国产精品熟女久久久久浪| 亚洲av国产av综合av卡| 秋霞在线观看毛片| 久久精品久久久久久噜噜老黄| 不卡视频在线观看欧美| 欧美精品国产亚洲| 亚洲欧美色中文字幕在线| 一本色道久久久久久精品综合| 日韩中文字幕欧美一区二区 | 伊人久久国产一区二区| 久久久国产一区二区| 国产一区有黄有色的免费视频| 欧美国产精品一级二级三级| 日韩欧美一区视频在线观看| 亚洲精品久久午夜乱码| 十八禁网站网址无遮挡| 丰满少妇做爰视频| 一级毛片黄色毛片免费观看视频| 久久久久精品性色| 91午夜精品亚洲一区二区三区| 欧美成人精品欧美一级黄| av在线观看视频网站免费| 韩国精品一区二区三区| 日本wwww免费看| 久久久久久久亚洲中文字幕| 一边亲一边摸免费视频| 亚洲国产日韩一区二区| 国产一区二区激情短视频 | 日日啪夜夜爽| 一边亲一边摸免费视频| 午夜福利,免费看| 黑人欧美特级aaaaaa片| 大陆偷拍与自拍| 美国免费a级毛片| 午夜日本视频在线| 青春草国产在线视频| 极品人妻少妇av视频| 在线亚洲精品国产二区图片欧美| 欧美精品国产亚洲| 亚洲久久久国产精品| 日日摸夜夜添夜夜爱| 高清黄色对白视频在线免费看| a级毛片黄视频| 日本午夜av视频| 亚洲精品国产av蜜桃| av网站在线播放免费| 韩国精品一区二区三区| 人人妻人人澡人人看| 制服人妻中文乱码| 色播在线永久视频| 国产97色在线日韩免费| 波多野结衣一区麻豆| 丝袜脚勾引网站| 国产成人一区二区在线| 久久久久人妻精品一区果冻| 亚洲精品久久成人aⅴ小说| av网站在线播放免费| 999久久久国产精品视频| 最新的欧美精品一区二区| 国产精品久久久久成人av| 深夜精品福利| 成年女人毛片免费观看观看9 | 免费av中文字幕在线| 韩国精品一区二区三区| 少妇被粗大猛烈的视频| 久久人人爽人人片av| 久久免费观看电影| 久久久久久人人人人人| 亚洲精品一二三| 免费观看a级毛片全部| 免费黄色在线免费观看| 亚洲精品日韩在线中文字幕| 在现免费观看毛片| 国产精品av久久久久免费| 天天操日日干夜夜撸| 在线观看三级黄色| 巨乳人妻的诱惑在线观看| 激情五月婷婷亚洲| 日韩精品免费视频一区二区三区| 精品午夜福利在线看| 狠狠精品人妻久久久久久综合| 日韩av不卡免费在线播放| 狂野欧美激情性bbbbbb| 男女下面插进去视频免费观看| 美女国产高潮福利片在线看| 久久女婷五月综合色啪小说| 一二三四中文在线观看免费高清| 欧美+日韩+精品| 日韩三级伦理在线观看| 女的被弄到高潮叫床怎么办| 国产精品一国产av| 亚洲欧美一区二区三区国产| 亚洲av欧美aⅴ国产| videossex国产| 亚洲国产日韩一区二区| 亚洲,一卡二卡三卡| 熟女av电影| 两个人看的免费小视频| 精品一区二区三卡| 国产一区二区在线观看av| 国产亚洲精品第一综合不卡| 一本—道久久a久久精品蜜桃钙片| 欧美av亚洲av综合av国产av | 狠狠精品人妻久久久久久综合| 啦啦啦在线观看免费高清www| 在线观看免费视频网站a站| 最近中文字幕高清免费大全6| 国产成人精品在线电影| 一级a爱视频在线免费观看| 亚洲一区二区三区欧美精品| 国产野战对白在线观看| 99久久中文字幕三级久久日本| 欧美黄色片欧美黄色片| 国产精品久久久久成人av| 丝袜人妻中文字幕| 国产精品久久久av美女十八| 一边亲一边摸免费视频| 午夜福利在线免费观看网站| 亚洲精品国产av成人精品| 国产精品成人在线| 日本欧美视频一区| 黑人欧美特级aaaaaa片| 亚洲精品aⅴ在线观看| 建设人人有责人人尽责人人享有的| 18禁裸乳无遮挡动漫免费视频| 日韩精品免费视频一区二区三区| 亚洲成人手机| 一级毛片黄色毛片免费观看视频| 欧美 日韩 精品 国产| 国产精品三级大全| 在线天堂中文资源库| 侵犯人妻中文字幕一二三四区| 欧美精品一区二区免费开放| 成年动漫av网址| 一级毛片我不卡| 日韩成人av中文字幕在线观看| 熟女av电影| 热99国产精品久久久久久7| 汤姆久久久久久久影院中文字幕| 天天影视国产精品| 久久久精品94久久精品| 肉色欧美久久久久久久蜜桃| 欧美成人精品欧美一级黄| 国产精品人妻久久久影院| 岛国毛片在线播放| 中文字幕精品免费在线观看视频| 26uuu在线亚洲综合色| 熟女av电影| 一二三四中文在线观看免费高清| 超色免费av| 欧美97在线视频|