• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Feature-Aided Multiple Model Algorithm for Maneuvering Target Tracking

    2024-03-01 10:59:14YiweiTianMeiqinLiuSenlinZhangRonghaoZhengandShanlingDong
    IEEE/CAA Journal of Automatica Sinica 2024年2期

    Yiwei Tian , Meiqin Liu ,,,Senlin Zhang ,,, Ronghao Zheng ,,, and Shanling Dong ,,

    Dear Editor,

    This letter deals with the tracking problem for non-cooperative maneuvering targets based on the underwater sensor networks.Considering the acoustic intensity feature of underwater targets, a feature-aided multi-model tracking method for maneuvering targets is proposed.Specifically, at each node, direction of arrival (DOA) estimation and model selection is performed, and information is fused in the central node where multi-model-based tracking is realized to closely monitor the target.Simulation results show that our proposed method is capable of rapidly responding to model switching and significantly improve the accuracy of maneuvering target tracking.

    The underwater non-cooperative maneuvering target is one of the principal factors that impact marine security.In underwater acoustic sensor networks (UASNs), passive detection nodes are typically used for long-term detection and tracking of targets due to the challenge of recharging and replacing them.At a passive node, vector hydrophones, hydrophone arrays and other devices collect the acoustic signals exposed by targets in the ocean.The direction and some feature information of the target are picked out by signal processing methods, such as compressed sensing (CS) [1], [2], multiple signal classification (MUSIC) [3] and estimation with the sparse representation[4].Based on the DOA estimation on existing nodes, the measurement of the target position can be obtained by multi-node fusion [5].However, the localization is inaccurate, and it is necessary to employ appropriate filters to mitigate errors when tracking a moving target.

    Estimating the correct motion model of the target is a crucial issue in the commonly used Kalman filter.However, because of the uncertainties and variations in the behavior of the maneuvering targets,divergence often occurs.To follow the changes in target state, multiple model (MM) based methods are frequently utilized [6], [7].In particular, the interacting multiple model (IMM) algorithm is regarded as one of the most effective methods.It involves a set of multiple models that describe the dynamic system and it is assumed that the jumps between different models are subject to a Markov process [8].The weighted probabilities of different motion models are regulated by system evolution and interaction between models [9].The designation of the Markov transition probability matrix in the IMM are fixed, which relies on sufficient prior knowledge and may be irrational sometimes.To deal with this problem, many adaptive IMM algorithms were proposed to achieve better treatment [10],[11].Since the adjustment of the matrix is driven by error, it takes some time to respond to the model transition which will cause obvious delay, and the adjustment is not effective and stable enough.

    In addition, the sound exposed by targets in water was studied and summarized [12].Based on underwater acoustics research, models about sound propagation and interfering phenomena were also proposed [13].Some institutions have successfully collected underwater acoustic sounds at the harbor or in the ocean, which are usually generated by moving underwater target.These studies have inspired us to improve target tracking performance with signal features.

    Considering the relationship between acoustic signals and target movement, we propose a feature-aided multi-node (FAMM) maneuvering target tracking method.Specifically, we investigate the intensity of acoustic signals exposed by underwater targets.In the UWSNs, a switching strategy is proposed to select a possible tracking model at each passive node.Multiple nodes are integrated to track an underwater maneuvering target and multiple models are fused driven by both tracking error and the target feature.The method is designed to track specific types of underwater targets with some degree of maneuverability.Information from multiple nodes are fused efficiently.The model selection is more correct and the tracking accuracy is improved as a result.

    Problem statement and basic models: In the critical oceanic region, invading non-cooperative targets, such as submarines, automatic underwater vehicles and ships, cause huge threats and require close attention.These targets exhibit some maneuverability in a 3-dimensional (3D) Cartesian coordinate, where their motion state may vary, but changes are usually infrequent and not rapid [14].Furthermore, the speed and acceleration of these targets are relatively low and the movement patterns are not very complicated.Therefore, we employ the most commonly used models of constant velocity (CV),constant acceleration (CA) and constant turn (CT) to describe their motion.The motion state of a target at timekis denoted as

    Based on the direction observations obtained from multiple nodes,the position of a target is determined with the directly least square positioning method in the operation center.Detailed computation refers to Section 2 in [5].Thus, the linear position measurement equation of a target in the central node is expressed asZk=HXk.

    Feature-aided motion model selection: The intensity feature reflects the movement of the target, especially when the motion state changes significantly.Therefore, the signal intensity feature of underwater targets is studied and we propose a FAMM method to improve the tracking performances.

    In each passive node, the motion model of the target is judged by the received signals.The intensity of the received acoustic signal is mainly influenced by two major factors: the noise generated by the target and the loss in the propagation path.

    Mechanical noise and hydrodynamic noise are dominant types of

    whereQcis the random noise of background in the target-free case.

    The average intensityPm(k) during a tracking periodtis regarded as the intensity feature of a target.Fig.S2 in Appendix displays the sound collected by an actual hydrophone when a ship passes by.The variation inPm(k) can reflect the movement of the target during the tracking period of 1 s.

    Based on the movement and signal feature of underwater targets,the motion of an underwater maneuvering target jump between two states: the constant motion state and the constant acceleration motion state, where the constant motion state includes CV and CT models.The details of the model switch and selection strategy are as follows:

    State 1: The target is assumed to be in the CV model initially.Fromk-1 tok, the change of received sound intensity is

    Simulation example: Monte Carlo experiments are conducted in a 3D scenario on a computer with the Microsoft Windows 10 System using the software MATLAB R2021b.When a non-cooperative target invades the ocean region, it is assumed that four nodes in the UWSN can continuously detect the target together.The positions of these nodes are (-400 m, -400 m, 0 m) , (-350 m, 700 m,10 m), (800 m,-300 m, 5 m) and (700 m, 600 m, 0 m).The motion state of the noncooperative maneuvering target transforms among CV, CA and CT models during the period of 150 s, and the initial state of the target is(-350, 3,0,-350,2, 0,80,0,0).Inthesimulation, themotion model changesevery20seconds, andthemovement errorQ=10-3.The position, velocity, and acceleration on thex-axis of the target in an experiment are shown in Fig.1, where grey lines represent the moment when the motion state of the target changes.

    In the simulation, the detected signal frequency is 200 Hz.According to the research [17], the average errors of DOA estimations are set as 0.5 rad and the measurement variance is approximately 10 m.The turning speed of the CT model is set as 0.5 rad/s.When the target is similar to the moving destroyer, parametersaandbof the intensity model are set as 80 dB and 3 dB/m/s, andQc=0.2 [18].The feature of the signal intensity received by a node is displayed in Fig.S5 in Appendix, from which each node estimates the possible motion model that the target may follow.

    Fig.1.Real target state on the x-axis.

    In the central node, 100 tracking experiments are conducted with different methods and the root means square error (RMSE) is used to illustrate the results.In Fig.2, the tracking results of our proposed FAMM algorithm are compared with several algorithms: the best multi-model (BMM) [6], the original IMM [7], the adaptive IMM(AIMM) [10] and another adaptive IMM methods [11].Specific steps of these algorithms can be found in these references.

    Fig.2.RMSE of tracking with different methods.

    Fig.2 shows that our algorithm achieves the most accurate tracking results among these methods.The BMM selects only one model based on error but the model judgement is often wrong.The IMM relies on error and the state transition probability, but its Markov transition probability matrix is fixed, which requires sufficient prior information and history data of target motion.In addition, it ignores the irrationality of the transition matrix designation, which make it difficult to adapt to different targets and environments.Adaptive methods can dynamically regulate the matrix between different models.However, the first AIMM only works well for two models, but not for three models or more.The other AIMM improves the tracking accuracy effectively but still has some problems in timely model switching.

    In contrast, our proposed algorithm achieves the smallest error during both stable tracking and model switching periods.To demonstrate the improvement, we list the specific percentage of error reduction compared to localization and the second AIMM algorithms in Table 1.The table shows that our filter significantly reduces positioning error, and achieves better results than the AIMM in all states,especially during the model switching process.Besides, the computation time and communication burden do not increase significantly.Other 4 methods do not consider multiple nodes with different confidence levels.In practice, the FAMM method can adjust according to the application environment and obtain better effect for target of interest.

    Table 1.Comparision of Accuracy Improvement

    Conclusion: In this letter, we investigate the correlation between the intensity feature of underwater acoustic signals received by passive nodes and the motion of underwater targets.A feature-assisted multi-model maneuvering target tracking method is proposed based on a multi-node underwater sensor network.Feature information is used to predict the tracking model and the tracking error is combined to adjust the probability of multiple models in the center.Precise target tracking is realized in the center based on the multi-model Kalman filter.Compared to the IMM-based algorithm, our FAMM method avoids reliance on motion state transition information.Moreover, the algorithm exhibits advantages in information fusion among different nodes.Simulation results show that the proposed algorithm improves tracking accuracy in both the model transition and stable processes.In summary, the proposed FAMM is effective to track non-cooperative maneuvering target in underwater environments.

    Acknowledgments: This work was supported by the National Natural Science Foundation of China (62173299, U1909206), the Zhejiang Provincial Natural Science Foundation of China (LZ23F0 30006), the Joint Fund of Ministry of Education for Pre-research of Equipment (8091B022147) and the Fundamental Research Funds for the Central Universities (xtr072022001).

    Appendix: Supplementary material of this letter can be found in links https://doi.org/10.57760/sciencedb.10840.

    一级a爱视频在线免费观看| 露出奶头的视频| 亚洲av成人不卡在线观看播放网| 一本大道久久a久久精品| 欧美大码av| 久久这里只有精品19| 国产亚洲精品久久久久5区| 久久久国产欧美日韩av| 老熟妇乱子伦视频在线观看| 欧美国产精品一级二级三级| 操出白浆在线播放| 国产精品一区二区在线观看99| 欧美精品高潮呻吟av久久| 国产乱人伦免费视频| 人妻丰满熟妇av一区二区三区 | 后天国语完整版免费观看| 日韩三级视频一区二区三区| tube8黄色片| av免费在线观看网站| 人人澡人人妻人| 日本vs欧美在线观看视频| 18禁美女被吸乳视频| 午夜福利乱码中文字幕| 不卡一级毛片| 国产成人精品久久二区二区免费| 欧美日韩亚洲国产一区二区在线观看 | 日本黄色视频三级网站网址 | 精品人妻在线不人妻| 久久久精品区二区三区| 久久精品国产综合久久久| 午夜久久久在线观看| 如日韩欧美国产精品一区二区三区| 人人妻人人澡人人爽人人夜夜| 久久精品国产清高在天天线| 久久久国产欧美日韩av| 色播在线永久视频| 久久ye,这里只有精品| av片东京热男人的天堂| 91国产中文字幕| 性色av乱码一区二区三区2| 久久香蕉国产精品| 两个人免费观看高清视频| 午夜免费成人在线视频| videos熟女内射| 精品国产亚洲在线| 每晚都被弄得嗷嗷叫到高潮| av在线播放免费不卡| 国产无遮挡羞羞视频在线观看| 亚洲va日本ⅴa欧美va伊人久久| 精品第一国产精品| 首页视频小说图片口味搜索| 久久性视频一级片| 免费人成视频x8x8入口观看| 亚洲性夜色夜夜综合| 国产男女超爽视频在线观看| 精品乱码久久久久久99久播| 一区福利在线观看| 99国产极品粉嫩在线观看| 色老头精品视频在线观看| 两个人看的免费小视频| 午夜免费观看网址| 亚洲全国av大片| 女同久久另类99精品国产91| 国产免费男女视频| 久久人妻av系列| 18禁裸乳无遮挡动漫免费视频| 母亲3免费完整高清在线观看| 久久久国产精品麻豆| 国产在线观看jvid| 伊人久久大香线蕉亚洲五| 手机成人av网站| 欧美国产精品va在线观看不卡| 精品少妇久久久久久888优播| 国产人伦9x9x在线观看| 国产区一区二久久| 日韩一卡2卡3卡4卡2021年| 老司机福利观看| 免费在线观看黄色视频的| 国产熟女午夜一区二区三区| 欧美成狂野欧美在线观看| 国产欧美日韩综合在线一区二区| 免费不卡黄色视频| 精品第一国产精品| 亚洲午夜理论影院| 建设人人有责人人尽责人人享有的| 村上凉子中文字幕在线| www.999成人在线观看| 中文字幕另类日韩欧美亚洲嫩草| 51午夜福利影视在线观看| 黄色视频,在线免费观看| 女人久久www免费人成看片| 99国产精品免费福利视频| 一区福利在线观看| 搡老岳熟女国产| 国产野战对白在线观看| 亚洲伊人色综图| 国产在线一区二区三区精| 老熟妇仑乱视频hdxx| 天堂俺去俺来也www色官网| 亚洲欧美日韩另类电影网站| 亚洲欧美精品综合一区二区三区| 在线观看舔阴道视频| 高潮久久久久久久久久久不卡| 亚洲精品国产色婷婷电影| 熟女少妇亚洲综合色aaa.| 久久久久久亚洲精品国产蜜桃av| 一进一出抽搐动态| 久久性视频一级片| 高清毛片免费观看视频网站 | 香蕉久久夜色| 男男h啪啪无遮挡| 国产激情欧美一区二区| 国产精品一区二区免费欧美| av一本久久久久| 多毛熟女@视频| 日韩欧美在线二视频 | 久久久久久人人人人人| 亚洲精品成人av观看孕妇| 色婷婷久久久亚洲欧美| 国精品久久久久久国模美| 久久久久精品国产欧美久久久| 国产成人啪精品午夜网站| 久久久久久亚洲精品国产蜜桃av| 亚洲人成伊人成综合网2020| 免费观看a级毛片全部| 亚洲av欧美aⅴ国产| 黄色片一级片一级黄色片| 成熟少妇高潮喷水视频| 成人手机av| 这个男人来自地球电影免费观看| 亚洲黑人精品在线| 69av精品久久久久久| 亚洲av熟女| 性色av乱码一区二区三区2| 欧美激情高清一区二区三区| 亚洲中文av在线| 久久香蕉国产精品| 久久久久久久午夜电影 | 国产成人系列免费观看| 亚洲美女黄片视频| 91成人精品电影| av天堂在线播放| 女人高潮潮喷娇喘18禁视频| 涩涩av久久男人的天堂| 精品人妻1区二区| 久久精品国产a三级三级三级| 少妇粗大呻吟视频| 伊人久久大香线蕉亚洲五| 成人国产一区最新在线观看| 自线自在国产av| 国产精品影院久久| 涩涩av久久男人的天堂| 欧美av亚洲av综合av国产av| 操美女的视频在线观看| 国产成人一区二区三区免费视频网站| bbb黄色大片| 操美女的视频在线观看| 国产成人欧美在线观看 | 每晚都被弄得嗷嗷叫到高潮| 日韩免费av在线播放| 国产欧美日韩一区二区三区在线| 午夜视频精品福利| 亚洲 国产 在线| 日韩制服丝袜自拍偷拍| 男女午夜视频在线观看| 男女午夜视频在线观看| 日本欧美视频一区| 在线观看免费视频网站a站| 国产不卡一卡二| 一进一出好大好爽视频| 久久精品aⅴ一区二区三区四区| 国产免费av片在线观看野外av| 亚洲视频免费观看视频| 免费在线观看完整版高清| 亚洲精品美女久久av网站| av有码第一页| 精品国产一区二区三区久久久樱花| 欧美日韩亚洲综合一区二区三区_| 99精国产麻豆久久婷婷| 亚洲精品中文字幕一二三四区| 老鸭窝网址在线观看| 色精品久久人妻99蜜桃| 91国产中文字幕| 黄色片一级片一级黄色片| 十分钟在线观看高清视频www| 熟女少妇亚洲综合色aaa.| 国产精品永久免费网站| 国产99久久九九免费精品| 午夜91福利影院| 国产精品久久久久成人av| av免费在线观看网站| 精品一区二区三区视频在线观看免费 | 亚洲av电影在线进入| 男女之事视频高清在线观看| 中亚洲国语对白在线视频| 桃红色精品国产亚洲av| 一进一出抽搐动态| 自拍欧美九色日韩亚洲蝌蚪91| svipshipincom国产片| 亚洲欧美日韩高清在线视频| 看黄色毛片网站| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美日韩乱码在线| 国产成人精品久久二区二区91| 国产色视频综合| 国产麻豆69| 成人三级做爰电影| xxxhd国产人妻xxx| 咕卡用的链子| 国产精品免费视频内射| 精品一区二区三区视频在线观看免费 | 老鸭窝网址在线观看| 欧美精品一区二区免费开放| 99精品久久久久人妻精品| 两人在一起打扑克的视频| 校园春色视频在线观看| 黄片播放在线免费| 看黄色毛片网站| 侵犯人妻中文字幕一二三四区| 午夜精品国产一区二区电影| 久久久久久久国产电影| 精品亚洲成国产av| 他把我摸到了高潮在线观看| 欧美激情极品国产一区二区三区| 一夜夜www| 欧美精品一区二区免费开放| 日本wwww免费看| 国产成人啪精品午夜网站| 一级毛片女人18水好多| 咕卡用的链子| 亚洲中文字幕日韩| 精品人妻1区二区| 国产av一区二区精品久久| 色94色欧美一区二区| 18在线观看网站| 99久久精品国产亚洲精品| 最新在线观看一区二区三区| 成人影院久久| 久久国产亚洲av麻豆专区| 女同久久另类99精品国产91| 人人妻,人人澡人人爽秒播| 两个人免费观看高清视频| 久久久久久久午夜电影 | 亚洲精品国产精品久久久不卡| 人成视频在线观看免费观看| 极品人妻少妇av视频| 午夜免费鲁丝| 欧美日韩国产mv在线观看视频| 日本黄色视频三级网站网址 | 欧美午夜高清在线| 老鸭窝网址在线观看| 91精品国产国语对白视频| 国产免费av片在线观看野外av| 性少妇av在线| 国产欧美日韩一区二区三区在线| 视频在线观看一区二区三区| 岛国在线观看网站| 亚洲人成77777在线视频| xxx96com| 久热这里只有精品99| av片东京热男人的天堂| 精品电影一区二区在线| 黄片大片在线免费观看| 怎么达到女性高潮| 女人被躁到高潮嗷嗷叫费观| 丝袜美腿诱惑在线| 亚洲avbb在线观看| 成人av一区二区三区在线看| 亚洲av日韩精品久久久久久密| 亚洲精品国产一区二区精华液| 国产高清视频在线播放一区| 国产亚洲精品久久久久5区| 国产高清国产精品国产三级| 精品人妻1区二区| 一级,二级,三级黄色视频| 欧美最黄视频在线播放免费 | 午夜福利影视在线免费观看| av视频免费观看在线观看| 国产成人av教育| 在线国产一区二区在线| 亚洲国产毛片av蜜桃av| 老鸭窝网址在线观看| www.精华液| 建设人人有责人人尽责人人享有的| 欧美激情极品国产一区二区三区| 成人18禁高潮啪啪吃奶动态图| 精品一区二区三卡| 久久精品国产99精品国产亚洲性色 | 成人黄色视频免费在线看| 激情在线观看视频在线高清 | 久热爱精品视频在线9| 国产有黄有色有爽视频| 热re99久久国产66热| 日韩欧美三级三区| 久久ye,这里只有精品| 午夜福利欧美成人| 国产亚洲欧美98| 三上悠亚av全集在线观看| 亚洲五月婷婷丁香| 一区二区三区国产精品乱码| 国产一区在线观看成人免费| 欧美精品一区二区免费开放| 咕卡用的链子| 日本欧美视频一区| 国产精品偷伦视频观看了| 中文字幕av电影在线播放| 自线自在国产av| 久久久久久久精品吃奶| 多毛熟女@视频| 老熟妇仑乱视频hdxx| 久久精品人人爽人人爽视色| 国产麻豆69| 99国产精品一区二区三区| 亚洲国产精品sss在线观看 | 国产91精品成人一区二区三区| 亚洲人成电影免费在线| 91九色精品人成在线观看| 国产一区有黄有色的免费视频| 99国产综合亚洲精品| 婷婷丁香在线五月| 999久久久精品免费观看国产| 色94色欧美一区二区| 免费久久久久久久精品成人欧美视频| 久久国产精品影院| 91成年电影在线观看| 亚洲国产中文字幕在线视频| 午夜精品国产一区二区电影| 亚洲五月天丁香| 韩国av一区二区三区四区| 精品乱码久久久久久99久播| 国产单亲对白刺激| 丝袜在线中文字幕| 精品福利永久在线观看| 久久久久久久久免费视频了| 国产日韩欧美亚洲二区| 在线看a的网站| 午夜福利在线免费观看网站| svipshipincom国产片| 亚洲欧美日韩另类电影网站| 亚洲国产看品久久| 一夜夜www| av国产精品久久久久影院| tube8黄色片| 午夜福利在线观看吧| 大香蕉久久网| 国产极品粉嫩免费观看在线| 欧美人与性动交α欧美软件| 人人妻人人添人人爽欧美一区卜| 91字幕亚洲| 久久亚洲真实| 亚洲精品久久午夜乱码| 国产亚洲欧美精品永久| 12—13女人毛片做爰片一| 国产精品久久久av美女十八| 色婷婷久久久亚洲欧美| 91字幕亚洲| 日日爽夜夜爽网站| 人人妻,人人澡人人爽秒播| 69av精品久久久久久| 亚洲精品乱久久久久久| 日韩欧美免费精品| 亚洲欧美色中文字幕在线| 狠狠婷婷综合久久久久久88av| 精品一区二区三区四区五区乱码| 精品国产乱子伦一区二区三区| 日本黄色视频三级网站网址 | 国产成人精品久久二区二区91| 欧美精品人与动牲交sv欧美| 高清av免费在线| 精品一区二区三区四区五区乱码| 亚洲欧美精品综合一区二区三区| 一夜夜www| 天天躁日日躁夜夜躁夜夜| av有码第一页| 国产成人啪精品午夜网站| 18禁观看日本| 这个男人来自地球电影免费观看| 国产成人欧美在线观看 | 黄色视频,在线免费观看| 欧美另类亚洲清纯唯美| 自线自在国产av| 一区二区三区精品91| 亚洲午夜理论影院| 亚洲第一av免费看| 成人手机av| 国产成人免费观看mmmm| 亚洲五月色婷婷综合| 亚洲成人国产一区在线观看| 老司机午夜十八禁免费视频| 精品国产亚洲在线| 精品福利永久在线观看| 啦啦啦在线免费观看视频4| 亚洲精品久久成人aⅴ小说| 美女 人体艺术 gogo| 一边摸一边做爽爽视频免费| 午夜亚洲福利在线播放| av国产精品久久久久影院| 国产淫语在线视频| 国产单亲对白刺激| 精品一区二区三卡| 正在播放国产对白刺激| 99国产精品免费福利视频| 亚洲 欧美一区二区三区| 久久久精品免费免费高清| 女人被狂操c到高潮| 在线看a的网站| 欧美久久黑人一区二区| 亚洲av成人不卡在线观看播放网| 亚洲人成电影观看| 欧美日韩瑟瑟在线播放| 捣出白浆h1v1| 熟女少妇亚洲综合色aaa.| 99久久人妻综合| 极品人妻少妇av视频| 亚洲美女黄片视频| 午夜久久久在线观看| 国产精品国产av在线观看| 久久影院123| 老汉色av国产亚洲站长工具| 精品卡一卡二卡四卡免费| 中文字幕人妻丝袜制服| 手机成人av网站| 又大又爽又粗| 久久久久久久国产电影| 久久久国产成人精品二区 | 欧美黄色片欧美黄色片| 真人做人爱边吃奶动态| 一夜夜www| 777久久人妻少妇嫩草av网站| 免费看十八禁软件| 国产高清视频在线播放一区| 女人精品久久久久毛片| av在线播放免费不卡| 国产人伦9x9x在线观看| 国产三级黄色录像| 无限看片的www在线观看| 欧美精品人与动牲交sv欧美| 欧美日韩黄片免| 日本一区二区免费在线视频| 涩涩av久久男人的天堂| 欧洲精品卡2卡3卡4卡5卡区| 日韩欧美三级三区| 国产成人精品久久二区二区免费| 在线看a的网站| 麻豆成人av在线观看| 中文欧美无线码| 成人国产一区最新在线观看| 老司机福利观看| 国产一卡二卡三卡精品| 国精品久久久久久国模美| 国产av精品麻豆| 欧美激情久久久久久爽电影 | 精品午夜福利视频在线观看一区| 日韩欧美国产一区二区入口| 一区在线观看完整版| 激情视频va一区二区三区| 国产精品久久久久久人妻精品电影| 欧美 亚洲 国产 日韩一| 俄罗斯特黄特色一大片| 91九色精品人成在线观看| 90打野战视频偷拍视频| 夜夜躁狠狠躁天天躁| 另类亚洲欧美激情| 欧洲精品卡2卡3卡4卡5卡区| 日本欧美视频一区| 99热网站在线观看| 丝袜在线中文字幕| 黄片大片在线免费观看| 水蜜桃什么品种好| 51午夜福利影视在线观看| 国产亚洲精品一区二区www | 男男h啪啪无遮挡| 久久久久久久午夜电影 | 国产一区在线观看成人免费| 久久热在线av| 国产一区二区三区在线臀色熟女 | 亚洲伊人色综图| 美女 人体艺术 gogo| 成人av一区二区三区在线看| 久久午夜亚洲精品久久| 国产一区二区三区视频了| 在线观看免费日韩欧美大片| 变态另类成人亚洲欧美熟女 | 女同久久另类99精品国产91| 欧美日韩乱码在线| 女人爽到高潮嗷嗷叫在线视频| 久久精品人人爽人人爽视色| 丁香六月欧美| 女性生殖器流出的白浆| 精品少妇久久久久久888优播| 成在线人永久免费视频| 在线观看66精品国产| 久99久视频精品免费| 丁香欧美五月| 亚洲在线自拍视频| 中文字幕另类日韩欧美亚洲嫩草| 午夜两性在线视频| 美女 人体艺术 gogo| 日韩精品免费视频一区二区三区| 免费观看精品视频网站| 免费女性裸体啪啪无遮挡网站| 在线观看免费视频日本深夜| 午夜老司机福利片| 一区福利在线观看| 啦啦啦视频在线资源免费观看| 久久精品国产亚洲av高清一级| 精品国产亚洲在线| 成人国语在线视频| 午夜福利,免费看| 天天躁日日躁夜夜躁夜夜| 久久天躁狠狠躁夜夜2o2o| 精品电影一区二区在线| 国产精品久久电影中文字幕 | 正在播放国产对白刺激| 黄色视频不卡| 老熟妇乱子伦视频在线观看| 久99久视频精品免费| 99re在线观看精品视频| 国产99久久九九免费精品| 亚洲七黄色美女视频| 在线观看www视频免费| 最新在线观看一区二区三区| 日韩欧美三级三区| 欧美乱色亚洲激情| 成年人黄色毛片网站| 亚洲美女黄片视频| 国产精品一区二区免费欧美| 91av网站免费观看| 国产99白浆流出| 三级毛片av免费| 无遮挡黄片免费观看| 一级片'在线观看视频| av欧美777| av一本久久久久| 午夜福利,免费看| 色播在线永久视频| 中国美女看黄片| 亚洲伊人色综图| 中文字幕最新亚洲高清| 国产精品av久久久久免费| 亚洲熟女毛片儿| 亚洲一区高清亚洲精品| 99精品欧美一区二区三区四区| 中文字幕精品免费在线观看视频| 久久九九热精品免费| av电影中文网址| 91国产中文字幕| 久久国产乱子伦精品免费另类| 两个人看的免费小视频| 天堂中文最新版在线下载| 亚洲精品国产区一区二| 老司机福利观看| 亚洲精品国产精品久久久不卡| 欧美日韩av久久| 99久久国产精品久久久| 亚洲视频免费观看视频| 亚洲专区字幕在线| 欧美色视频一区免费| 国产又色又爽无遮挡免费看| 一级毛片精品| 亚洲国产欧美一区二区综合| 99国产极品粉嫩在线观看| 正在播放国产对白刺激| 叶爱在线成人免费视频播放| 妹子高潮喷水视频| 一级片'在线观看视频| 亚洲中文av在线| 变态另类成人亚洲欧美熟女 | 91国产中文字幕| 丁香欧美五月| 久久精品国产清高在天天线| av电影中文网址| 后天国语完整版免费观看| 搡老岳熟女国产| 国产在线精品亚洲第一网站| 欧美激情极品国产一区二区三区| 搡老熟女国产l中国老女人| 最新的欧美精品一区二区| 免费黄频网站在线观看国产| www.熟女人妻精品国产| 99国产精品免费福利视频| 王馨瑶露胸无遮挡在线观看| 男人的好看免费观看在线视频 | 久久精品国产亚洲av高清一级| 老熟妇仑乱视频hdxx| 男女高潮啪啪啪动态图| 精品国产乱码久久久久久男人| 999久久久精品免费观看国产| av网站在线播放免费| 国产亚洲欧美在线一区二区| 国产亚洲av高清不卡| 亚洲专区中文字幕在线| 国产精品欧美亚洲77777| 亚洲av电影在线进入| 动漫黄色视频在线观看| 一级片'在线观看视频| 91成年电影在线观看| 国产亚洲一区二区精品| 大片电影免费在线观看免费| 久久精品人人爽人人爽视色| 一区二区三区激情视频| 亚洲第一欧美日韩一区二区三区| 五月开心婷婷网| 亚洲三区欧美一区| 成人三级做爰电影| 露出奶头的视频| 欧美日韩av久久| 波多野结衣一区麻豆| 国产日韩欧美亚洲二区| 欧洲精品卡2卡3卡4卡5卡区| 亚洲熟妇中文字幕五十中出 | 亚洲午夜精品一区,二区,三区| 成人黄色视频免费在线看| 亚洲美女黄片视频| 国产高清国产精品国产三级|