• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Object Helps U-Net Based Change Detectors

    2024-03-01 11:02:54LanYanQiangLiandKenliLi
    IEEE/CAA Journal of Automatica Sinica 2024年2期

    Lan Yan , Qiang Li , and Kenli Li

    Dear Editor,

    This letter focuses on leveraging the object information in images to improve the performance of the U-Net based change detector.Change detection is fundamental to many computer vision tasks.Although existing solutions based on deep neural networks are able to achieve impressive results.However, these methods ignore the extraction and utilization of the inherent object information within the image.To this end, we propose a simple but effective method that employs an excellent object detector to extract object information such as locations and categories.This information is combined with the original image and then fed into the U-Net based change detection network.The successful application of our method on MU-Net and the experimental results on CDnet2014 dataset show the effectiveness of the proposed method, and the correct object information is helpful in change detection.

    Change detection is a crucial task in visual perception [1], [2] and video analytics [3], serving as a foundational bedrock for a diverse array of computer vision applications including but not limited to action recognition, traffic monitoring, and object tracking.It is usually employed as a pre-processing step to provide focus of attention for classification, tracking, and behavior analysis, etc.Change detection is challenging due to intricate factors such as the presence of cluttered backgrounds, perturbations introduced by camera motion during video acquisition, fluctuations in weather conditions, and variations in illumination settings.A common approach for change detection is to perform background subtractions, i.e., to consider the changing region of interest as foreground pixels and the non-changing parts as background pixels.This binary classification problem has garnered substantial attention from the research community over the years, and some effective solutions are proposed.Especially in recent years, owes to the progress of deep learning, the availability of large-scale change detection datasets [4], and the development of hardware computing capabilities and parallel processing technologies [5], the change detectors based on deep neural network have achieved impressive results.

    The majority of extant change detection methods [6]-[11] based on deep neural networks predominantly leverage a single image as input, and then use elaborate network to directly segment the foreground objects.However, they neglect the mining and utilization of the target information in the video frame.Considering that change detection requires the precision segmentation of foreground objects,and the video frame inherently contains the category and location information of objects, we think that these information are helpful to improve the performance of change detector.

    Currently, the change detectors based on deep neural networks mainly include three categories.The first category is multiple network models [6], [11], where FgSegNet [11] is a representative approach that trains a model for each video on the dataset and performs testing separately.The second is dual/two networks models[7], [8], which are mostly based on generative adversarial networks(GAN) to realize change detection through adversarial learning of generator and discriminator.The third is single network models [9],[10], which mainly design network structures combining advanced convolutional neural networks such as U-Net and ResNet and train one single model only on the dataset.U-Net contains a large number of long connections, so that the features can better relate to the original information of the input image, which helps to restore the information loss caused by down-sampling.At this point, we think that UNet is essentially similar to the residual connection.Therefore, in the single network model, U-Net becomes an excellent method for change detection.Besides, dual/two networks models (e.g., BSPVGAN [7]) and multiple network models (e.g., FgSegNet [11]) have shown commendable performance achievements.Particularly, our prior work BSPVGAN [7] converges the principle of Bayesian networks with generative adversarial networks, conceiving change detection as a classification problem under probability, and it is a state-of-the-art.Thus, in this letter, we mainly focus on U-Net based change detectors and discuss how to improve these models with the help of object’s information within the given image.

    To this end, we propose a new change detection method, which capitalizes on object information such as the spatial location and semantic class to heighten model performance.Considering that the goal of object detection is to locate and identify the objects in an image, this is exactly consistent with the object information we need.Therefore, we leverage the object detector to extract the object information.The acquisition of these information is easy because it is automatically generated by a pre-trained object detector, without the need for dedicated training on the change detection dataset.Notably,MU-Net2 [9] also extracts additional information from video frames without supervising, but these information are pixel-level cues derived from optical flow motion and classical background reduction algorithms.In contrast, our approach focuses on the object information and employs the boundingbox-level cues.

    MU-Net [9] is currently the best U-Net based change detection model, which contains two versions.Except MU-Net2 which combines spatiotemporal cues, MU-Net1 only takes images as input.Thus, MU-Net1 becomes a natural choice for incorporating object information to verify the effectiveness of our method.It is worth noting that to streamline exposition, the subsequent reference to MUNet1 will be denoted as MU-Net for conciseness.Experimental results on the CDnet2014 dataset show that our method can improve the performance of U-Net based change detection model.In particular, as shown in Fig.1, the object information can make the U-Net based change detection model pay more attention to the foreground object and reduce the negative effects of cluttered background, thus contributing to the improvement of change detection performance.

    Proposed approach: Our method aims at fully mining and utilizing the object information in the given image to improve the performance of the U-Net based change detector.Fig.2 displays the comparison of our approach with the popular U-Net based change detection approach.As shown in the Fig.2, different from popular methods that only use RGB images as input, our method introduces masks with object information in addition to the original images.Benefiting from the active research on object detection in the field of computer vision, we adopt off-the-shelf object detectors to obtain the position and category information of the foreground object and generate a mask.Specifically, we first use the object detector to detect all images in a video.After the detection results are obtained, we remove the wrongly detected bounding boxes and judge the foreground objects based on the temporal cues of the video frames.According to the bounding boxes of the foreground objects, we obtain the masks required for subsequent processing.

    Fig.2.Comparison of our approach with the popular U-Net based change detection approaches.(a) The popular approaches takes only RGB images as input; (b) Our approach takes advantage of the object information within the given image, which is provided by an excellent object detector.

    For each input image, its corresponding foreground target mask can be generated by an excellent pre-trained object detector.After that, we concatenate the RGB images and their corresponding masks,then feed the results into an U-Net based change detection network.This coupling stands as one of the most straightforward way to leverage object information.There are two main reasons why we choose this option.First, using this scheme only requires a small adjustment to the structure of the input side of the network, so that our method can be flexibly applied to a variety of U-Net based change detectors.Second, due to the existence of long connections in U-Net, the original input information can be well utilized in the network.This, in turn, obviates the need for redundant reiteration of input information within the network's intermediate layers.

    Our approach leverages the object information gleaned from the object detector to make the network pay more attention to foreground objects.It is simple but effective.Nonetheless, the potency of our approach relies on the target detector’s precision in localizing and identifying objects, as well as accurately categorizing them as foreground entities.Any inaccuracies in these aspects can potentially cast an influence over the change detection performance.To obviate the deleterious impact of erroneous object information and its potential to misguide the change detector, we institute a bounding box selection strategy.In adherence to the temporal cues ingrained within video frames, we selectively eschew bounding boxes displaying tenuous correlations.This process culminates in the retention solely of bounding boxes that manifest consistent judgments across consecutive frames.This concerted effort is poised to minimize the propagation of misguided foreground object cues, thereby bolstering the performance of our change detection method.

    Fig.3.The application of our method to MU-Net.Compared to the original MU-Net, this improved version introduces object information provided by the state-of-the-art object detector YOLOv8 [12].

    Apply our approach to boost MU-Net: Our method is easy to deploy into existing U-Net based change detection networks.An application example of our method is provided in this section.We apply our method to the advanced MU-Net as shown in Fig.3.Considering the advantage of one-stage object detection methods (e.g.,YOLO [12]) over two-stage ones (e.g., Faster R-CNN [13]) in terms of inference speed, we adopt the state-of-the-art YOLOv8 [12] detector in the improved version of MU-Net to offer object information.The adopted object detector is pre-trained on the large-scale object detection dataset.In order to mitigate the negative impact caused by false detection,we apply the proposed bounding box selection strategy to the improved version of MU-Net.Specifically, after completing the extraction of object information for all video frames, for each image frame, we select five frames before it and five frames after it, and a total of ten frames are used as reference images.If the current frame is the first frame or the last frame, the number of reference images is five.Other cases in turn, finally for any image frame, the number of reference images will not be less than five.A bounding box in the current frame is kept if it has associated cues in no less than two reference images, otherwise it is discarded.For the existence of an associated cue in the reference frame, it mainly depends on intersection over union (IoU).Concretely, if the reference frame contains a bounding box with an IoU exceeding 0.1 when compared to the bounding box in question, it indicates the existence of an associated cue.In addition, it is necessary to determine whether the retained bounding box is the foreground or not, and retain the foreground object while discarding the background object.If a bounding box in the current frame has other bounding boxes with IoU greater than 0.95 in five or more reference frames, the bounding box belongs to the background, otherwise it belongs to the foreground.

    After the judgment of adjudication of foreground object bounding boxes, we set the foreground region to pure white and the background region to pure black, thus generating a single-channel foreground mask.We concatenate it with the original RGB image to form a new four-channel input.Since the original MU-Net takes RGB images with three channels as input, the number of input channels of the first convolutional layer of the improved version network,namely Conv-1, is modified to 4, as shown in Fig.4.

    Fig.4.ResNet-18 encoder backbone adopted in MU-Net.The solid shortcuts keep dimensions constant, while the dotted shortcuts increase dimensions.In the improved version of MU-Net, the input to Conv-1 has 4 channels instead of original 3.

    Experiments: To compare the performance between the improved version and the original MU-Net1https://github.com/CIVA-Lab/Motion-U-Net, we conduct experiments on the CDnet2014 dataset.As the most comprehensive change detection dataset, CDnet2014 comprises 11 categories and 53 different videosequences, where spatial resolutions of the video vary from 320 ×240 to 720 × 576.

    Table 1.Evaluation Results of the Original MU-Net and the Improved Version (ours) on CDnet 2014.↑ Represents Higher is Better, While ↓ Means Lower is Better

    According to the experimental setup of MU-Net, we randomly selected 200 annotated frames from each video to form a total of 10 600 frame for training and the rest for testing.During training,90% of 10 600 frame are used as training set and 10% as validation set.We adopt Adam optimizer with a learning rate of 0.0001 and the learning rate decreases by a factor of 10 every 20 epochs.Each model is trained for 40 epochs.

    We choose six metrics commonly used in change detection for performance evaluation, including recall, false positive rate (FPR), false negative rate (FNR), percentage of wrong classification (PWC), precision and F-measure.The lower the FPR, FNR and PWC, the better model performance.The specific calculation formula of these indicators can be found at “changedetection.net”.

    We train two models, the original MU-Net and the improved version of MU-Net, on the CDnet2014 dataset.The quantitative evaluation results are reported in Table 1, where the original MU-Net is denoted as MU-Net, and the modified version of MU-Net is represented as ours.As listed in Table 1, compared to the original MUNet, the improved version achieves better performance in the four metrics of overall recall rate, FNR, PWC and F-measure, that is,0.9639, 0.0361, 0.999 and 0.9563.The performance difference between the improved version and the original MU-Net in FPR is very small.However, in the terms of precision metric, the overall performance of the improved version which introduces additional object information is worse than that of the original MU-Net which only uses images.This is because the improved version has lower precision for change detection in four categories of video sequences,including PTZ, badWeather, lowFramerate and nightVideos.The images constituting these videos exhibit marked dissimilarity from the images typically encountered by the pre-trained object detector.Consequently, it is difficult for the object detector to provide the correct object information of these images.While our meticulously devised bounding box selection and foreground object discrimination strategies abate the prevalence of erroneous detections, we still cannot completely eliminate the false detection results that cause a negative impact on the U-Net based change detector.According to the results in Table 1 and the above analysis, it is evident that our method is effectiveness and the use of accurate target information is beneficial for boosting the U-Net based change detector.

    Conclusion: In this letter, we propose to exploit object information in images to boost the performance of U-Net based change detection models.We design a simple but effective method to realize the extraction and utilization of the object information.The proposed method is applied to the advanced MU-Net to achieve performance improvement.The experimental results verify the effectiveness of our method and that the object information is helpful for the U-Net based change detector.

    Acknowledgments: This work was supported in part by the National Natural Science Foundation of China (62302161, 6230 3361) and the Postdoctoral Innovation Talent Support Program(BX20230114).

    国产欧美亚洲国产| 国产一区亚洲一区在线观看| 日本vs欧美在线观看视频| 日韩伦理黄色片| 少妇被粗大猛烈的视频| 哪个播放器可以免费观看大片| 国产精品国产三级专区第一集| 一级,二级,三级黄色视频| 亚洲av欧美aⅴ国产| 成人毛片a级毛片在线播放| 午夜福利在线观看免费完整高清在| 大陆偷拍与自拍| videosex国产| 色网站视频免费| 国产精品久久久久久久电影| 日本-黄色视频高清免费观看| 欧美xxⅹ黑人| 国产成人精品无人区| 欧美精品人与动牲交sv欧美| 日韩av不卡免费在线播放| freevideosex欧美| 亚洲精品,欧美精品| 男人操女人黄网站| 久久精品久久久久久噜噜老黄| 草草在线视频免费看| 一级毛片 在线播放| 亚洲一级一片aⅴ在线观看| 777米奇影视久久| 一边亲一边摸免费视频| 有码 亚洲区| 久久久久人妻精品一区果冻| 欧美日韩视频高清一区二区三区二| 校园人妻丝袜中文字幕| 国产av国产精品国产| 亚洲婷婷狠狠爱综合网| av不卡在线播放| 免费黄色在线免费观看| 日韩一区二区三区影片| 欧美3d第一页| 日韩制服丝袜自拍偷拍| 久久久国产欧美日韩av| 亚洲丝袜综合中文字幕| 18禁国产床啪视频网站| 汤姆久久久久久久影院中文字幕| 日韩av在线免费看完整版不卡| 一区二区三区精品91| 国产熟女午夜一区二区三区| 视频区图区小说| 日韩中文字幕视频在线看片| √禁漫天堂资源中文www| 成人影院久久| 久久99热这里只频精品6学生| 在线观看免费高清a一片| 亚洲婷婷狠狠爱综合网| 欧美人与性动交α欧美软件 | 国产日韩欧美亚洲二区| 国产成人aa在线观看| 国产69精品久久久久777片| 天天躁夜夜躁狠狠躁躁| 国产色爽女视频免费观看| 久久精品熟女亚洲av麻豆精品| 两个人免费观看高清视频| 尾随美女入室| 国产白丝娇喘喷水9色精品| 九九在线视频观看精品| 中文字幕另类日韩欧美亚洲嫩草| 满18在线观看网站| 国产精品国产三级专区第一集| 日韩伦理黄色片| 99热网站在线观看| 久久久久视频综合| 黑人欧美特级aaaaaa片| 亚洲成人手机| 热99国产精品久久久久久7| 人妻少妇偷人精品九色| 啦啦啦啦在线视频资源| 中文字幕制服av| tube8黄色片| 最近中文字幕2019免费版| 午夜激情av网站| 永久网站在线| 免费日韩欧美在线观看| 精品人妻偷拍中文字幕| 午夜福利视频精品| 黄片播放在线免费| 国产精品久久久久久久久免| 国产成人精品福利久久| 搡女人真爽免费视频火全软件| xxxhd国产人妻xxx| 女的被弄到高潮叫床怎么办| 国产一区二区激情短视频 | 久久精品国产自在天天线| 搡老乐熟女国产| 91精品国产国语对白视频| 久久av网站| 亚洲av欧美aⅴ国产| 18禁裸乳无遮挡动漫免费视频| 91精品国产国语对白视频| 欧美日韩亚洲高清精品| 女人久久www免费人成看片| 久久99精品国语久久久| 国产综合精华液| 麻豆精品久久久久久蜜桃| 午夜免费观看性视频| 国产免费福利视频在线观看| 国产精品三级大全| 国产乱来视频区| 99久久人妻综合| 少妇高潮的动态图| www.色视频.com| 日日爽夜夜爽网站| 97在线人人人人妻| 亚洲欧美精品自产自拍| 日韩av免费高清视频| 亚洲av免费高清在线观看| av黄色大香蕉| 精品国产一区二区三区久久久樱花| 欧美日韩精品成人综合77777| 中文字幕最新亚洲高清| 欧美3d第一页| 性高湖久久久久久久久免费观看| 极品人妻少妇av视频| 国产成人免费无遮挡视频| 亚洲成人一二三区av| 国产精品女同一区二区软件| 1024视频免费在线观看| 亚洲人与动物交配视频| av播播在线观看一区| 亚洲成av片中文字幕在线观看 | 哪个播放器可以免费观看大片| 久久人人爽av亚洲精品天堂| 中文字幕亚洲精品专区| 免费高清在线观看日韩| 国产激情久久老熟女| 一本久久精品| 精品一区二区三卡| 美女视频免费永久观看网站| 亚洲精品色激情综合| √禁漫天堂资源中文www| 蜜臀久久99精品久久宅男| 成人毛片a级毛片在线播放| 国产乱来视频区| av福利片在线| 99精国产麻豆久久婷婷| 韩国精品一区二区三区 | 久久精品人人爽人人爽视色| 久久国产精品大桥未久av| 蜜桃国产av成人99| 久久久久人妻精品一区果冻| 成年人免费黄色播放视频| 国产片特级美女逼逼视频| 国产精品免费大片| 欧美日韩成人在线一区二区| 亚洲精品一二三| 伦理电影大哥的女人| 久久精品国产自在天天线| 亚洲精品久久午夜乱码| av在线app专区| 夫妻性生交免费视频一级片| 桃花免费在线播放| 美国免费a级毛片| 亚洲欧洲国产日韩| 国产成人精品一,二区| 高清欧美精品videossex| 国产亚洲欧美精品永久| 亚洲欧美精品自产自拍| 不卡视频在线观看欧美| 99热这里只有是精品在线观看| 国产av一区二区精品久久| 国国产精品蜜臀av免费| 免费看不卡的av| 97人妻天天添夜夜摸| 日本av免费视频播放| 午夜福利视频在线观看免费| 欧美人与性动交α欧美软件 | 久久久久久伊人网av| 久久av网站| 如何舔出高潮| 视频区图区小说| 丰满迷人的少妇在线观看| 一二三四在线观看免费中文在 | 大码成人一级视频| 2021少妇久久久久久久久久久| 欧美97在线视频| 男女下面插进去视频免费观看 | 少妇人妻精品综合一区二区| 亚洲精品一二三| av福利片在线| 免费日韩欧美在线观看| 少妇的逼水好多| 婷婷成人精品国产| 丰满饥渴人妻一区二区三| 亚洲精品国产av成人精品| 免费av中文字幕在线| 黄色配什么色好看| 亚洲av福利一区| 国产黄色视频一区二区在线观看| 国产在线免费精品| 一边亲一边摸免费视频| 久久精品久久久久久久性| 18禁动态无遮挡网站| 欧美日韩精品成人综合77777| 在线精品无人区一区二区三| 精品少妇内射三级| 狠狠精品人妻久久久久久综合| 99国产综合亚洲精品| 午夜激情久久久久久久| 久久影院123| 国产综合精华液| 久久国产亚洲av麻豆专区| 国产精品一区www在线观看| 欧美+日韩+精品| 少妇人妻久久综合中文| 国产日韩欧美视频二区| 全区人妻精品视频| 亚洲,一卡二卡三卡| 在线观看一区二区三区激情| 午夜av观看不卡| 夜夜骑夜夜射夜夜干| 考比视频在线观看| 一本—道久久a久久精品蜜桃钙片| 秋霞在线观看毛片| 制服丝袜香蕉在线| 久久 成人 亚洲| 久久精品熟女亚洲av麻豆精品| 一区在线观看完整版| 国内精品宾馆在线| 少妇高潮的动态图| 日韩不卡一区二区三区视频在线| 观看美女的网站| 18禁在线无遮挡免费观看视频| 国产乱来视频区| 国产色爽女视频免费观看| 亚洲成人av在线免费| 国产精品国产三级国产av玫瑰| 中文字幕av电影在线播放| 亚洲精品国产av成人精品| 亚洲图色成人| 久久国产精品大桥未久av| 最近最新中文字幕免费大全7| 99久久综合免费| 国产乱人偷精品视频| 亚洲经典国产精华液单| av又黄又爽大尺度在线免费看| 夜夜骑夜夜射夜夜干| 老女人水多毛片| 波野结衣二区三区在线| 亚洲熟女精品中文字幕| 午夜久久久在线观看| 十八禁网站网址无遮挡| 少妇被粗大猛烈的视频| 国产精品女同一区二区软件| 在线亚洲精品国产二区图片欧美| 国产精品.久久久| 久久久久精品久久久久真实原创| 国产成人a∨麻豆精品| 高清在线视频一区二区三区| 捣出白浆h1v1| 色网站视频免费| 日韩大片免费观看网站| 一本久久精品| 亚洲少妇的诱惑av| 黄色一级大片看看| 国产成人精品一,二区| 免费av不卡在线播放| 亚洲精品视频女| 又大又黄又爽视频免费| 日韩制服骚丝袜av| 国产精品人妻久久久影院| 91久久精品国产一区二区三区| 日本爱情动作片www.在线观看| 国产成人欧美| 在线精品无人区一区二区三| 成人手机av| 菩萨蛮人人尽说江南好唐韦庄| 久久人人爽av亚洲精品天堂| 日日啪夜夜爽| 日韩伦理黄色片| 麻豆乱淫一区二区| 成人毛片60女人毛片免费| 在线观看美女被高潮喷水网站| 国产日韩欧美在线精品| 女人精品久久久久毛片| 久热久热在线精品观看| av在线观看视频网站免费| 2021少妇久久久久久久久久久| 在线天堂中文资源库| 国产男女内射视频| 男女午夜视频在线观看 | 婷婷色综合www| 伦精品一区二区三区| 高清av免费在线| 纯流量卡能插随身wifi吗| a级毛片在线看网站| 国产精品久久久久成人av| 免费看光身美女| 色哟哟·www| 丁香六月天网| 国产麻豆69| 丰满饥渴人妻一区二区三| 母亲3免费完整高清在线观看 | 男人爽女人下面视频在线观看| 精品人妻熟女毛片av久久网站| 男女边吃奶边做爰视频| 少妇人妻精品综合一区二区| 亚洲人成77777在线视频| 日韩制服骚丝袜av| 中文乱码字字幕精品一区二区三区| 宅男免费午夜| 亚洲精品乱码久久久久久按摩| 校园人妻丝袜中文字幕| 日韩制服丝袜自拍偷拍| 国产免费福利视频在线观看| 91久久精品国产一区二区三区| 飞空精品影院首页| 夜夜爽夜夜爽视频| 国产高清三级在线| 全区人妻精品视频| 日韩熟女老妇一区二区性免费视频| 亚洲综合色网址| 女人被躁到高潮嗷嗷叫费观| 国产成人精品久久久久久| 两个人看的免费小视频| 国产爽快片一区二区三区| 精品福利永久在线观看| 99久久综合免费| 日韩视频在线欧美| av免费观看日本| 色婷婷久久久亚洲欧美| 亚洲国产日韩一区二区| 爱豆传媒免费全集在线观看| 国产黄色视频一区二区在线观看| 亚洲中文av在线| 中文字幕最新亚洲高清| 九九爱精品视频在线观看| 国产福利在线免费观看视频| 制服人妻中文乱码| 久久人人97超碰香蕉20202| 男的添女的下面高潮视频| 黄色毛片三级朝国网站| 免费人成在线观看视频色| 久久这里只有精品19| 最近的中文字幕免费完整| 国产欧美亚洲国产| 多毛熟女@视频| 久久久久久久大尺度免费视频| 亚洲精品aⅴ在线观看| 王馨瑶露胸无遮挡在线观看| 国产av一区二区精品久久| 成人国产av品久久久| 国产亚洲av片在线观看秒播厂| 母亲3免费完整高清在线观看 | 日韩三级伦理在线观看| 激情视频va一区二区三区| 岛国毛片在线播放| 18禁裸乳无遮挡动漫免费视频| 18禁观看日本| 汤姆久久久久久久影院中文字幕| 婷婷色综合www| 日本黄色日本黄色录像| 一级片'在线观看视频| 国产深夜福利视频在线观看| 日本与韩国留学比较| 丝袜脚勾引网站| 久久久国产精品麻豆| 国产精品欧美亚洲77777| 亚洲国产毛片av蜜桃av| 亚洲精品,欧美精品| 在现免费观看毛片| 免费大片黄手机在线观看| 99久久中文字幕三级久久日本| 欧美3d第一页| 国产成人精品无人区| 一区二区三区乱码不卡18| 人人妻人人爽人人添夜夜欢视频| 极品人妻少妇av视频| 国产成人aa在线观看| 伦精品一区二区三区| av片东京热男人的天堂| 日韩 亚洲 欧美在线| 欧美人与善性xxx| 亚洲内射少妇av| 老司机影院成人| 亚洲图色成人| 午夜日本视频在线| 91精品国产国语对白视频| 成人午夜精彩视频在线观看| 99香蕉大伊视频| 女性被躁到高潮视频| 亚洲,欧美精品.| 我的女老师完整版在线观看| 国产69精品久久久久777片| 国产免费一级a男人的天堂| 91精品国产国语对白视频| 久热这里只有精品99| 精品国产乱码久久久久久小说| 亚洲国产色片| 性高湖久久久久久久久免费观看| 国产精品一区二区在线不卡| 精品亚洲乱码少妇综合久久| 久久免费观看电影| 91精品国产国语对白视频| 春色校园在线视频观看| 免费大片黄手机在线观看| 伦理电影免费视频| 国产又爽黄色视频| 国产成人免费观看mmmm| 丝袜在线中文字幕| av播播在线观看一区| 国产成人aa在线观看| 老司机影院毛片| 久久 成人 亚洲| 九草在线视频观看| 美女xxoo啪啪120秒动态图| 精品国产一区二区三区四区第35| 欧美日韩精品成人综合77777| 久久人人爽人人片av| 在线看a的网站| 毛片一级片免费看久久久久| 国内精品宾馆在线| 99国产精品免费福利视频| 国产一区亚洲一区在线观看| 久久久久久人人人人人| 天堂中文最新版在线下载| 久久久久久久精品精品| 亚洲图色成人| 亚洲av国产av综合av卡| 亚洲欧美清纯卡通| 不卡视频在线观看欧美| 精品久久国产蜜桃| 国产精品久久久av美女十八| av免费观看日本| 久久久久国产精品人妻一区二区| 国产有黄有色有爽视频| 青春草亚洲视频在线观看| 免费人成在线观看视频色| av播播在线观看一区| 国产精品嫩草影院av在线观看| 亚洲av电影在线进入| 精品第一国产精品| 午夜精品国产一区二区电影| 日韩一本色道免费dvd| 亚洲欧洲精品一区二区精品久久久 | 日韩三级伦理在线观看| 国产精品99久久99久久久不卡 | 一二三四中文在线观看免费高清| 精品人妻一区二区三区麻豆| 美女大奶头黄色视频| av在线播放精品| 国产精品久久久av美女十八| 中文字幕人妻熟女乱码| 97人妻天天添夜夜摸| 久久亚洲国产成人精品v| 日韩伦理黄色片| 国产乱来视频区| 亚洲欧美成人精品一区二区| 看非洲黑人一级黄片| 热re99久久精品国产66热6| 久久国产精品大桥未久av| 1024视频免费在线观看| 国产精品国产三级国产av玫瑰| 人妻人人澡人人爽人人| 亚洲av电影在线进入| 国产综合精华液| 国产精品人妻久久久久久| 国产高清国产精品国产三级| 夜夜爽夜夜爽视频| 18禁裸乳无遮挡动漫免费视频| 妹子高潮喷水视频| 欧美日韩成人在线一区二区| a级毛色黄片| 街头女战士在线观看网站| 在线观看www视频免费| av播播在线观看一区| 国产一级毛片在线| 91aial.com中文字幕在线观看| 最近的中文字幕免费完整| 在线看a的网站| av不卡在线播放| 满18在线观看网站| 99久久精品国产国产毛片| 国产成人精品久久久久久| av不卡在线播放| 国产福利在线免费观看视频| 男人爽女人下面视频在线观看| 肉色欧美久久久久久久蜜桃| 黄色怎么调成土黄色| 国产av一区二区精品久久| 成人国语在线视频| 91成人精品电影| 日韩制服骚丝袜av| 国产精品蜜桃在线观看| 亚洲欧美日韩另类电影网站| 日韩熟女老妇一区二区性免费视频| 高清视频免费观看一区二区| 少妇的逼好多水| 久久久久久人妻| 免费观看a级毛片全部| 狂野欧美激情性bbbbbb| 成人毛片a级毛片在线播放| 精品一区二区三区视频在线| 免费观看av网站的网址| 99九九在线精品视频| 亚洲经典国产精华液单| av国产久精品久网站免费入址| 最近中文字幕2019免费版| 亚洲欧美清纯卡通| 亚洲成人av在线免费| 亚洲国产最新在线播放| 久久久久久久久久人人人人人人| 美女福利国产在线| 国产男女超爽视频在线观看| 18禁在线无遮挡免费观看视频| 久久精品国产亚洲av涩爱| 两个人看的免费小视频| 久久国产精品男人的天堂亚洲 | 亚洲,欧美精品.| 一级a做视频免费观看| 国产精品麻豆人妻色哟哟久久| 精品久久久久久电影网| 女人被躁到高潮嗷嗷叫费观| 日本av免费视频播放| 亚洲国产成人一精品久久久| 婷婷色综合大香蕉| 亚洲国产欧美日韩在线播放| 婷婷色综合大香蕉| 国产爽快片一区二区三区| 最黄视频免费看| 国产无遮挡羞羞视频在线观看| 18在线观看网站| 韩国高清视频一区二区三区| 日本色播在线视频| 欧美日韩亚洲高清精品| 国产成人免费观看mmmm| 精品亚洲成国产av| 国产精品人妻久久久影院| 热99久久久久精品小说推荐| 亚洲av电影在线观看一区二区三区| 午夜福利,免费看| 久久久国产一区二区| 日韩在线高清观看一区二区三区| 青青草视频在线视频观看| 在线精品无人区一区二区三| 王馨瑶露胸无遮挡在线观看| 狠狠婷婷综合久久久久久88av| 日韩免费高清中文字幕av| 国产免费一级a男人的天堂| 免费黄色在线免费观看| 亚洲精品,欧美精品| 韩国高清视频一区二区三区| 黄片无遮挡物在线观看| 中文字幕免费在线视频6| 一区二区av电影网| av黄色大香蕉| 夫妻午夜视频| 亚洲,欧美,日韩| 午夜福利视频精品| 免费av不卡在线播放| 一级毛片我不卡| 熟女电影av网| 亚洲精品国产av成人精品| 亚洲欧美精品自产自拍| 99久国产av精品国产电影| 天天操日日干夜夜撸| 国产精品熟女久久久久浪| 晚上一个人看的免费电影| 国产伦理片在线播放av一区| 美女xxoo啪啪120秒动态图| 免费看光身美女| 国语对白做爰xxxⅹ性视频网站| 老司机影院毛片| 午夜福利影视在线免费观看| 老司机影院毛片| 久久精品国产综合久久久 | 亚洲精品久久午夜乱码| 黑丝袜美女国产一区| av不卡在线播放| 国产黄色免费在线视频| 久久久久久人人人人人| 色婷婷av一区二区三区视频| 国产精品麻豆人妻色哟哟久久| 亚洲内射少妇av| 欧美老熟妇乱子伦牲交| xxxhd国产人妻xxx| 国产精品国产三级国产专区5o| 欧美精品人与动牲交sv欧美| 久热久热在线精品观看| 亚洲综合色惰| 久久精品熟女亚洲av麻豆精品| 两个人看的免费小视频| 大陆偷拍与自拍| 久久久久精品性色| 一区二区三区精品91| 欧美成人精品欧美一级黄| 色吧在线观看| 午夜免费观看性视频| 精品少妇久久久久久888优播| 亚洲国产毛片av蜜桃av| 精品人妻偷拍中文字幕| 人妻系列 视频| 国产精品秋霞免费鲁丝片| 国产色爽女视频免费观看| 欧美精品av麻豆av| 成年人免费黄色播放视频| 久久韩国三级中文字幕| 免费女性裸体啪啪无遮挡网站| 欧美日韩av久久| 欧美亚洲 丝袜 人妻 在线| 一二三四在线观看免费中文在 | 欧美国产精品一级二级三级| 免费人成在线观看视频色| 黄片播放在线免费| 全区人妻精品视频| 人妻系列 视频| 色婷婷av一区二区三区视频|