• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于席夫堿配體和兩種苯甲酸鹽構(gòu)筑的兩例Dy4配合物的合成、結(jié)構(gòu)及單分子磁體性質(zhì)

    2024-02-23 08:40:00李大偉師素云涉葉葉張夏梅李亞紅張義權(quán)姚金雷
    無機化學(xué)學(xué)報 2024年2期
    關(guān)鍵詞:實驗室

    李大偉 胡 瑞 師素云 涉葉葉 張夏梅 李亞紅*, 張義權(quán)*, 姚金雷

    (1蘇州大學(xué)材料與化學(xué)化工學(xué)部,蘇州 215123)

    (2南京師范大學(xué)物理科學(xué)與技術(shù)學(xué)院,江蘇省NSLSCS重點實驗室,南京 210023)

    (3河南交通職業(yè)技術(shù)學(xué)院,鄭州 451460)

    (4蘇州科技大學(xué)物理科學(xué)與技術(shù)學(xué)院,江蘇省微納熱流技術(shù)與能源應(yīng)用重點實驗室,蘇州 215009)

    0 Introduction

    Single-molecule magnets (SMMs) are molecular entities that can store magnetic information at the molecular scale[1-3].SMMs have shown a diverse number of utilizations in information storage, spintronics devices[4], magnetic refrigeration[5], and quantum computing[6].Research on SMMs has been moving toward lanthanide-based SMMs since the first rare earth-based SMM was reported in 2003[7-9].Lanthanides have the potential to achieve a high anisotropic energy barrier(Ueff) due to their considerable unquenched orbital angular momentum and magnetic anisotropy[10-11].Benefiting from the unparalleled single-ion anisotropy and the Kramers ground state of6H15/2[12-13],the Dy(Ⅲ)ion has a very strong potential for the development of SMMs.

    Many SMMs based on Dy(Ⅲ)ions have been reported.Tetranuclear Dy-SMMs continue to attract intensive attention because this type of SMMs exhibits aesthetically pleasing structures including linear-shaped[14-15],[2×2] square grid[16-18], triangle-based pyramid[19], rhombus-shaped (or butterfly-shaped)[20-22], and Y-shaped[23]topologies.It was found that a tetranuclear DyⅢ4complex with a defect-dicubane geometry behaved as an SMM with an anisotropic barrier of 170 K[24].

    In our previous work, we found that the reactions of Dy(NO3)3·6H2O with a Schiff base ligand 2-(((2-hydroxy-3-methoxybenzyl)imino)methyl)-4-methoxyphenol (H2L) in three different solvents afforded three Dy2SMMs with different anisotropy barriers and variable relaxation mechanisms[25].We anticipated that the inclusion of different benzoic acids in the reaction systems may generate a series of tetranuclear DyⅢ4SMMs,in which the Dy2basic units were connected by benzoic acids, and the formation of DyⅢ4SMMs may provide a chance for us to understand the magneto-structural relationships.

    Based on these considerations, we conducted the reactions of Dy(NO3)3·6H2O, H2L, and PhCO2H and 2-NO2-PhCO2H, respectively.Two linear tetranuclear dysprosium complexes of formulae [Dy4(L)4(PhCO2)2(NO3)2(EtOH)2] (1) and [Dy4(L)4(2-NO2-PhCO2)2(NO3)2(EtOH)2] (2) were prepared.Complexes 1 and 2 exhibit SMM properties.The complete-active-space selfconsistent field (CASSCF) calculations were carried out to analyze the magnetic properties of 1 and 2.Herein, we report the syntheses, structures, and SMM properties of 1 and 2.

    1 Experimental

    1.1 Reagents

    All chemicals were obtained commercially and used directly.The intermediate compound 3-methoxysalicylamine that was used for synthesizing the H2L ligand was prepared by following the literaturereported procedure[25].

    1.2 Preparation of ligand H2L

    The synthesis process and related characterization of ligand H2L can be found in the literature previously reported by our research group[26].

    1.3 Preparation of complex 1

    Dy(NO3)3·6H2O (0.05 mmol), PhCO2H (0.05 mmol), H2L (0.05 mmol), MeCN (0.5 mL), EtOH (1.5 mL),and Et3N (0.15 mmol)were loaded in a Pyrex tube(10 mL).The tube was sealed and heated for 48 h at 70 ℃.The dark-yellow stripe crystals of complex 1 were formed.The yield was 0.015 g (48% based on Dy).Elemental Anal.Calcd.for C82H82Dy4N6O28(%): C,43.78; H, 3.67; N, 3.74.Found(%): C, 43.89; H, 3.44;N,3.76.IR data(KBr,cm-1):3 321(w),1 629(s),1 475(s),1 391(s),1 279(s),1 154(s),846(m),819(s),712(s),624(w).

    1.4 Preparation of complex 2

    H2L (0.05 mmol), Dy(NO3)3·6H2O (0.05 mmol), 2-NO2-PhCO2H (0.05 mmol), Et3N (0.15 mmol), MeCN (1 mL), and EtOH (2.5 mL) were loaded in a Pyrex tube.The tube was sealed and heated for 48 h at 70 ℃.Yellow stripe crystals of complex 2 were formed.The yield of 2 was 0.026 g (72% based on Dy).Elemental Anal.Calcd.for C82H80Dy4N8O32(%): C, 42.10; H, 3.45;N, 4.79.Found(%): C, 42.29; H, 3.41; N, 4.27.IR data(KBr, cm-1): 3 324 (w), 1 628 (s), 1 602 (s), 1 473 (s),1 383 (s), 1 272 (s), 1 219 (s), 1 153 (s), 1 071 (s), 841(s),786(s),747(s),712(s).

    1.5 Physical measurements

    IR spectra were determined by a Bruker VERTEX 70 FTIR spectrophotometer in the 600-4 000 cm-1range.The elemental analyses for carbon,nitrogen,and hydrogen were obtained from a Perkin-Elmer 2400 analyzer.Magnetic data were measured on a Quantum Design Dynacool-9 in the 2-300 K range.Powder X-ray diffraction (PXRD) patterns were measured on a Rigaku D/Max-2500 diffractometer with CuKαradiation (λ=0.154 06 nm) at 40 kV and 100 mA with a scanning range of 5°-50°.The structures of complexes 1 and 2 were determined from a Bruker SMART APEXⅡCCD diffractometer with MoKα(λ=0.071 073 nm)and theφ-ωscan.The structures were solved using the Olex2 and SHELXTL packages[27-28].Complex 2 contains highly disordered solvents that could not be satisfactorily refined.The SQUEEZE routine of PLATON was used in the treatment of the crystallographic data.Although it is difficult to determine the free solvents in the crystal lattice, the composition and connectivity of complex 2 are definite.The structure parameters for 1 and 2 are listed in Table 1.The selected bond lengths and angles are summarized in Table S1 (Supporting information).

    Table 1 Crystallographic data and structure refinement of complexes 1 and 2

    CCDC:2047006,1;2047008,2.

    2 Results and discussion

    2.1 Synthesis of ligand H2L and complexes 1 and 2

    The H2L ligand was synthesized based on the synthetic route of Scheme 1 and characterized by1H and13C NMR spectroscopy (Fig.S1), IR spectroscopy (Fig.S3), and elemental analysis.The potential coordination mode for the H2L ligand is displayed in Scheme 1.Complexes 1 and 2 were obtained from the 1∶1∶1∶3 reactions of H2L, Dy(NO3)3·6H2O PhCO2H/2-NO2-PhCO2H,and triethylamine in EtOH/MeCN(Scheme 2).

    Scheme 1 Synthetic route of the H2L ligand and its two coordination pockets

    Scheme 2 Syntheses of complexes 1 and 2

    2.2 Structure descriptions of complexes 1 and 2

    X-ray crystallographic analysis results indicated that complexes 1 and 2 possess similar structures.The space groups of 1 and 2 are triclinicP1 and monoclinicP21/c.We choose 1 as an example to present its structural features in detail (Fig.1).Complex 1 is crystallographically centrosymmetric.It is mainly comprised of four Dy(Ⅲ)ions, four doubly deprotonated H2L ligands(L2-),two benzoate ions,two nitrate ions,and two EtOH molecules.The central Dy1 ions in the Dy4chain are seven-coordinated by one N atom (N1) from an L2-ligand, five O atoms (O2, O2A, O3, O7, and O8) from three L2-ligands, and one O atom (O9) of the PhCO2-ion (Fig.1a).The Dy2 ions adopt the NO7coordination mode.The two ligands exhibit theμ3∶η2∶η1∶η2∶η1coordination fashion,and the other two ligands show theμ2∶η1∶η1∶η2∶η1mode.The carboxyl groups in the two complexes display the monodentate coordination mode.Complex 1 shows a linear topological structure, in which the [Dy4O6] core is made by the fusion of two[Dy2O2] units bridged via two phenolic oxygen atoms(Fig.S5).The Dy (Ⅲ)ions exhibit capped pentagonal bipyramid and triangular dodecahedron geometries(Fig.1b), which are proven by the SHAPE 2.0 software calculation (Table S2).The distances of Dy1…Dy2 and Dy1…Dy1A are 0.380 18(4) and 0.377 21(5) nm,respectively.The bond angles of Dy2—Dy1—Dy1A and Dy1—Dy1A—Dy2A are both 139.835(11)°.The bond lengths of Dy—O are within the range of 0.217 1(3)-0.246 8(4) nm.The bond distances of Dy—N vary from 0.245 0(4) to 0.284 2(5) nm.The bond angles of O—Dy—O are within a range of 52.37(14)°-164.53(12)°.The O—Dy—O angles and Dy—O distances are comparable to some of the Dy4clusters in the literature[24,29].Theπ…πand hydrogen-bonding interactions held the individual molecules to form a supramolecular network(Fig.S6-S7).

    Fig.1 Molecular structure(a)and the coordination polyhedrons of Dy(Ⅲ)ions(b)in complex 1

    Complexes 1 and 2 join a large family of Dy4complexes (several hundred Dy4complexes were found in the CCDC database).However, Dy4complexes with linear structures are relatively rare[14,30-36].

    2.3 Thermal properties

    The TGA of complexes 1 and 2 (Fig.S18) were studied to investigate the stability of the crystal frameworks and the existence of the guest molecules.It was found that the first weight loss of 1.96% of complex 1 occurred between 120 and 180 ℃, which is consistent with the loss of one ethanol molecule (2.05%).The further weight loss indicates the decomposition of the crystal frameworks.For complex 2, the first weight loss of 2.02% between 65 and 130 ℃was determined,which almost agrees with the loss of one ethanol guest molecule (2.06%).It began to break down upon further heating.

    2.4 Magnetic properties of complexes 1 and 2

    Under an applied magnetic field of 1 000 Oe, the DC magnetic susceptibility data of complexes 1 and 2 were measured.As displayed in Fig.2, the determinedχMTvalues of 1 and 2 at room temperature were 56.60 and 57.05 cm3·mol-1·K.These values were close to the expected values of 56.68 cm3·mol-1·K for four uncoupled Dy(Ⅲ)ions(6H15/2,S=5/2,L=5,J=15/2,g=4/3)for 1 and 2.

    Fig.2 χMT values under 1 000 Oe from 2 to 300 K for complexes 1 and 2

    TheχMTvalues of 1 and 2 declined slightly from 300 to 2 K.TheχMTvalues reached the lowest points of 50.25 and 54.14 cm3·mol-1·K at 46 K.This trend is possibly induced by depopulation of the excited Stark sublevels[37-38].When the temperature was dropped further, theχMTvalues increased rapidly, reaching 64.61 and 58.71 cm3·mol-1·K at 2 K.

    At a zero-DC field,the AC magnetic susceptibility data for 1 and 2 were determined to explore the dynamics of magnetizations.The AC magnetic susceptibility data were examined at 32, 100, 320, 666, 780, and 1 000 Hz from 2 to 40 K (30 K) for 1 and 2 (Fig.3).Both complexes presented single-molecule magnet behavior indicated by the appearance of significant frequency dependence in theχ′andχ″signals(Fig.S9).

    Fig.3 Temperature dependence of the in-phase(χ′)and out-of-phase(χ″)susceptibilities for 1(a,b)and 2(c,d)under a zero DC field

    The peaks of AC signals of 2 appeared between 8 and 16 K at the six frequencies (Fig.3).When the temperature was decreased, a remarkable increase in theχ′ andχ″ signals, such as a “tail”, was present.The QTM (quantum tunneling of the magnetization) found in many reported lanthanide - based SMMs[39-40]may appear.

    The effective barriers of magnetic relaxation were analyzed by Cole-Cole plots.Fig.4 and S10 show the best fits for complexes 1 and 2,respectively.The relaxation time (τ=(2πν)-1) in the high-temperature range obeys the Arrhenius equation:τ=τ0exp[Ueff/(kBT)] (1).TheUeff(effective energy barrier) values of 110 and 108 K, andτ0values of 1.03×10-6and 7.22×10-8s for complexes 1 and 2, respectively, were derived.These data were comparable to some Dy4SMMs reported in the literature[41-45].

    Fig.4 Cole-Cole plots of complex 1(12 to 22 K)under a zero DC field

    At low temperatures, the relaxation times were not linear, indicating the presence of other processes, such as Raman and QTM, in addition to the thermally activated Orbach process.Thus, the magnetic susceptibility data of complex 1 were fitted by employing the equation:τ-1=τ0-1exp[-Ueff/(kBT)]+τQTM-1(2).The best fit of complex 1 produced the parameters ofUeff/kB=104.06 K,τ0=1.50×10-6s, andτQTM=7.29×10-3s.The Orbach and QTM processes may exist for the possible relaxation processes in complex 1.For complex 2, we fitted the magnetic data with Eq.2, where the relaxations of both the Orbach and QTM were taken into account.The best fit of Eq.2 produced the parameters ofUeff/kB=103.24 K,τ0=1.07×10-7s, andτQTM=7.03×10-3s for complex 2, showing proximity to the values fitted only by the Arrhenius equation(Fig.S12).

    2.5 Theoretical calculations

    Using the X-ray-determined geometries, CASSCF computations on each Dy (Ⅲ)ion of complexes 1 (Dy1,Dy2) and 2 (Dy1, Dy2) were performed with the programs MOLCAS 8.4[46]and SINGLE_ANISO[47](the details are presented in the Supporting information).The mainmJdata of the lowest eight KDs (Kramers doublets) of each Dy (Ⅲ)ion, the energy levels (cm-1),andg(gx,gy,gz) tensors are listed in Table S8.ThemJdata for the lowest two KDs of each Dy(Ⅲ)ion are collected in Table S9.The ground KDs of Dy1(2) consist of severalmJstates and the others mainly consist of a singlemJ=±15/2 state.For 1 and 2, the first excited states both consist of severalmJstates.For each Dy(Ⅲ)ion, the magnetic blocking barriers are presented in Fig.S14.The transversal magnetic moments for Dy1(1), Dy2 (1), and Dy2 (2) in the ground KDs were all close to 0.1μB; therefore, the QTM could be restrained in their ground KDs at low temperatures.In the first excited KDs of these ions, the transversal magnetic moments were close to 0.1μB; thus, a fast QTM in their first excited KDs is possible[48].However, in the ground KDs of Dy1 (2), the transverse magnetic moments were 0.11μB, thus permitting a fast QTM in their ground KDs.While the magnetic anisotropies of 1 and 2 originate from a single Dy(Ⅲ)ion, the interactions between two Dy(Ⅲ)ions influence their slow relaxation of magnetization.

    For 1 and 2, the computed ground gzdata of each Dy (Ⅲ)ion were all approximately 20, and the interactions between two Dy(Ⅲ)ions could be mostly treated as the Ising-type in the process for fitting.The POLY_ANISO program[48]was utilized to fit the DC data of 1 and 2 by employing the parameters listed in Table 2.

    Table 2 Fitted Jexch,Jdip,and J values between Dy(Ⅲ)ions in complexes 1 and 2*

    The parameters in Table 2 were computed consideringS=1/2 of the Dy (Ⅲ)ion.The schemes of the Dy(Ⅲ)…Dy(Ⅲ)interactions in 1 and 2 are displayed in Fig.S15.During the fitting, theJparameters (total for dipolar and exchange) were involved in the fit of the DC data.The computed and determinedχMTvsTcurves of 1 and 2 are presented in Fig.S16.At low temperatures, the fits agreed with the determined data[49].From Table 2, the Dy1…Dy2 and Dy1…Dy1′ interactions for both complexes are ferromagnetic using the Lines model[50].Somegzvalues for the lowest eight or two doublets, the exchange energies, and the energy difference between each exchange doubletΔtfor 1 and 2 are listed in Table S10.In the ground exchange states, thegzvalues were close to 70, revealing that the interactions between two Dy(Ⅲ)ions are ferromagnetic.Because thegzvalue of a single Dy(Ⅲ)ground state is close to 20, if four ferromagnetic particles are in parallel, it is close to 80, and if they are antiparallel, the result should be 0.Fig.S17 shows the magnetic axes for each Dy(Ⅲ)ion.The angles between Dy1…Dy2 and the magnetic axes were 70.6° and 62.1° for 1 and 2,respectively.

    Compared with the previously reported Dy2complexes[26], 1 and 2 showed slightly higher energy barriers than those of the three Dy2complexes,which exhibited energy barriers of 104, 99, 76, and 46 K (two-step relaxation).It can be seen that the distances of Dy1…Dy2 were increased, and the values ofJtotalinteractions and the angles (θ) between the magnetic axis and the line connecting Dy1 and Dy2 ions were also increased,after the introduction of the different benzoates in 1 and 2.However, the energy barriers were not greatly altered.Thus, the geometry of each Dy (Ⅲ)ion may be the main factor determining the energy barriers, as the geometries of the Dy (Ⅲ)ions in 1 and 2 are different from those of the reported Dy2complexes.

    3 Conclusions

    Two linear tetranuclear complexes[Dy4(L)4(PhCO2)2(NO3)2(EtOH)2] (1) and [Dy4(L)4(2-NO2-PhCO2)2(NO3)2(EtOH)2](2)were prepared employing 2-(((2-hydroxy-3-methoxybenzyl)imino)methyl)-4-methoxyphenol (H2L)as the ligand and aromatic carboxylic acids PhCO2H and 2-NO2-PhCO2H as ancillary ligands.Complexes 1 and 2 are isostructural.The results for AC magnetic studies indicated that the two complexes exhibit SMM properties at zero DC field.Ueff/kBvalues of 110 and 108 K were determined for 1 and 2, respectively.By comparing the relevant structures and magnetic data with the previously reported Dy2complexes supported by the H2L ligand, we found that when the distances of Dy1…Dy2 were increased, the values ofJtotalinteractions and the angles (θ) between the magnetic axis and the lines connecting Dy1 and Dy2 ions were also increased in 1 and 2, after the introduction of different benzoates.Due to the introduction of adjacent nitro groups on the auxiliary ligand in 2, the electronwithdrawing ability is increased.Considering the increase in steric hindrance during the formation of the complex,the angle between Dy1…Dy2 and the magnetic axis in its structure of 2 (62.1°) was slightly smaller than that in 1 (70.6°), resulting in a slightly higher energy barrier of 1.The calculated results provided detailed information about the complexes.Thus, the combination of the experimental results with the calculated outcomes will help us to understand the magnetostructural relationships of 1 and 2 and guide us to develop new SMMs.

    Supporting information is available at http://www.wjhxxb.cn

    猜你喜歡
    實驗室
    電競實驗室
    電子競技(2020年8期)2020-12-23 04:09:40
    電競實驗室
    電子競技(2020年7期)2020-10-12 10:45:48
    電競實驗室
    電子競技(2020年5期)2020-08-10 08:43:10
    電競實驗室
    電子競技(2020年4期)2020-07-13 09:18:06
    電競實驗室
    電子競技(2020年2期)2020-04-14 04:40:38
    電競實驗室
    電子競技(2020年11期)2020-02-07 02:49:36
    電競實驗室
    電子競技(2020年9期)2020-01-11 01:06:21
    電競實驗室
    電子競技(2020年10期)2020-01-11 01:06:06
    電競實驗室
    電子競技(2019年22期)2019-03-07 05:17:26
    電競實驗室
    電子競技(2019年21期)2019-02-24 06:55:52
    亚洲精品久久国产高清桃花| 看十八女毛片水多多多| 亚洲欧美精品综合久久99| 日日摸夜夜添夜夜爱| 亚州av有码| 欧美日本亚洲视频在线播放| 美女脱内裤让男人舔精品视频 | 久久久久性生活片| 91在线精品国自产拍蜜月| 床上黄色一级片| 一区二区三区高清视频在线| 亚洲av中文字字幕乱码综合| 亚洲av电影不卡..在线观看| 99riav亚洲国产免费| 亚洲最大成人手机在线| 中文字幕av成人在线电影| 日韩国内少妇激情av| 国产色婷婷99| av女优亚洲男人天堂| 亚洲高清免费不卡视频| 色哟哟·www| 日本色播在线视频| 亚洲成人久久性| 一个人看的www免费观看视频| 小蜜桃在线观看免费完整版高清| 国产中年淑女户外野战色| 日韩高清综合在线| 偷拍熟女少妇极品色| 国产精品人妻久久久影院| 国内少妇人妻偷人精品xxx网站| 看十八女毛片水多多多| 亚洲人成网站在线观看播放| 国产高清三级在线| 一级av片app| 国产精品久久久久久精品电影小说 | 噜噜噜噜噜久久久久久91| 少妇人妻一区二区三区视频| 欧美日韩一区二区视频在线观看视频在线 | 亚洲av.av天堂| 只有这里有精品99| 国产熟女欧美一区二区| 国产色婷婷99| 久久精品国产鲁丝片午夜精品| 可以在线观看的亚洲视频| 色播亚洲综合网| 我要看日韩黄色一级片| 看非洲黑人一级黄片| 国内少妇人妻偷人精品xxx网站| 国产在线男女| 老师上课跳d突然被开到最大视频| 午夜激情欧美在线| 精品久久久久久久末码| 黄色视频,在线免费观看| 国产视频首页在线观看| 男女下面进入的视频免费午夜| 成人三级黄色视频| 国产女主播在线喷水免费视频网站 | ponron亚洲| 三级经典国产精品| 日韩欧美在线乱码| 亚洲人成网站高清观看| 色视频www国产| 久久精品夜色国产| 久久久久网色| 春色校园在线视频观看| 亚洲精品国产成人久久av| 精品久久久久久久久av| 国产精品久久久久久亚洲av鲁大| 久久精品91蜜桃| 国产精品国产高清国产av| 尾随美女入室| 日本一本二区三区精品| 蜜桃久久精品国产亚洲av| 干丝袜人妻中文字幕| 一级黄片播放器| videossex国产| 亚洲av第一区精品v没综合| 日韩强制内射视频| a级毛片免费高清观看在线播放| 久久久久久久久大av| 一区福利在线观看| 久久99蜜桃精品久久| 自拍偷自拍亚洲精品老妇| 一个人看的www免费观看视频| 久久精品国产亚洲av涩爱 | 久久精品国产自在天天线| 精品久久久久久久久亚洲| 亚洲欧美精品专区久久| 2022亚洲国产成人精品| 精品人妻偷拍中文字幕| 国产精品久久久久久久电影| 黄色日韩在线| 网址你懂的国产日韩在线| 97超碰精品成人国产| 联通29元200g的流量卡| 久久人妻av系列| 国产成人精品一,二区 | 亚洲欧美精品专区久久| 亚洲乱码一区二区免费版| 边亲边吃奶的免费视频| www.av在线官网国产| 亚洲最大成人中文| 中文资源天堂在线| 99久久精品一区二区三区| 精品久久久噜噜| 丝袜喷水一区| 级片在线观看| 日韩欧美国产在线观看| 色尼玛亚洲综合影院| 久久久久久久久久久丰满| 午夜久久久久精精品| 桃色一区二区三区在线观看| 久久精品国产亚洲网站| 亚洲成人久久爱视频| 久久久色成人| 一本久久中文字幕| 97热精品久久久久久| 欧美成人a在线观看| 男女视频在线观看网站免费| 夜夜爽天天搞| 亚洲aⅴ乱码一区二区在线播放| 日本免费a在线| 一级毛片久久久久久久久女| 免费看美女性在线毛片视频| 中文字幕熟女人妻在线| 国产国拍精品亚洲av在线观看| av又黄又爽大尺度在线免费看 | 久久精品国产亚洲av涩爱 | 国产一区二区在线av高清观看| 五月玫瑰六月丁香| 久久久久久久久久黄片| 久久人人爽人人爽人人片va| 午夜福利在线观看吧| 一卡2卡三卡四卡精品乱码亚洲| 大又大粗又爽又黄少妇毛片口| 黄色一级大片看看| 国产av在哪里看| 国产一区二区亚洲精品在线观看| 卡戴珊不雅视频在线播放| 国产视频内射| 欧美日本视频| 亚洲中文字幕日韩| 99国产极品粉嫩在线观看| 欧美bdsm另类| 国产精品一区二区三区四区久久| 99九九线精品视频在线观看视频| 在线观看午夜福利视频| 亚洲成人久久爱视频| 久久精品国产99精品国产亚洲性色| 高清毛片免费看| 成人综合一区亚洲| 日韩在线高清观看一区二区三区| 国产精品一区二区三区四区免费观看| 亚洲电影在线观看av| 男女啪啪激烈高潮av片| 午夜a级毛片| 国产精品一区二区三区四区久久| 淫秽高清视频在线观看| 国产高清有码在线观看视频| 中国美女看黄片| 亚洲成人久久爱视频| 乱码一卡2卡4卡精品| 欧美激情国产日韩精品一区| 此物有八面人人有两片| 中文欧美无线码| 亚洲欧美成人综合另类久久久 | 国产高清激情床上av| 久久精品国产清高在天天线| 九色成人免费人妻av| 99九九线精品视频在线观看视频| 夜夜爽天天搞| 国产片特级美女逼逼视频| 桃色一区二区三区在线观看| 精品人妻一区二区三区麻豆| 精品久久久噜噜| 久久久久久久久久成人| 国产亚洲精品久久久久久毛片| 亚洲精品乱码久久久久久按摩| 亚洲成人中文字幕在线播放| 久久久久久久久久黄片| 嫩草影院精品99| 精品久久久久久久末码| 最近2019中文字幕mv第一页| 中出人妻视频一区二区| 久久久久久久亚洲中文字幕| 国产午夜精品一二区理论片| 三级经典国产精品| 一区二区三区高清视频在线| 国产不卡一卡二| 久久人人爽人人爽人人片va| 亚洲av第一区精品v没综合| 久久精品夜色国产| av女优亚洲男人天堂| 婷婷色av中文字幕| 午夜久久久久精精品| kizo精华| 九九在线视频观看精品| 只有这里有精品99| 色综合亚洲欧美另类图片| 91久久精品国产一区二区三区| 国产亚洲精品久久久久久毛片| 精品一区二区三区人妻视频| 最好的美女福利视频网| 日韩欧美一区二区三区在线观看| 哪里可以看免费的av片| av视频在线观看入口| 麻豆国产av国片精品| 欧美成人精品欧美一级黄| 天堂网av新在线| 国产探花极品一区二区| 成人特级黄色片久久久久久久| 国产亚洲5aaaaa淫片| av免费在线看不卡| 日本爱情动作片www.在线观看| 六月丁香七月| 最近最新中文字幕大全电影3| 插逼视频在线观看| 免费电影在线观看免费观看| 99久国产av精品国产电影| 中文字幕av在线有码专区| 黄片无遮挡物在线观看| 99国产精品一区二区蜜桃av| 国产精品久久电影中文字幕| 网址你懂的国产日韩在线| av免费在线看不卡| 中国美女看黄片| 日韩视频在线欧美| 精品不卡国产一区二区三区| 在线免费观看的www视频| 久久午夜亚洲精品久久| 99久久精品一区二区三区| 此物有八面人人有两片| 欧美精品国产亚洲| 日日干狠狠操夜夜爽| 国产成人aa在线观看| 中文在线观看免费www的网站| 国产欧美日韩精品一区二区| 国产精品久久久久久久电影| 亚洲自偷自拍三级| 亚洲国产精品成人久久小说 | 2021天堂中文幕一二区在线观| 欧美一区二区亚洲| 免费看日本二区| 日韩,欧美,国产一区二区三区 | 日韩精品有码人妻一区| av在线播放精品| 极品教师在线视频| 看免费成人av毛片| 91av网一区二区| 国产视频首页在线观看| 秋霞在线观看毛片| 久久久久免费精品人妻一区二区| 日本与韩国留学比较| 乱人视频在线观看| 少妇熟女欧美另类| 色5月婷婷丁香| 国产午夜精品久久久久久一区二区三区| 精品免费久久久久久久清纯| 久久精品国产亚洲av天美| 一进一出抽搐gif免费好疼| 亚洲精品影视一区二区三区av| 97超碰精品成人国产| 亚州av有码| 成熟少妇高潮喷水视频| 亚洲真实伦在线观看| 亚洲最大成人手机在线| 99视频精品全部免费 在线| 国产精品女同一区二区软件| 99久久精品一区二区三区| 日韩精品有码人妻一区| 毛片女人毛片| 国产91av在线免费观看| 精品人妻熟女av久视频| 精品久久久久久久久久久久久| 亚洲成人av在线免费| 97在线视频观看| 别揉我奶头 嗯啊视频| 午夜福利在线观看免费完整高清在 | 成年女人永久免费观看视频| 在现免费观看毛片| 国产午夜精品论理片| 久久亚洲精品不卡| 国产亚洲精品久久久com| 中文在线观看免费www的网站| 亚洲精品自拍成人| 免费搜索国产男女视频| 又黄又爽又刺激的免费视频.| 国产午夜福利久久久久久| 少妇的逼好多水| 日本欧美国产在线视频| 国产午夜精品一二区理论片| av天堂在线播放| 九九热线精品视视频播放| 欧美极品一区二区三区四区| 亚洲中文字幕一区二区三区有码在线看| 欧美一区二区国产精品久久精品| 亚洲成a人片在线一区二区| 亚洲欧美日韩东京热| 久久国产乱子免费精品| 一个人免费在线观看电影| 亚洲第一电影网av| 1000部很黄的大片| 女人十人毛片免费观看3o分钟| 99精品在免费线老司机午夜| 精华霜和精华液先用哪个| 精品一区二区三区视频在线| 大香蕉久久网| 波多野结衣高清作品| 国产一级毛片在线| 在线a可以看的网站| 99在线人妻在线中文字幕| 亚洲人与动物交配视频| 大又大粗又爽又黄少妇毛片口| 一区二区三区高清视频在线| 欧美性猛交╳xxx乱大交人| 亚洲久久久久久中文字幕| 22中文网久久字幕| 国产黄片视频在线免费观看| 久久精品国产鲁丝片午夜精品| 身体一侧抽搐| 一边亲一边摸免费视频| 老司机影院成人| 国产精品永久免费网站| 免费av不卡在线播放| 久久中文看片网| 日韩 亚洲 欧美在线| 亚洲国产精品合色在线| 九色成人免费人妻av| 成人亚洲精品av一区二区| 亚洲成人久久性| 女人十人毛片免费观看3o分钟| 热99re8久久精品国产| 国产日韩欧美在线精品| 男的添女的下面高潮视频| a级毛片免费高清观看在线播放| 亚洲四区av| 99久久成人亚洲精品观看| 伊人久久精品亚洲午夜| av在线观看视频网站免费| 99在线人妻在线中文字幕| 亚洲精品国产av成人精品| 91精品国产九色| 日韩成人伦理影院| 寂寞人妻少妇视频99o| 亚洲精品成人久久久久久| 欧美性猛交╳xxx乱大交人| 老司机影院成人| 观看免费一级毛片| 岛国毛片在线播放| 欧美日韩在线观看h| 久久综合国产亚洲精品| 国产精品一区www在线观看| 最近最新中文字幕大全电影3| 22中文网久久字幕| 欧美一区二区亚洲| 国产在线精品亚洲第一网站| 日韩欧美精品v在线| 夜夜爽天天搞| 国产v大片淫在线免费观看| 亚洲国产精品合色在线| 亚洲自偷自拍三级| 国产精品一区www在线观看| 国产精品一区二区三区四区免费观看| 波多野结衣高清作品| 成人亚洲精品av一区二区| 欧美又色又爽又黄视频| 男插女下体视频免费在线播放| 91精品一卡2卡3卡4卡| 日韩制服骚丝袜av| 亚洲五月天丁香| 亚洲三级黄色毛片| 国产精品福利在线免费观看| 午夜老司机福利剧场| 国产精品人妻久久久久久| 精品国产三级普通话版| 国产日本99.免费观看| .国产精品久久| 九九热线精品视视频播放| 国产日韩欧美在线精品| www日本黄色视频网| 熟女人妻精品中文字幕| 亚洲国产精品合色在线| 色综合站精品国产| 级片在线观看| 亚洲真实伦在线观看| 亚洲高清免费不卡视频| 国产午夜精品一二区理论片| 国产高清激情床上av| 精品人妻熟女av久视频| 国产黄片美女视频| 美女黄网站色视频| 欧美色欧美亚洲另类二区| 欧美区成人在线视频| 国产精品女同一区二区软件| 成人高潮视频无遮挡免费网站| 国产黄片视频在线免费观看| 波野结衣二区三区在线| 久久国内精品自在自线图片| 成人毛片60女人毛片免费| 国产淫片久久久久久久久| 国内少妇人妻偷人精品xxx网站| 国产黄色视频一区二区在线观看 | 久久精品夜夜夜夜夜久久蜜豆| 99热这里只有精品一区| 我的女老师完整版在线观看| 中文字幕久久专区| 狂野欧美激情性xxxx在线观看| 欧美日本视频| 欧美zozozo另类| 一个人看的www免费观看视频| 一区二区三区免费毛片| av.在线天堂| 精品一区二区三区视频在线| 日产精品乱码卡一卡2卡三| 亚洲成a人片在线一区二区| 亚洲国产精品sss在线观看| 性欧美人与动物交配| 91久久精品电影网| 美女内射精品一级片tv| 蜜桃亚洲精品一区二区三区| 国产探花极品一区二区| 综合色av麻豆| 国产伦精品一区二区三区四那| 国产成人精品婷婷| 精品人妻一区二区三区麻豆| 18禁黄网站禁片免费观看直播| 熟女人妻精品中文字幕| 亚洲欧美精品自产自拍| 一边摸一边抽搐一进一小说| 岛国毛片在线播放| 久久6这里有精品| 亚洲国产精品合色在线| 日韩成人av中文字幕在线观看| 国产成人一区二区在线| 91久久精品国产一区二区三区| 亚洲av成人精品一区久久| 精品一区二区免费观看| 九九爱精品视频在线观看| 深夜a级毛片| 国产一级毛片在线| 国产真实伦视频高清在线观看| 国产真实乱freesex| 亚洲电影在线观看av| 国产精华一区二区三区| 欧美日韩一区二区视频在线观看视频在线 | 国产极品天堂在线| 久久精品夜色国产| 亚洲av第一区精品v没综合| 亚洲在线观看片| 美女大奶头视频| 国产日本99.免费观看| 久久热精品热| 精品欧美国产一区二区三| 人妻夜夜爽99麻豆av| 国产片特级美女逼逼视频| 国产极品精品免费视频能看的| 性色avwww在线观看| 久久鲁丝午夜福利片| 欧美激情在线99| 亚洲av二区三区四区| 美女内射精品一级片tv| 小说图片视频综合网站| 最近手机中文字幕大全| 欧美日韩一区二区视频在线观看视频在线 | 久久亚洲精品不卡| 国产乱人偷精品视频| 久久精品国产清高在天天线| 日本在线视频免费播放| 12—13女人毛片做爰片一| 欧美激情在线99| 亚洲国产日韩欧美精品在线观看| 国产男人的电影天堂91| 在线播放国产精品三级| 精品国产三级普通话版| 老司机福利观看| 美女大奶头视频| 干丝袜人妻中文字幕| 99国产极品粉嫩在线观看| 中文字幕精品亚洲无线码一区| 久久热精品热| 国产淫片久久久久久久久| av.在线天堂| 在线观看午夜福利视频| h日本视频在线播放| 免费人成视频x8x8入口观看| 婷婷亚洲欧美| av在线播放精品| 亚洲最大成人中文| 观看美女的网站| 色5月婷婷丁香| 欧美一区二区亚洲| 色5月婷婷丁香| 免费看美女性在线毛片视频| av在线亚洲专区| 免费观看人在逋| 尾随美女入室| 欧美成人a在线观看| 女同久久另类99精品国产91| 国产高清有码在线观看视频| 成人综合一区亚洲| 免费av观看视频| 国产精品精品国产色婷婷| 一级毛片aaaaaa免费看小| avwww免费| 99热全是精品| 色哟哟哟哟哟哟| 日本一二三区视频观看| .国产精品久久| 国产精品久久视频播放| 亚洲经典国产精华液单| 亚洲精品影视一区二区三区av| h日本视频在线播放| av卡一久久| av福利片在线观看| 一边摸一边抽搐一进一小说| 夜夜看夜夜爽夜夜摸| 欧美色视频一区免费| 99久久久亚洲精品蜜臀av| 人妻少妇偷人精品九色| 午夜福利在线观看免费完整高清在 | 亚洲国产精品成人久久小说 | 国产黄色视频一区二区在线观看 | 免费观看a级毛片全部| 精品日产1卡2卡| 少妇被粗大猛烈的视频| 亚洲美女搞黄在线观看| 日日撸夜夜添| 亚洲精华国产精华液的使用体验 | 日本黄大片高清| 男人狂女人下面高潮的视频| 国产男人的电影天堂91| 看免费成人av毛片| 国产真实乱freesex| 色噜噜av男人的天堂激情| 国产探花在线观看一区二区| 丝袜美腿在线中文| 男女啪啪激烈高潮av片| 亚洲第一电影网av| 中国国产av一级| 国产熟女欧美一区二区| 亚洲一区高清亚洲精品| 日韩欧美三级三区| 一个人看视频在线观看www免费| 日本欧美国产在线视频| 亚洲精品成人久久久久久| 免费观看精品视频网站| 亚洲国产精品成人综合色| 国产乱人视频| 国产乱人偷精品视频| 激情 狠狠 欧美| 国产亚洲精品久久久久久毛片| 久久精品久久久久久久性| 国产成年人精品一区二区| 亚洲在久久综合| 麻豆国产av国片精品| 男人舔女人下体高潮全视频| 国产精品野战在线观看| 精品久久久久久久末码| 最好的美女福利视频网| 男女那种视频在线观看| 狠狠狠狠99中文字幕| 欧美精品一区二区大全| 亚洲人成网站在线播| 久久久久久大精品| 九九在线视频观看精品| 男人狂女人下面高潮的视频| 床上黄色一级片| 国产精品一区二区在线观看99 | 舔av片在线| 全区人妻精品视频| 国产麻豆成人av免费视频| 村上凉子中文字幕在线| 啦啦啦观看免费观看视频高清| 亚洲欧美日韩卡通动漫| 又粗又爽又猛毛片免费看| 天堂影院成人在线观看| 日韩成人av中文字幕在线观看| av在线蜜桃| 亚洲美女搞黄在线观看| 黄色视频,在线免费观看| 日本-黄色视频高清免费观看| 欧美成人精品欧美一级黄| 成年女人永久免费观看视频| 欧美日韩综合久久久久久| 成人鲁丝片一二三区免费| 国产国拍精品亚洲av在线观看| 三级经典国产精品| 国产视频内射| 亚洲av免费在线观看| 岛国毛片在线播放| 非洲黑人性xxxx精品又粗又长| 99热只有精品国产| 岛国毛片在线播放| 一级黄片播放器| 亚洲自偷自拍三级| 三级经典国产精品| 夜夜夜夜夜久久久久| 亚洲国产欧洲综合997久久,| 国产精品.久久久| 99热这里只有是精品在线观看| 亚洲国产欧美在线一区| 国产黄片美女视频| 国产日本99.免费观看| 波多野结衣高清作品| 国产黄片美女视频| 桃色一区二区三区在线观看| 中文精品一卡2卡3卡4更新| 久久久久久久久久久免费av| 99热全是精品| 中文精品一卡2卡3卡4更新| 国产精品1区2区在线观看.| 免费看av在线观看网站| 成年女人永久免费观看视频| 成人特级黄色片久久久久久久| 午夜精品国产一区二区电影 |