• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    用于痕量監(jiān)測Zr4+、Cr2O72-、Fe3+、HPO42-和指紋識別的功能化Eu3+/Tb3+配位聚合物熒光探針的構(gòu)筑

    2024-02-23 08:40:20王思璐張鳳鳳岳二林王記江侯向陽
    無機(jī)化學(xué)學(xué)報 2024年2期

    王思璐 張鳳鳳 張 成 王 瀟 唐 龍 岳二林 王記江 侯向陽

    (延安大學(xué)化學(xué)與化工學(xué)院,延安 716000)

    0 Introduction

    According to the national sanitary standard for drinking water, there are clear requirements for water quality[1].The presence of metal ions in water is not appropriate,which will have a serious impact[2].Chemical reagents containing Zr4+, Fe3+, Cr2O72-, and HPO42-have been widely used in industry, agriculture, medicine, and other fields, especially the increase of their content in ecological environments such as in water bodies, which has attracted wide attention[3-5].These metal ions remain in the ecosystem for a long time and can have serious detriment on the human body.For example, improper presence of metal ions can cause pathological changes in the main organs of the human body, including the hematopoietic system, respiratory system, central nervous system, digestive system,immune system, and skeletal system[6-9].Therefore, it is particularly important to identify and monitor these metal ions from water samples to obtain real and detailed information.

    Coordination polymers (CPs)are an excellent platform for building multifunctional materials because they can be easily constructed by combining functional organic ligands with metal ion centers.Recently,multifunctional fluorescent sensing CP materials have been widely used in the field of energy and environmental monitoring due to their broad potential[10-12].Bai et al.have synthesized the [Bi(BTC)(H2O)]·H2O (Bi-MOF)compound constructed by 1,3,5-benzene tricarboxylic acid.Based on the luminescent properties of the Bi-MOF, it could be used as a multi-functional test chemical sensor such as Fe3+and Cr2O72-with high selectivity, sensitivity, and uniqueness[13].The CP[Cd(BTBD)2(AIC)]nwas designed and synthesized with a 4-connected sql topology, and it is a rare CPs-based switched fluorescence sensor for detecting Fe3+ions[14].So far,a large number of CP sensors have been reported,most of which are sensed by a luminescence quenching mechanism[15-16].Therefore,in addition to X-ray absorption spectrometry, electrochemical methods, ultraviolet detection, surface-enhanced Raman spectroscopy, and other methods to identify and monitor metal ions in aqueous solutions[17-19], CPs can also be studied as a fluorescence sensor for monitoring metal ions.Hence,it is of great significance to develop fluorescence sensing materials based on CPs to achieve high sensitivity and selectivity detection of Zr4+, Fe3+, Cr2O72-, and HPO42-ions.

    Herein, we report two isomorphic new CPs with the formula of {[Eu(PLIA)1.5(H2O)2] ·H2O}n(1) and{[Tb(PLIA)1.5(H2O)2]·H2O}n(2),where H2PLIA=5-((pyridin-4-yl-methyl)oxy)benzene-1,3-dicarboxylic acid.Comprehensive and detailed characterizations for CPs 1 and 2 were performed by IR, powder X-ray diffraction (PXRD), thermogravimetric analysis (TG), and fluorescence techniques.The highly stable CPs 1 and 2 reveal the same structural features and ideal fluorescence properties.The fabricated fluorescence probes have been applied to the highly selective, rapid, good sensitive, strong anti-interference ability and rapid detection of Zr4+, Fe3+, Cr2O72-, and HPO42-ions in sewage.The fluorescence recognition mechanism and fingerprint recognition have been investigated in detail.

    1 Experimental

    1.1 Materials and methods

    All available solvents and starting materials of analytical grade in the experiments were obtained from commercial sources and available without further purification.Fourier transform infrared (FTIR)spectra were recorded with an IRAFFINITY-1S spectrophotometer in a range of 400-4 000 cm-1using KBr disks.TG analyses were performed with a NETZSCH STA 449C thermal analyzer under an N2atmosphere.The PXRD patterns were collected on a Rigaku D/Max-2550VB+/PC diffractometer equipped with CuKαradiation (λ=0.154 06 nm,U=45 kV,I=40 mA, 2θ=5°-60°).Solidstate photoluminescence spectra analyses were performed with an Edinburgh Instrument F920 fluorescence spectrometer at ambient temperature.UV-Vis absorption spectra study was carried out on a Shimadzu UV-2700 spectrophotometer.The luminescent sensing measurements were performed on a Hitachi F-7100 Fluorescence spectrophotometer.

    1.2 Syntheses of CPs 1 and 2

    A mixture of H2PLIA (24.6 mg, 0.09 mmol) and Eu(NO3)3·6H2O (26.8 mg, 0.06 mmol) were added in 3 mL distilled water and 2 mL NaOH solution ( NaOH:8.0 mg, 0.2 mmol ).After being stirred for 20 min, the resulting mixture was transferred and sealed in a 25 mL small glass bottle, which was heated at 180 ℃for 72 h.And white, block crystals of CP 1 were obtained.Yield: 52% based on H2PLIA.Main FTIR data (KBr pellet, cm-1): 3 413(β), 3 183(w), 3 110(m), 2 603(w),1 751(s), 1 615(s), 1 307(w), 1 071(w), 821(w), 779(s),690(w),627(w),575(w)(Fig.1a).

    Fig.1 (a)IR spectra of CPs 1 and 2;(b)TG curves of 1 and 2;(c)PXRD patterns of 1 and 2;(d)Solid-state fluorescence emission and excitation spectra of 1 and 2

    A mixture of H2PLIA (24.6 mg, 0.09 mmol) and Tb(NO3)3·6H2O (27.2 mg, 0.06 mmol) were added in 3 mL distilled water and 2 mL NaOH solution (NaOH:8.0 mg, 0.2 mmol).After being stirred for 30 min, the resulting mixture was transferred and sealed in a 25 mL small glass bottle, which was heated at 180 ℃for 72 h.And white, block crystals of CP 2 were obtained.Yield: 67% based on H2PLIA.Main FTIR data (KBr pellet, cm-1): 3 397(β), 3 141(w), 3 095(m), 2 597(w),1 719(s), 1 599(s), 1 281(w), 1 050(w), 810(w), 758(s),669(w),554(w)(Fig.1a).

    1.3 Crystal structure determination

    The crystals with regular size (0.21 mm×0.16 mm×0.13 mm,CP 1;0.35 mm×0.3 mm×0.2 mm,CP 2),and shape(block)were screened by optical microscope.The diffraction point data of 1 and 2 were collected using a Bruker Smart APEX ⅡCCD diffractometer with graphite monochromatic MoKαradiation (λ=0.071 073 nm) at 296(2) K, usingφ-ωscan[15].A semiempirical absorption correction was applied using the SADABS program.The single crystal structures of 1 and 2 were solved by direct methods using the SHELXS-2014 and refined onF2by the full-matrix least-squares methods using the SHELXL-2014 program package.All nonhydrogen atoms were refined anisotropically by the full-matrix least-squares method.All hydrogen atom coordinates were obtained using theoretical hydrogenation.The main crystal data parameters of 1 and 2 are summarized in Table 1.

    Table 1 Crystal and structure refinement data of CPs 1 and 2

    CCDC:256713,1;2256714,2.

    2 Results and discussion

    2.1 Crystal structure of CPs 1 and 2

    CPs 1 and 2 are isomorphic.Hence,CP 2 is taken as an example to analyze its structural features.Singlecrystal X-ray diffraction analysis revealed that 2 crystallizes in the orthorhombic crystal system with space group Pnma.As shown in Fig.2a, the asymmetric unit of 2 consists of one Tb3+ion, one half-fully-deprotonated PLIA2-, two coordination water molecules, and one crystal water molecule.Each of the Tb3+ions forms a twisted dodecahedral geometry with eight oxygen atoms, six of which come from the five PLIA2-ligands and the remaining two from the water molecule with which it is coordinated (Fig.2b).The main bond lengths and bond angles of 2 are listed in Table 2, which are within the normal range compared with other CPs reported in the literature[23].The two adjacent Tb3+ions are connected via four carboxylate groups from four PLIA2-exhibiting bidentate bridging mode (μ2-η1∶η1)and forming Tb2(COO)4as the secondary building unit(SBU) with a Tb3+…Tb3+separation distance of 0.423 25(8) nm.The neighboring dinuclear SBUs are connected via the bridged PLIA2-linkers inμ3-kO,O∶kO∶kO modes forming a 1D structure (Fig.2c and 2d).The 1D structure is interconnected through these bridged PLIA2-connectors adoptingμ3-kO,O∶kO∶kO,andμ4-kO∶kO∶kO∶kO modes to form a 2D structure(Fig.2e and 2f).Finally, these 2D structures are connected through ligands to form a 3D network structure(Fig.2g).A detailed structural investigation of 2 shows that there exists hydrogen bonding (O9—H9…N1#5:O9…N1#5 0.293 716 nm; O9—H9…O11: O9…O11 0.236 3(18) nm; O9—H9…O11#4: O9…O11#4 0.286 0(18) nm; O10—H10…O11: O10…O11 0.241 1(18)nm; O10—H10…O11#4: O10…O11#4 0.282 3(18)nm; Symmetry codes: #4:x, 0.5-y,z; #5: 1.5+x, 1-y,0.5+z) andπ…πstacking interactions (Fig.2h, the Cg(1)…Cg(2) and Cg(3)…Cg(4) distance: 0.384 9 nm and 0.380 2 nm, the dihedral angles adjacent toπplane of Cg(1)…Cg(2) and Cg(3)…Cg(4): 78.82° and 81.05°) among the benzene and pyridyl moieties ring present in the spacer PLIA2-linkers.In turn, this 3D network is stabilized by hydrogen bonding andπ…πstacking interactions.

    Table 2 Selected bond lengths(nm)and angles(°)for CPs 1 and 2

    Fig.2 (a)Coordination environment of Tb3+ion in CP 2 with thermal ellipsoids at 50%level;(b)Distorted dodecahedron geometry of Tb3+ion in 2;(c)Coordination mode of the PLIA2-ligand in 2;(d)1D structure of 2;2D structure of 2 viewed along the(e)c-axis and(f)a-axis,respectively;(g)3D structure of 2;(h)π…π stacking interactions in 2

    2.2 Characterization of CPs 1 and 2

    As shown in Fig.2b, TG analysis of CPs 1 and 2 showed that a first weight loss of 5.71% (Calcd.5.92%,CP 1) and 5.67% (Calcd.5.85%, CP 2) occurred between 80 and 260 ℃and this could be attributed to the loss of three water molecules.After that, the framework of 1 and 2 exhibited good thermal stability until 290 ℃, followed by the degradation of the framework attributed to the decomposition of the PLIA2-ligand.The residue species of 1 and 2 are Eu2O3and Tb2O3(CP 1: Obsd.27.96%, Calcd.29.73%; CP 2: Obsd.28.16%, Calcd.28.93%), respectively.In Fig.2c, the PXRD patterns of as-synthesized 1 and 2 were consistent with their simulated patterns, indicating that all the prepared materials are in a pure phase state.In addition, the PXRD patterns were obtained after exposing the suspensions of 1 and 2 in water to the aqueous solution of analytes (Fe3+, Zr4+, Cr2O72-, and HPO42-) for 24 h, which were also in good agreement with the synthesized patterns, which is verified that the crystallinity,stability and structural integrity of CPs during the sensing experiment.The solid-state emission spectra of 1 and 2 were investigated.As shown in Fig.2d, the spectra of 1 and 2 showed a strong characteristic emission band at 597 nm (5D0→7F1), 628 nm (5D0→7F2) and 494 nm (5D4→7F6), 549 nm (5D4→7F5), 590 nm(5D4→7F4), 625 nm (5D4→7F3) on being excited at 315 and 328 nm, respectively.In the emission spectra of 1 and 2, the emission band from the PLIA2-ligand was not detected, implying the efficient energy transfer from the PLIA2-ligand to the central Eu3+and Tb3+ions[20].This result suggests that the PLIA2-ligand is suitable for the sensitization of luminescence for Eu3+and Tb3+ions[20].

    The above characterization results demonstrated that CPs 1 and 2 possess expected and excellent fluorescence properties crystallinity,stability,and structural integrity.We will investigate the application of 1 and 2 as fluorescent probes in detecting metal ions.

    2.3 Fluorescent probe

    The experimental methods and processes of relevant fluorescence sensing are based on literature reports[21-22].A series of measurements were performed to investigate the fluorescence sensing properties of CPs 1 and 2 for anions and cations in the aqueous system.The suspensions of 1 and 2 were prepared by dispersing 30 mg of 1 or 2 in 100 mL water with subsequent ultrasonic treatment for 1 h.Then,20 μL of various aqueous solution containing different cationic solutions (5 mmol·L-1M(NO3)xor MClx, Mx+=Ba2+, Ca2+,Ni2+, Nd3+, Pb2+, Cu2+, Tb3+, Hg2+, Zn2+, Dy3+, Er3+, Zr4+,Fe3+, In3+) and anionic solutions (5 mmol·L-1KxA or NaxA, Ax-=H2PO4-, CO32-, CH3COO-, PO43-, Cl-, Br-,SO42-, SO32-, C2O42-, HPO42-, Cr2O72-, HSO3-, NO2-,HCO3-,B4O72-)were added to the suspensions (2 mL)of 1 and 2 and used for measurement by a luminescence spectrometer,respectively.As shown in Fig.3A,the fluorescence intensity of the aqueous solution containing Zr4+, Fe3+, Cr2O72-, and HPO42-were almost quenched,whereas those of other ion solutions barely changed,suggesting that 1 and 2 can serve as a promising luminescence probe for sensing Zr4+, Cr2O72-and Fe3+,HPO42-, respectively.Probe selectivity is an important performance index.Anti-interference experiments were carried out in 20 μL aqueous solutions (containing Zr4+,Fe3+,Cr2O72-,and HPO42-,respectively)and 20 μL of aqueous solutions of other ions to explore the selectivity of 1 and 2 for detecting Zr4+, Cr2O72-and Fe3+,HPO42-, respectively.As shown in Fig.3B, the emission intensities of fluorescent probes 1 and 2 were almost unaffected by the existence of other ions, indicating that 1 and 2 possess an efficient selectivity.

    Fig.3 (A)Fluorescence intensities of CPs 1 and 2 dispersed in aqueous solutions upon the addition of different cations and anions;(B)Contrast histogram of fluorescence intensity of 1 and 2 dispersed in water with the addition of different cations and anions(a,c,e,g,respectively)and subsequent addition of identified ions:HPO42-(b),Cr2O72-(d),Fe3+(f),and Zr4+(h),respectively

    Fluorescence experiments were performed to examine the detection limit of CPs 1 and 2 for Zr4+,Cr2O72-, Fe3+, and HPO42-.The emission intensities of probes 1 and 2 were measured by adding solutions containing Zr4+,Cr2O72-and Fe3+,HPO42-with different concentrations, respectively.The Stern-Volmer (SV) equation isI0/I=KSVcQ+1, whereI0andIare the luminescence intensities of the sensor without and with adding quenching materials,KSVis the quenching constant (L·mol-1),cQis the molar concentration of the detected target.The equation calculated the limit of detection(LOD): LOD=3σ/KSV, whereσis the standard deviation calculated by the fluorescent intensity of blank probe solution (CP 1, intensity: 1 204, 1 206, 1 207, 1 208,1 209;CP 2,intensity:5 430,5 435,5 444,5 445,5 446).As shown in Fig.4, when the concentrations of Zr4+,Cr2O72-,and Fe3+,HPO42-solution were 500,500 μmol·L-1, and 350, 35 μmol·L-1, the fluorescence quenching rate of 1 (2 mL) and 2 (2 mL) were almost 98.52%,98.52%,and 98.10%,97.14%,respectively.The correlation of the quenching effect (I0/I-1) and the concentration of the identified ions (Zr4+, Cr2O72-, Fe3+, and HPO42-) showed a good linear relation.The quenching constants(KSV)were 2.93×104L·mol-1(CP 1,Zr4+),8.7×103L·mol-1(CP 1, Cr2O72-), 3.9×104L·mol-1(CP 2,Fe3+), 3.5×103L·mol-1(CP 2, HPO42-), respectively,and the LOD values were 0.139 μmol·L-1(1, Zr4+),0.626 μmol·L-1(1, Cr2O72-), 0.430 μmol·L-1(2, Fe3+),1.36 μmol·L-1(2, HPO42-), respectively.These values were close or superior to the values reported in the literature[12-16,23-24], and some values may be reported for the first time.These results confirm that CPs 1 and 2 are ideal fluorescence sensing materials with high selectivity and sensitivity.

    Fig.4 Fluorescence intensities(left)and SV equation linear fitting(right)of CPs 1 and 2 in solutions of Zr4+,Fe3+,Cr2O72-,and HPO42-with different concentrations at room temperature

    2.4 Fluorescence recognition mechanism and potential fingerprint recognition

    The possible fluorescence recognition mechanism of CPs 1 and 2 for Zr4+, Cr2O72-and Fe3+, HPO42-have been investigated.As shown in Fig.5a, in an aqueous solution, the UV-Vis absorption spectra of Zr4+and Cr2O72-overlapped with the excitation spectra of 1, and the UV-Vis absorption spectra of Fe3+and HPO42-overlapped with the excitation spectra of CP 2, resulting in fluorescence quenching.These results indicate that the possible mechanism of fluorescence recognition is due to the competitive absorption of the sensors (CPs 1 and 2)and the recognized ions(Zr4+,Cr2O72-,Fe3+,HPO42-).

    Fig.5 (a)Excitation spectra of CPs 1 and 2 and UV-Vis absorption spectra of Zr4+,Cr2O72-,Fe3+,HPO42-in aqueous solution;(b)Fluorescent photographs of the powders of 1 and 2 for fingerprint identification

    The powders of CPs 1 and 2 with small particle sizes obtained by grinding treatment can be used to collect fingerprints.The collected fingerprints can be visualized by placing them under an ultraviolet lamp(λ=302 nm).As shown in Fig.5b,the fluorescent fingerprint lines were clear and coherent, and even more fingerprint details could be seen, including forks and cores.These results indicate that the powders of 1 and 2 have high sensitivity to fingerprint recognition and resistance to background interference for the applications of fingerprint identification.

    3 Conclusions

    In conclusion, two novel isomorphic 3D CP materials based on flexible nitrogen-containing carboxylic acids were prepared, and their basic characterization was carried out by single crystal X-ray diffraction,PXRD, infrared, TG, and fluorescence analysis.CPs 1 and 2 have broad application prospects in the fluorescence detection of Zr4+,Cr2O72-and Fe3+,HPO42-ions in aqueous solution,due to their outstanding chemical stability, thermodynamic stability, and good fluorescence properties.TheKSVand LOD values of 1 and 2 for Zr4+,Cr2O72-and Fe3+,HPO42-ions were close to or better than the values reported in the literature, and some values may be reported for the first time.Interestingly, 1 and 2 have potential applications in fingerprint recognition.

    久久精品久久久久久久性| 中国美白少妇内射xxxbb| 一边摸一边做爽爽视频免费| 亚洲国产精品成人久久小说| 精品一区二区三区视频在线| 婷婷色综合www| 国语对白做爰xxxⅹ性视频网站| 卡戴珊不雅视频在线播放| 黄色毛片三级朝国网站| 亚洲综合色网址| 亚洲精品久久成人aⅴ小说| 亚洲av综合色区一区| 美女国产视频在线观看| 哪个播放器可以免费观看大片| 1024视频免费在线观看| 美国免费a级毛片| 精品久久国产蜜桃| 国产精品免费大片| 国产男女内射视频| 国产视频首页在线观看| 精品第一国产精品| 国产成人av激情在线播放| 亚洲国产精品一区三区| 国产成人av激情在线播放| 波多野结衣一区麻豆| 精品福利永久在线观看| 国产探花极品一区二区| 人人妻人人澡人人爽人人夜夜| 国产熟女欧美一区二区| 99精国产麻豆久久婷婷| 男女下面插进去视频免费观看 | 精品一区在线观看国产| 制服人妻中文乱码| 欧美日韩视频高清一区二区三区二| 视频中文字幕在线观看| 人人妻人人添人人爽欧美一区卜| 卡戴珊不雅视频在线播放| 大片免费播放器 马上看| 精品国产国语对白av| 女性被躁到高潮视频| 国产黄色视频一区二区在线观看| 国产精品一二三区在线看| 久久久久久久大尺度免费视频| 内地一区二区视频在线| 国产色爽女视频免费观看| 午夜视频国产福利| 午夜免费男女啪啪视频观看| 欧美老熟妇乱子伦牲交| 99国产精品免费福利视频| 日韩熟女老妇一区二区性免费视频| 国产免费现黄频在线看| 99视频精品全部免费 在线| 纵有疾风起免费观看全集完整版| 亚洲精品乱码久久久久久按摩| 只有这里有精品99| 日本午夜av视频| 国产精品秋霞免费鲁丝片| av免费在线看不卡| 黑人猛操日本美女一级片| 国产成人免费无遮挡视频| 国产精品熟女久久久久浪| 国产日韩欧美视频二区| 黄色 视频免费看| 国产乱人偷精品视频| 精品视频人人做人人爽| 亚洲av电影在线进入| 亚洲av日韩在线播放| 亚洲一区二区三区欧美精品| 少妇人妻 视频| 国产成人91sexporn| 国产欧美另类精品又又久久亚洲欧美| 免费av中文字幕在线| 一区二区三区四区激情视频| 亚洲欧美清纯卡通| 少妇人妻精品综合一区二区| 啦啦啦啦在线视频资源| 国产亚洲精品第一综合不卡 | 两性夫妻黄色片 | 国产片特级美女逼逼视频| 午夜激情av网站| 婷婷成人精品国产| 国产高清三级在线| 成年女人在线观看亚洲视频| 久久久久精品人妻al黑| 肉色欧美久久久久久久蜜桃| 亚洲精品视频女| 男人操女人黄网站| 精品一区二区三区四区五区乱码 | 免费播放大片免费观看视频在线观看| 一级毛片 在线播放| 国产片内射在线| 国产精品久久久久久av不卡| 精品国产国语对白av| 午夜激情av网站| 少妇 在线观看| 日本欧美国产在线视频| 97精品久久久久久久久久精品| 天堂俺去俺来也www色官网| 极品少妇高潮喷水抽搐| 成年动漫av网址| 国产在线视频一区二区| 久久久久久久久久人人人人人人| 美女脱内裤让男人舔精品视频| 永久免费av网站大全| 欧美日韩视频精品一区| 亚洲av成人精品一二三区| 一边亲一边摸免费视频| 亚洲成国产人片在线观看| 两个人免费观看高清视频| 男女午夜视频在线观看 | 在线免费观看不下载黄p国产| 国产一级毛片在线| videos熟女内射| 18禁动态无遮挡网站| 最近2019中文字幕mv第一页| 晚上一个人看的免费电影| 亚洲欧美色中文字幕在线| 亚洲,欧美精品.| 欧美日韩综合久久久久久| av在线观看视频网站免费| 美女主播在线视频| 女人精品久久久久毛片| 啦啦啦在线观看免费高清www| 免费观看性生交大片5| 最后的刺客免费高清国语| 激情视频va一区二区三区| 天天影视国产精品| 亚洲中文av在线| 伊人亚洲综合成人网| www.色视频.com| 国产日韩一区二区三区精品不卡| 高清欧美精品videossex| 内地一区二区视频在线| 久久精品熟女亚洲av麻豆精品| 日本欧美视频一区| 99视频精品全部免费 在线| 美女主播在线视频| 9色porny在线观看| 亚洲欧美一区二区三区国产| videos熟女内射| 欧美激情极品国产一区二区三区 | 亚洲欧美清纯卡通| 久久久久久久大尺度免费视频| 久久国产精品男人的天堂亚洲 | 高清不卡的av网站| 女性被躁到高潮视频| 国产在线一区二区三区精| 日韩成人伦理影院| 精品熟女少妇av免费看| 欧美日韩精品成人综合77777| 国产片内射在线| 亚洲欧美清纯卡通| 香蕉精品网在线| 久热这里只有精品99| 最近中文字幕2019免费版| 亚洲精品,欧美精品| 有码 亚洲区| 最后的刺客免费高清国语| 美女视频免费永久观看网站| 久久久欧美国产精品| 亚洲国产精品一区二区三区在线| 亚洲av成人精品一二三区| 丰满迷人的少妇在线观看| 又黄又粗又硬又大视频| 纯流量卡能插随身wifi吗| 宅男免费午夜| av网站免费在线观看视频| 日日撸夜夜添| 啦啦啦视频在线资源免费观看| www日本在线高清视频| 熟妇人妻不卡中文字幕| 亚洲,欧美精品.| 男的添女的下面高潮视频| 日韩一区二区视频免费看| 亚洲欧美成人精品一区二区| 狠狠婷婷综合久久久久久88av| 91国产中文字幕| 一级片'在线观看视频| 99九九在线精品视频| 国产精品久久久久久精品古装| 国产午夜精品一二区理论片| 久久久久久久久久人人人人人人| kizo精华| 日韩欧美一区视频在线观看| 九草在线视频观看| 国产精品国产三级专区第一集| 七月丁香在线播放| 国产日韩一区二区三区精品不卡| 大香蕉97超碰在线| 欧美成人精品欧美一级黄| www日本在线高清视频| 一边摸一边做爽爽视频免费| 又黄又爽又刺激的免费视频.| 两个人免费观看高清视频| 中文字幕另类日韩欧美亚洲嫩草| 久久久亚洲精品成人影院| 亚洲熟女精品中文字幕| 国产熟女午夜一区二区三区| 99久久中文字幕三级久久日本| 青青草视频在线视频观看| 99九九在线精品视频| 久久久久久久国产电影| 一级爰片在线观看| 亚洲在久久综合| av.在线天堂| av在线播放精品| 热99国产精品久久久久久7| 亚洲成人一二三区av| 成人综合一区亚洲| 免费看不卡的av| 亚洲一码二码三码区别大吗| 69精品国产乱码久久久| 免费不卡的大黄色大毛片视频在线观看| av不卡在线播放| 国产成人免费无遮挡视频| 夜夜骑夜夜射夜夜干| 少妇熟女欧美另类| tube8黄色片| 色94色欧美一区二区| 亚洲精品,欧美精品| 亚洲成国产人片在线观看| 国产日韩一区二区三区精品不卡| 亚洲国产色片| 十八禁高潮呻吟视频| 尾随美女入室| 伦理电影大哥的女人| 日本色播在线视频| 久久人人爽人人爽人人片va| 看免费av毛片| 国内精品宾馆在线| 精品亚洲成a人片在线观看| 99国产精品免费福利视频| 母亲3免费完整高清在线观看 | 人人澡人人妻人| 精品久久久精品久久久| 在线观看www视频免费| 亚洲,欧美精品.| 日本-黄色视频高清免费观看| 免费人妻精品一区二区三区视频| 99久久中文字幕三级久久日本| 国产综合精华液| 青春草国产在线视频| 国产亚洲精品第一综合不卡 | 日本猛色少妇xxxxx猛交久久| 黑人欧美特级aaaaaa片| 多毛熟女@视频| 亚洲美女视频黄频| 久久久久精品久久久久真实原创| 国产亚洲午夜精品一区二区久久| 91在线精品国自产拍蜜月| 亚洲国产色片| 国产精品一区www在线观看| 高清欧美精品videossex| 中文精品一卡2卡3卡4更新| 欧美亚洲 丝袜 人妻 在线| 免费观看av网站的网址| 日韩欧美一区视频在线观看| 91精品三级在线观看| 美女脱内裤让男人舔精品视频| 少妇被粗大猛烈的视频| 97在线视频观看| 99香蕉大伊视频| 国产免费现黄频在线看| 宅男免费午夜| 免费黄网站久久成人精品| tube8黄色片| 欧美激情极品国产一区二区三区 | 香蕉精品网在线| 晚上一个人看的免费电影| 午夜影院在线不卡| 国产一区二区激情短视频 | 久久国产精品男人的天堂亚洲 | 亚洲精品美女久久久久99蜜臀 | 国产av国产精品国产| 校园人妻丝袜中文字幕| 色婷婷久久久亚洲欧美| 男人舔女人的私密视频| 日韩在线高清观看一区二区三区| 寂寞人妻少妇视频99o| 菩萨蛮人人尽说江南好唐韦庄| 亚洲内射少妇av| 国产欧美日韩一区二区三区在线| 亚洲国产毛片av蜜桃av| 日韩,欧美,国产一区二区三区| 久久久久久久久久久久大奶| 亚洲欧美成人综合另类久久久| 91aial.com中文字幕在线观看| 少妇的逼好多水| 婷婷色综合www| 久久精品国产亚洲av天美| 国产午夜精品一二区理论片| 国产免费又黄又爽又色| 九九在线视频观看精品| av福利片在线| 亚洲精品自拍成人| 久久综合国产亚洲精品| a 毛片基地| 午夜免费观看性视频| 久久精品aⅴ一区二区三区四区 | 视频在线观看一区二区三区| 婷婷色综合大香蕉| 青春草亚洲视频在线观看| 51国产日韩欧美| 国产免费又黄又爽又色| 最近中文字幕2019免费版| 国产一区二区在线观看av| 黄色怎么调成土黄色| 激情视频va一区二区三区| 亚洲欧美成人精品一区二区| 日韩一本色道免费dvd| 少妇的逼好多水| 国产男女内射视频| 亚洲五月色婷婷综合| 亚洲欧美色中文字幕在线| 欧美日韩一区二区视频在线观看视频在线| 啦啦啦在线观看免费高清www| 美国免费a级毛片| 久久人人97超碰香蕉20202| 丝瓜视频免费看黄片| 一边摸一边做爽爽视频免费| 日韩欧美一区视频在线观看| 人成视频在线观看免费观看| 有码 亚洲区| 亚洲欧美中文字幕日韩二区| 精品亚洲成a人片在线观看| 久热这里只有精品99| av网站免费在线观看视频| 国产成人免费观看mmmm| 少妇猛男粗大的猛烈进出视频| 欧美日韩亚洲高清精品| 欧美老熟妇乱子伦牲交| 一级片免费观看大全| 777米奇影视久久| 亚洲四区av| 男女午夜视频在线观看 | 秋霞伦理黄片| 亚洲av日韩在线播放| 在线观看三级黄色| av女优亚洲男人天堂| 中文字幕精品免费在线观看视频 | 亚洲成人av在线免费| 亚洲国产精品专区欧美| 丝袜美足系列| 男人舔女人的私密视频| 久久久久国产网址| 国产一区二区在线观看日韩| 草草在线视频免费看| 免费久久久久久久精品成人欧美视频 | 亚洲美女视频黄频| 午夜免费鲁丝| 搡老乐熟女国产| 国产日韩欧美视频二区| kizo精华| 久久久亚洲精品成人影院| 黑人猛操日本美女一级片| 人妻少妇偷人精品九色| 免费人成在线观看视频色| 成人毛片a级毛片在线播放| 色哟哟·www| 9热在线视频观看99| 国产亚洲精品久久久com| 99久久综合免费| 女的被弄到高潮叫床怎么办| 制服丝袜香蕉在线| 日韩中文字幕视频在线看片| 久久久久久久久久久久大奶| 日本色播在线视频| 黄色怎么调成土黄色| 国产日韩欧美在线精品| 亚洲欧洲日产国产| 一本久久精品| 国产xxxxx性猛交| 亚洲精品一二三| 22中文网久久字幕| 激情五月婷婷亚洲| 国产亚洲一区二区精品| 日韩,欧美,国产一区二区三区| 国产一区二区在线观看日韩| 一区二区三区四区激情视频| 亚洲av综合色区一区| 伦精品一区二区三区| av福利片在线| av国产精品久久久久影院| 婷婷色av中文字幕| 一级爰片在线观看| 欧美精品一区二区大全| 成人影院久久| 亚洲少妇的诱惑av| 大陆偷拍与自拍| 老司机影院毛片| 又大又黄又爽视频免费| 精品少妇久久久久久888优播| 在线亚洲精品国产二区图片欧美| 日韩在线高清观看一区二区三区| 亚洲精品自拍成人| 在线观看美女被高潮喷水网站| 乱码一卡2卡4卡精品| 一级毛片黄色毛片免费观看视频| 高清av免费在线| 精品99又大又爽又粗少妇毛片| 九九在线视频观看精品| 亚洲精品色激情综合| 曰老女人黄片| 久久毛片免费看一区二区三区| 美女大奶头黄色视频| 国产亚洲最大av| 水蜜桃什么品种好| 伦精品一区二区三区| 成人国语在线视频| 美女国产高潮福利片在线看| 久久婷婷青草| 90打野战视频偷拍视频| 亚洲国产av新网站| 亚洲婷婷狠狠爱综合网| 美女视频免费永久观看网站| 老司机影院毛片| 久久久国产一区二区| 欧美日韩av久久| 亚洲欧美成人精品一区二区| 日本黄大片高清| 久久久久久久国产电影| av有码第一页| 七月丁香在线播放| 亚洲精品日本国产第一区| 色5月婷婷丁香| 中文字幕人妻熟女乱码| 综合色丁香网| 自线自在国产av| 捣出白浆h1v1| 亚洲综合色惰| 国语对白做爰xxxⅹ性视频网站| 男女无遮挡免费网站观看| 一级,二级,三级黄色视频| 日本av手机在线免费观看| 韩国精品一区二区三区 | 久久久久国产网址| 蜜臀久久99精品久久宅男| 丝袜美足系列| 精品视频人人做人人爽| 国产乱人偷精品视频| 国产av码专区亚洲av| 精品久久国产蜜桃| 国产精品一二三区在线看| 男女下面插进去视频免费观看 | 熟妇人妻不卡中文字幕| 夜夜爽夜夜爽视频| 亚洲av中文av极速乱| 综合色丁香网| 韩国精品一区二区三区 | 国产激情久久老熟女| 另类精品久久| 岛国毛片在线播放| 久久午夜综合久久蜜桃| 天天躁夜夜躁狠狠躁躁| 成人免费观看视频高清| 午夜福利,免费看| 在线亚洲精品国产二区图片欧美| 欧美xxⅹ黑人| 黑人高潮一二区| 国产老妇伦熟女老妇高清| 热99久久久久精品小说推荐| 五月玫瑰六月丁香| 99热这里只有是精品在线观看| 黑丝袜美女国产一区| 亚洲,一卡二卡三卡| 午夜影院在线不卡| 汤姆久久久久久久影院中文字幕| av电影中文网址| 色5月婷婷丁香| 亚洲国产av新网站| 亚洲国产欧美日韩在线播放| 久久人妻熟女aⅴ| 伦理电影免费视频| 久久久久久人妻| 日本免费在线观看一区| 男女国产视频网站| 久久人人97超碰香蕉20202| 最新的欧美精品一区二区| 在线观看免费高清a一片| 成年人午夜在线观看视频| av有码第一页| 欧美国产精品一级二级三级| 亚洲国产成人一精品久久久| 街头女战士在线观看网站| videossex国产| 少妇被粗大的猛进出69影院 | 男人舔女人的私密视频| 欧美日韩成人在线一区二区| 毛片一级片免费看久久久久| 国产欧美日韩一区二区三区在线| 中文字幕另类日韩欧美亚洲嫩草| 亚洲成人手机| 日韩欧美一区视频在线观看| 哪个播放器可以免费观看大片| 美国免费a级毛片| 欧美激情 高清一区二区三区| 女人精品久久久久毛片| 国产69精品久久久久777片| 成年美女黄网站色视频大全免费| 综合色丁香网| 性色av一级| 超色免费av| 久久久久网色| 欧美人与善性xxx| 日韩av在线免费看完整版不卡| 国产综合精华液| 中文字幕制服av| 中文字幕人妻丝袜制服| 精品一区二区免费观看| 亚洲五月色婷婷综合| 亚洲经典国产精华液单| 欧美精品一区二区大全| 日日爽夜夜爽网站| 黄色 视频免费看| 交换朋友夫妻互换小说| 国产免费视频播放在线视频| 另类亚洲欧美激情| 精品国产一区二区久久| 在线免费观看不下载黄p国产| 黑丝袜美女国产一区| 亚洲 欧美一区二区三区| 精品人妻在线不人妻| 精品人妻熟女毛片av久久网站| 国产成人av激情在线播放| 国产精品久久久av美女十八| 欧美日韩一区二区视频在线观看视频在线| 草草在线视频免费看| 三级国产精品片| 寂寞人妻少妇视频99o| 免费观看无遮挡的男女| 国产不卡av网站在线观看| 久久人人爽人人爽人人片va| 亚洲图色成人| 99视频精品全部免费 在线| 精品第一国产精品| 女的被弄到高潮叫床怎么办| 男女下面插进去视频免费观看 | 亚洲欧美清纯卡通| 亚洲伊人色综图| 最近最新中文字幕免费大全7| 国产精品久久久久久久久免| 波多野结衣一区麻豆| 在现免费观看毛片| 久久国产精品男人的天堂亚洲 | 亚洲欧美中文字幕日韩二区| 黄色一级大片看看| 亚洲欧洲日产国产| 一边摸一边做爽爽视频免费| 寂寞人妻少妇视频99o| 男男h啪啪无遮挡| 亚洲性久久影院| 一本—道久久a久久精品蜜桃钙片| 免费看av在线观看网站| 男女啪啪激烈高潮av片| 99九九在线精品视频| 久久久久精品人妻al黑| 国产一区二区在线观看av| 免费看av在线观看网站| av.在线天堂| 卡戴珊不雅视频在线播放| 亚洲,欧美精品.| 国产麻豆69| 中文字幕亚洲精品专区| 男的添女的下面高潮视频| 一本大道久久a久久精品| 久久精品国产a三级三级三级| 一级爰片在线观看| av福利片在线| 久久精品夜色国产| 国产精品偷伦视频观看了| 侵犯人妻中文字幕一二三四区| 全区人妻精品视频| www.色视频.com| 九色成人免费人妻av| 欧美丝袜亚洲另类| 一级,二级,三级黄色视频| 韩国av在线不卡| 亚洲欧美色中文字幕在线| 成人免费观看视频高清| 亚洲情色 制服丝袜| 精品人妻在线不人妻| 色婷婷av一区二区三区视频| 欧美精品高潮呻吟av久久| 免费不卡的大黄色大毛片视频在线观看| 韩国高清视频一区二区三区| 色5月婷婷丁香| 欧美国产精品一级二级三级| 欧美成人精品欧美一级黄| 汤姆久久久久久久影院中文字幕| 少妇猛男粗大的猛烈进出视频| 亚洲精品美女久久久久99蜜臀 | 国产精品嫩草影院av在线观看| 国产男女超爽视频在线观看| 欧美 亚洲 国产 日韩一| 久久女婷五月综合色啪小说| 丝袜人妻中文字幕| 妹子高潮喷水视频| 亚洲精品自拍成人| 欧美日韩亚洲高清精品| 免费观看a级毛片全部| 乱人伦中国视频| 精品国产乱码久久久久久小说| 狂野欧美激情性bbbbbb| 人体艺术视频欧美日本| 久久精品久久精品一区二区三区| 熟女av电影| 午夜福利视频精品| 亚洲精华国产精华液的使用体验| 日韩一本色道免费dvd| 国产老妇伦熟女老妇高清| 亚洲第一区二区三区不卡| 成人无遮挡网站| 亚洲国产精品一区二区三区在线| 性色avwww在线观看| av网站免费在线观看视频|