摘"要:【目的】""研究微塑料作用下鋅對(duì)玉米種子萌發(fā)與生長(zhǎng)影響。
【方法】""以玉米種子為對(duì)象,研究鋅(Zn)和3種微塑料[聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)]不同單一及復(fù)合處理對(duì)玉米種子萌發(fā)及其生長(zhǎng)的影響。
【結(jié)果】""玉米種子發(fā)芽率、發(fā)芽指數(shù)、發(fā)芽勢(shì)、活力指數(shù)、莖長(zhǎng)和根長(zhǎng)總體上均隨Zn單一處理濃度升高呈現(xiàn)降低趨勢(shì)。相比Zn,3種微塑料對(duì)玉米種子發(fā)芽和生長(zhǎng)影響輕微。Zn和微塑料復(fù)合處理下,玉米發(fā)芽率、玉米發(fā)芽指數(shù)、發(fā)芽勢(shì)和活力指數(shù)均大于相應(yīng)Zn單一處理。在50 mg/L Zn+100 mg/L PE、50 mg/L Zn+100 mg/L PP、50 mg/L Zn+ 100 mg/L PVC處理下,玉米發(fā)芽率分別較50 mg/L Zn單一處理高14.29%、14.29%和9.52%。發(fā)芽指數(shù)、發(fā)芽勢(shì)、活力指數(shù)在100 mg/L Zn+PE100 mg/L PE處理下分別較100 mg/L Zn處理高59.10%、76.91%和131.16%,在50 mg/L Zn+100 mg/L PVC下分別較50 mg/L Zn處理高15.76%、39.53%和15.47%。玉米種子莖和根長(zhǎng)在50 mg/L Zn+PE 處理下隨著PE濃度增加而增大。對(duì)于Zn+PP 處理,玉米莖長(zhǎng)均低于相應(yīng)Zn單一處理,根長(zhǎng)在50 mg/L Zn+100 mg/L PE下較50 mg/L Zn高45.35%,在50 mg/L Zn+100 mg/L PP下較50 mg/L Zn高45.20%。在50 mg/L Zn+100 mg/L PVC下最大,較50 mg/L Zn高55.91%。
【結(jié)論】""添加較低濃度(100 mg/L)微塑料,能顯著提高玉米種子對(duì)過量Zn的耐受性,促進(jìn)種子發(fā)芽和生長(zhǎng)。
關(guān)鍵詞:""微塑料;鋅;玉米;種子萌發(fā)與生長(zhǎng)
中圖分類號(hào):"S513""""文獻(xiàn)標(biāo)志碼:"A""""文章編號(hào):"1001-4330(2024)11-2713-09
0"引 言
【研究意義】玉米是我國(guó)主要的糧食作物[1]。覆膜種植是我國(guó)西北地區(qū)玉米主要的種植方式,玉米種子發(fā)芽與生長(zhǎng)會(huì)受到土壤微塑料的影響[2]。微塑料是一種新型環(huán)境污染物,是指粒徑小于5 mm的塑料碎片[3-4]。我國(guó)一些地區(qū)土壤中有微塑料存在,例如沈陽周邊農(nóng)田土壤中微塑料的濃度為217.30~2 512.18 μg/g[5];上海浦東新區(qū)農(nóng)田土壤中微塑料的檢出率為100%,微塑料豐度范圍為65~85 n/kg[6];西北黃土高原區(qū)固原市農(nóng)田土壤(耕作層)微塑料豐度亦較高[7]。土壤中的微塑料過量會(huì)改變土壤結(jié)構(gòu)和性質(zhì),影響土壤微生物活動(dòng),破壞土壤環(huán)境功能,同時(shí)會(huì)被作物吸收,進(jìn)而影響作物生產(chǎn)[8-10]。重金屬是土壤中主要的污染物之一,重金屬和微塑料復(fù)合污染時(shí)有發(fā)生[11]。土壤中的微塑料表面含有豐富的官能團(tuán),可通過靜電作用和非共價(jià)相互作用吸附土壤中的重金屬離子,改變重金屬在土壤中的環(huán)境行為,進(jìn)而影響重金屬對(duì)土壤生物毒性[12]。發(fā)芽率的大小能直觀體現(xiàn)作物種子在受污染脅迫時(shí)發(fā)芽的能力。發(fā)芽勢(shì)、發(fā)芽指數(shù)和活力指數(shù)等指標(biāo)大小變化能直觀反映污染物對(duì)作物種子發(fā)芽能力的影響程度。開展微塑料作用下重金屬對(duì)作物種子萌發(fā)及生長(zhǎng)影響的研究,對(duì)于土壤健康管理、采取科學(xué)農(nóng)業(yè)措施等具有重要意義。
【前人研究進(jìn)展】目前,關(guān)于微塑料和重金屬對(duì)作物種子萌發(fā)及生長(zhǎng)影響的研究大多集中在兩者的單一污染,而兩者復(fù)合污染相關(guān)研究尚處于初始階段。馮天朕等[13]研究發(fā)現(xiàn),微塑料聚乙烯(PE)和聚丙烯(PP)與鎘(Cd)的復(fù)合污染對(duì)小麥種子萌發(fā)和生長(zhǎng)的影響均表現(xiàn)為拮抗作用,進(jìn)而減輕了其單一污染的毒害;王曉晶等[14]發(fā)現(xiàn)聚苯乙烯(mPS)和聚氯乙烯(PVC)和Cd復(fù)合污染對(duì)小麥種子萌發(fā)和生長(zhǎng)影響也表現(xiàn)為拮抗作用;馬貴等[15]研究了PE、PP、PVC和鉛(Pb)復(fù)合污染對(duì)玉米種子萌發(fā)及其生長(zhǎng)的影響,發(fā)現(xiàn)3種微塑料和Cd復(fù)合作用對(duì)玉米種子的萌發(fā)及生長(zhǎng)的影響基本表現(xiàn)為拮抗作用,減緩了各自單一作用對(duì)玉米種子的毒害作用。【本研究切入點(diǎn)】鋅(Zn)是植物生長(zhǎng)必需的營(yíng)養(yǎng)元素之一,主要參與植物的呼吸代謝、光合作用和生長(zhǎng)素合成,進(jìn)而增強(qiáng)作物的抗氧化酶活性和抗逆性,提高作物產(chǎn)量[16,17]。過量的Zn會(huì)使植物的種子萌發(fā)和生長(zhǎng)發(fā)育受到不同程度的抑制[18]。農(nóng)業(yè)污水灌溉、農(nóng)藥化肥的使用和汽車尾氣排放等是農(nóng)田土壤Zn污染的主要來源[19-20]??梢?,Zn與微塑料在土壤中同時(shí)存在的現(xiàn)象時(shí)有發(fā)生,然后兩者復(fù)合作用對(duì)作物種子萌發(fā)生長(zhǎng)的影響的研究還未見文獻(xiàn)報(bào)道。研究微塑料作用下鋅對(duì)玉米種子萌發(fā)與生長(zhǎng)影響。
【擬解決的關(guān)鍵問題】以玉米為供試作物,探究Zn和3種微塑料(PE、PP、PVC)不同單一及復(fù)合濃度作用對(duì)玉米種子萌發(fā)和生長(zhǎng)的影響,分析微塑料作用下Zn玉米種子萌發(fā)和生長(zhǎng)的影響,為微塑料和重金屬污染生態(tài)風(fēng)險(xiǎn)評(píng)估和農(nóng)田土壤污染的修復(fù)提供科學(xué)依據(jù)。
1"材料與方法
1.1"材 料
PE、PP和PVC微塑料均購(gòu)自東莞市樟木頭志研新材料經(jīng)營(yíng)部(過1 000目篩)。玉米品種為五谷702,購(gòu)自寧夏固原市種子試驗(yàn)站,實(shí)測(cè)發(fā)芽率為85.68%。30% H2O2和ZnCl2均為分析純,購(gòu)自國(guó)藥集體。圖1
1.2"方 法
1.2.1"試驗(yàn)設(shè)計(jì)
單一作用試驗(yàn):設(shè)5個(gè)微塑料處理(100、300、500、1 000和1 500 mg/L)和7個(gè)Zn2+處理(20、50、100、200、300、500和800 mg/L)。用1.0%的H2O2溶液浸泡玉米種子30 min后,用水清洗3次,在去離子水中浸泡6 h,取8粒種子隨機(jī)均勻擺放進(jìn)直徑為9 cm的培養(yǎng)皿中(鋪雙層濾紙),加入10 mL微塑料或Zn2+溶液,將培養(yǎng)皿放入培養(yǎng)箱中培養(yǎng)7 d,每隔24 h加0.45 mL水(預(yù)實(shí)驗(yàn)所得),保持培養(yǎng)液濃度基本不變,記錄玉米種子萌發(fā)及生長(zhǎng)情況,每個(gè)處理重復(fù)6次。
復(fù)合作用試驗(yàn):基于單一作用結(jié)果,復(fù)合作用試驗(yàn)選取的微塑料濃度為100 mg/L(對(duì)玉米種子的發(fā)芽起促進(jìn)作用)、500 mg/L(較弱的抑制作用)和 1 000 mg/L(較強(qiáng)的抑制作用);Zn濃度為:50 mg/L(促進(jìn)作用)和 100 mg/L(抑制作用)。將5 mL微塑料和5 mL Zn2+溶液先后加入培養(yǎng)皿中,在與單一污染試驗(yàn)相同的條件下進(jìn)行復(fù)合作用試驗(yàn),記錄玉米種子萌發(fā)及生長(zhǎng)情況。每個(gè)處理3次重復(fù)。
空白試驗(yàn)(CK):相同條件下,用等量去離子水進(jìn)行玉米種子萌發(fā)試驗(yàn),重復(fù)3次。
1.2.2"指標(biāo)測(cè)定
種子吐出白色胚芽作為種子萌發(fā)第1 d;當(dāng)幼芽長(zhǎng)度達(dá)到種子長(zhǎng)度的一半,幼根長(zhǎng)度與種子長(zhǎng)度相等時(shí)統(tǒng)計(jì)發(fā)芽數(shù);用1/10 cm尺子人工測(cè)量根和莖的長(zhǎng)度。相關(guān)指標(biāo)的計(jì)算公式[11]為:
發(fā)芽率=t d內(nèi)發(fā)芽種子數(shù)/供試種子總數(shù)×100%;
發(fā)芽勢(shì)=3 d內(nèi)發(fā)芽種子數(shù)/供試種子總數(shù)×100%;
發(fā)芽指數(shù)=∑Gt/Dt。
式中,Gt為t d內(nèi)的發(fā)芽種子數(shù);Dt為對(duì)應(yīng)的發(fā)芽天數(shù)。
活力指數(shù)=發(fā)芽指數(shù)×莖長(zhǎng)度。
1.3"數(shù)據(jù)處理
用SPSS22.0軟件進(jìn)行數(shù)據(jù)統(tǒng)計(jì)分析,包括單因素方差分析和多重比較(Duncan檢驗(yàn),95%置信水平),用Origin2021制圖。
2"結(jié)果與分析
2.1"微塑料作用下Zn對(duì)玉米種子發(fā)芽率影響
研究表明,Zn單一處理時(shí),玉米種子發(fā)芽率隨Zn2+濃度升高呈降低趨勢(shì),隨時(shí)間增長(zhǎng)呈增大趨勢(shì)。Zn50處理下的玉米發(fā)芽率在前3 d低于CK,而在3 d后高于CK;玉米發(fā)芽率在較高濃度(≥100 mg/L)Zn處理下均小于CK。玉米發(fā)芽率在PE單一處理下均大于CK(除第1 d外),在PP100和PVC100處理下均較高。相比Zn,3種微塑料對(duì)玉米種子發(fā)芽影響輕微。圖2"
Zn和微塑料復(fù)合處理下,玉米發(fā)芽率均高于相應(yīng)的Zn單一處理。Zn50+ PE處理下,發(fā)芽率在Zn50+ PE100處理下最高,較Zn50高6.24%~14.29%;Zn100+ PE處理下,玉米發(fā)芽率在Zn100+ PE100處理下最高,較Zn100高33.33%~77.79%;Zn50+ PP處理下,發(fā)芽率最大值出現(xiàn)在Zn50+ PP100處理后;Zn100+ PP處理下,發(fā)芽率最大值出現(xiàn)在Zn100+ PP1000處理后;Zn50+ PVC處理下,發(fā)芽率在Zn50+ PVC100最高,較Zn50處理高7.15%~35.30%;Zn100+ PVC處理下,前4 d發(fā)芽率最高值出現(xiàn)在Zn100+ PP1000處理后,第4 d后出現(xiàn)在Zn100+ PP500處理后。圖3
2.2"微塑料作用下Zn對(duì)玉米種子發(fā)芽能力的影響"
研究表明,玉米種子的發(fā)芽指數(shù)、發(fā)芽勢(shì)和活力指數(shù)均隨著Zn2+濃度的升高呈下降趨勢(shì)。Zn500處理下,玉米發(fā)芽勢(shì)和發(fā)芽指數(shù)達(dá)到最低;活力指數(shù)在Zn50處理下最大,Zn800下最小。圖4
Zn+PE處理下,玉米發(fā)芽指數(shù)、發(fā)芽勢(shì)和活力指數(shù)均大于相應(yīng)Zn單一處理,且均隨著PE濃度的升高呈現(xiàn)降低趨勢(shì);Zn100+PE100處理下3個(gè)指標(biāo)均最高(分別較Zn100高59.10%、76.91%和131.16%,在Zn100+PE1000下最低。
Zn+PP處理下,Zn50+PE100處理下玉米發(fā)芽指數(shù)、發(fā)芽勢(shì)和活力指數(shù)3個(gè)指標(biāo)均最高,分別較Zn50高16.58%、29.42%和6.06%;Zn50+PP處理下,3個(gè)指標(biāo)隨PP濃度增加而減小,但Zn100+PP下呈相反趨勢(shì)。
Zn+PVC處理下,Zn50+PVC100下3個(gè)指標(biāo)的最大,Zn100+PVC500下最小。表1"
2.3"微塑料作用下Zn對(duì)玉米種子生長(zhǎng)的影響
研究表明,玉米種子莖長(zhǎng)和根長(zhǎng)總體上隨著Zn2+濃度增大而變小,Zn800處理下均最小,分別較CK顯著降低89.83%和96.99%。3種微塑料單一處理對(duì)玉米種子莖和根生長(zhǎng)均無顯著影響。PE單一處理下,玉米種子莖長(zhǎng)和根長(zhǎng)最小值均出現(xiàn)在PE300處理后,最大值在PE1000后,較CK顯著增加34.28%(莖長(zhǎng))和2.45%(根長(zhǎng))。玉米種子莖和根長(zhǎng)在PP處理下,分別較CK降低4.96%(PP100)~28.61%(PP2000)和 0%(PP100)~ 48.78%(PP2000),在PVC處理下分別較CK降低 9.93%(PVC100)~ 42.55%(PVC2000)和 11.77%(PVC100)~67.04%(PVC2000)。圖5
玉米種子莖和根長(zhǎng)在Zn50+PE 處理下隨著PE濃度增加呈現(xiàn)增大趨勢(shì),在Zn100+PE100較Zn100高43.99%和129.35%,在Zn100+PE500處理下分別較Zn100高36.39%和121.89%,在Zn100+PE1000下為最小。對(duì)于Zn+PP 處理,玉米莖長(zhǎng)均低于相應(yīng)Zn單一處理,且隨著PP濃度增加呈現(xiàn)降低趨勢(shì);根長(zhǎng)則呈相反趨勢(shì),且在Zn50+PP100下最高,較Zn50高45.35%。對(duì)于Zn+PVC 處理,玉米莖長(zhǎng)均在Zn+PVC 500處理下最小,根長(zhǎng)隨PVC 濃度增加呈增大趨勢(shì),在Zn50+PVC100下最大,較Zn50高55.91%。 表2"
3"討 論
3.1"單一作用對(duì)玉米種子發(fā)芽及生長(zhǎng)的影響
趙玉紅等[21]研究發(fā)現(xiàn),不同濃度Zn2+(100~500 mg/kg)對(duì)4種豆科植物種子發(fā)芽率和發(fā)芽勢(shì)影響總體表現(xiàn)為低濃度無影響或促進(jìn),高濃度抑制作用;Jichul等[22]研究發(fā)現(xiàn),高濃度Zn2+作用時(shí),豚草發(fā)芽率大大降低,但低濃度無影響。在試驗(yàn)研究中,玉米種子在20 mg/L Zn2+作用時(shí)發(fā)芽率達(dá)到了最大(91.67%),而在50~800 mg/L時(shí),發(fā)芽率總體上隨著Zn濃度的增加而減小,與以上研究結(jié)果相似。試驗(yàn)研究中50 mg/L Zn2+作用時(shí),玉米莖長(zhǎng)達(dá)到最大,表現(xiàn)出促進(jìn)作用,這是因?yàn)殇\是影響植物多種代謝過程的關(guān)鍵營(yíng)養(yǎng)元素,在低水平或最佳范圍內(nèi)誘導(dǎo)植物中必要的生化和生理反應(yīng),進(jìn)而促進(jìn)玉米種子幼苗生長(zhǎng)。此外,在不同濃度的Zn2+作用下,根長(zhǎng)均受到了抑制,Zn對(duì)根生長(zhǎng)的抑制作用比莖生長(zhǎng)更嚴(yán)重,是因?yàn)楦考?xì)胞壁和吸收部位直接作用在重金屬作用下,導(dǎo)致作物種子吸收的大部分重金屬(75%~90%)主要分布在根中[23]。
試驗(yàn)研究中,3種微塑料作用下玉米種子發(fā)芽率較CK均無顯著變化,其變化趨勢(shì)因微塑料類型不同各異,與Khalid等[24]的研究結(jié)果相似,聚合物的類型是微塑料影響植物種子萌發(fā)生長(zhǎng)的關(guān)鍵因素[25],主要原因是聚合物不同,其顆粒表面電荷和官能團(tuán)情況不同,使得作物種子根部對(duì)微塑料的吸附和吸收能力產(chǎn)生較大差別[26,27],對(duì)作物發(fā)芽和生長(zhǎng)的影響不同。此外,3種微塑料作用下,玉米發(fā)芽率總體上隨著發(fā)芽時(shí)間增長(zhǎng),呈先抑制后促進(jìn)的現(xiàn)象,是由于微塑料在發(fā)芽初期吸附在作物種子表面,阻礙了種子對(duì)水分的吸收(種子在發(fā)芽初期需要大量水分),但隨著發(fā)芽時(shí)間的增長(zhǎng),作物吸取的水分也逐漸增多,微塑料對(duì)種子的抑制也逐漸減弱或消失[28]。
3.2"復(fù)合作用對(duì)玉米種子發(fā)芽及生長(zhǎng)的影響
基于單一作用試驗(yàn)的結(jié)果,選取的100、500和1 000 mg/L三種微塑料濃度,50 mg/L和100 mg/L 2種Zn2+濃度,進(jìn)行復(fù)合試驗(yàn)。結(jié)果表明,添加微塑料聚合物類型、濃度不同,Zn對(duì)玉米種子的萌發(fā)及生長(zhǎng)產(chǎn)生影響不同,但總體上看,添加3種微塑料均減緩了Zn對(duì)玉米的毒害作用,從而提高了玉米種子Zn的耐受性,促進(jìn)了玉米種子的萌發(fā)和生長(zhǎng)。主要原因:一是Zn被微塑料吸附,會(huì)在微塑料表面發(fā)生聚集,減弱Zn的遷移,降低兩者的生物可利用性[29];二是微塑料被吸附在種子表面,阻滯了作物種子對(duì)水分的吸收,進(jìn)而減緩了水溶性Zn進(jìn)入植物體內(nèi)[30]。但有些復(fù)合處理(微塑料濃度較高)下反而加重了過量Zn玉米種子萌發(fā)和生長(zhǎng)抑制作用,可能是因?yàn)槲⑺芰蠞舛忍?,增?qiáng)了其對(duì)Zn的吸附作用,從而有利于Zn的富集,從而增大了作物種子的攝入濃度,加重污染物毒性效應(yīng)[31,32]。較低濃度(100 mg/L)微塑料能顯著減緩Zn對(duì)玉米種子的毒害,有效促進(jìn)玉米種子發(fā)芽和生長(zhǎng),其機(jī)理還需進(jìn)一步研究。
4"結(jié) 論
Zn2+濃度越高,其對(duì)玉米種子發(fā)芽與生長(zhǎng)的抑制作用越強(qiáng)。3種微塑料對(duì)玉米種子發(fā)芽和生長(zhǎng)影響輕微。添加微塑料能一定程度減緩Zn對(duì)玉米種子發(fā)芽的抑制作用,增強(qiáng)其發(fā)芽能力。相較Zn單一處理,添加PE促進(jìn)玉米種子莖和根生長(zhǎng),添加PP和PVC促進(jìn)玉米種子根生長(zhǎng),但抑制其莖生長(zhǎng)。較低濃度(100 mg/L)微塑料可以顯著提高玉米種子對(duì)過量Zn的耐受性,進(jìn)而促進(jìn)種子發(fā)芽和生長(zhǎng)。
參考文獻(xiàn)"(References)
[1]"高世杰.我國(guó)玉米生產(chǎn)現(xiàn)狀及發(fā)展趨勢(shì)[J].農(nóng)民致富之友, 2017,(22): 77.
GAO Shijie.Present situation and development trend of maize production in China[J].NONG MIN ZHI FU ZHI YOU, 2017,(22): 77.
[2] 張孜璇, 于洪文, 孟龍?jiān)?土壤中微塑料污染現(xiàn)狀及其熱點(diǎn)趨勢(shì)可視化分析[J].中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào), 2023, 28(6): 36-49.
ZHANG Zixuan, YU Hongwen, MENG Longyue.Visualization analysis of the status and emerging trends of soil microplastics pollution[J].Journal of China Agricultural University, 2023, 28(6): 36-49.
[3] Zhang K, Hamidian A H, Tubi A, et al.Understanding plastic degradation and microplastic formation in the environment: a review[J].Environmental Pollution, 2021, 274: 116554.
[4] Xu B L, Liu F, Cryder Z, et al.Microplastics in the soil environment: Occurrence, risks, interactions and fate-A review[J].Critical Reviews in Environmental Science and Technology, 2020, 50(21): 2175-2222.
[5] 時(shí)馨竹, 孫麗娜, 李珍, 等.沈陽周邊農(nóng)田土壤中微塑料組成與分布[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2021, 40(7): 1498-1508.
SHI Xinzhu, SUN Lina, LI Zhen, et al.Composition and distribution of microplastics in farmland soil around Shenyang[J].Journal of Agro-Environment Science, 2021, 40(7): 1498-1508.
[6] 張宇愷.上海農(nóng)田土壤中微塑料分布及對(duì)重金屬吸附特征研究[D].上海: 上海第二工業(yè)大學(xué), 2021.
ZHANG Yukai.Distribution of Microplastics in Shanghai Farmland Soil and Its Adsorption Characteristics of Heavy Metals[D].Shanghai: Shanghai Second Polytechnic University, 2021.
[7] 馬貴, 丁家富, 周悅, 等.固原市農(nóng)田土壤微塑料的分布特征及風(fēng)險(xiǎn)評(píng)估[J].環(huán)境科學(xué), 2023, 44(9): 5055-5062.
MA Gui, DING Jiafu, ZHOU Yue, et al.Distribution characteristics and risk assessment of microplastics in farmland soil in Guyuan[J].Environmental Science, 2023, 44(9): 5055-5062.
[8] 劉鑫蓓, 董旭晟, 解志紅, 等.土壤中微塑料的生態(tài)效應(yīng)與生物降解[J].土壤學(xué)報(bào), 2022, 59(2): 349-363.
LIU Xinbei, DONG Xusheng, XIE Zhihong, et al.Ecological effects and biodegradation of microplastics in soils[J].Acta Pedologica Sinica, 2022, 59(2): 349-363.
[9] 李鵬飛, 侯德義, 王劉煒, 等.農(nóng)田中的(微)塑料污染:來源、遷移、環(huán)境生態(tài)效應(yīng)及防治措施[J].土壤學(xué)報(bào), 2021, 58(2): 314-330.
LI Pengfei, HOU Deyi, WANG Liuwei, et al.(micro)plastics pollution in agricultural soils: sources, transportation, ecological effects and preventive strategies[J].Acta Pedologica Sinica, 2021, 58(2): 314-330.
[10] 許學(xué)慧, 胡海娜, 陳穎.聚乙烯微塑料對(duì)大豆生長(zhǎng)的影響[J].中國(guó)土壤與肥料, 2021,(6): 262-268.
XU Xuehui, HU Haina, CHEN Ying.Study on the effect of polyethylene microplastics on soybean growth[J].Soil and Fertilizer Sciences in China, 2021,(6): 262-268.
[11] 王俊杰, 陳曉晨, 李權(quán)達(dá), 等.老化作用對(duì)微塑料吸附鎘的影響及其機(jī)制[J].環(huán)境科學(xué), 2022, 43(4): 2030-2038.
WANG Junjie, CHEN Xiaochen, LI Quanda, et al.Effects of aging on the Cd adsorption by microplastics and the relevant mechanisms[J].Environmental Science, 2022, 43(4): 2030-2038.
[12] Fu Q M, Tan X F, Ye S J, et al.Mechanism analysis of heavy metal lead captured by natural-aged microplastics[J].Chemosphere, 2021, 270: 128624.
[13] 馮天朕, 陳蘇, 陳影, 等.微塑料與Cd交互作用對(duì)小麥種子發(fā)芽的生態(tài)毒性研究[J].中國(guó)環(huán)境科學(xué), 2022, 42(4): 1892-1900.
FENG Tianzhen, CHEN Su, CHEN Ying, et al.Study on ecological toxicity of microplastics and cadmium interaction on wheat seed germination[J].China Environmental Science, 2022, 42(4): 1892-1900.
[14] 王曉晶, 楊毅哲, 曹陽, 等.微塑料與鎘及其復(fù)合對(duì)小麥種子發(fā)芽的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2023, 42(2): 263-273.
WANG Xiaojing, YANG Yizhe, CAO Yang, et al.Effect of microplastics, cadmium, and their combination on wheat seed germination[J].Journal of Agro-Environment Science, 2023, 42(2): 263-273.
[15] 馬貴, 廖彩云, 周悅, 等.微塑料與鉛復(fù)合污染對(duì)玉米種子萌發(fā)與生長(zhǎng)的影響[J].環(huán)境科學(xué), 2023, 44(8): 4458-4467.
MA Gui, LIAO Caiyun, ZHOU Yue, et al.Effects of combined pollution of microplastics and lead on maize seed germination and growth[J].Environmental Science, 2023, 44(8): 4458-4467.
[16]孫明飛,朱杰,李潞等.缺鋅脅迫對(duì)‘天紅2號(hào)/冀砧2號(hào)’蘋果幼樹生長(zhǎng)、光合特性和內(nèi)源激素含量的影響[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2023,29(3):544-552.
SUN Mingfei, ZHU Jie, LI Lu, et al.Effects of zinc deficiency on growth, photosynthetic characteristics, and endogenous hormone content of apple sapling ‘Tianhong 2/Jizhen 2’[J].Journal of Plant Nutrition and Fertilizers,2023,29(3):544-552.
[17] 周武先, 李大榮, 龔絲雨, 等.外源鋅對(duì)白術(shù)種子萌發(fā)及幼苗生長(zhǎng)的影響[J].北方園藝, 2022(3): 98-106.
ZHOU Wuxian, LI Darong, GONG Siyu, et al.Effects of exogenous zinc on seed germination and seedling growth of Atractylodes macrocephala[J].Northern Horticulture, 2022(3): 98-106.
[18]BASIT A, GULSHAN A B, WAQAS M, et al.A Systematic Review on Heavy Metals Stress in Plants[J].GU Journal of Phytosciences,2022,2(1):48-59.
[19] 黃榮, 姚博, 張宏, 等.CQ10-LPSp對(duì)紫花苜蓿幼苗抗氧化酶和防御酶的作用[J].草業(yè)科學(xué), 2023, 40(2): 460-467.
HUANG Rong, YAO Bo, ZHANG Hong, et al.Effects of CQ10-LPSp on antioxidative enzymes and defense enzymes of alfalfa seedlings[J].Pratacultural Science, 2023, 40(2): 460-467.
[20] 王澤正, 楊亮, 李婕, 等.微塑料和鎘及其復(fù)合對(duì)水稻種子萌發(fā)的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2021, 40(1): 44-53.
WANG Zezheng, YANG Liang, LI Jie, et al.Single and combined effects of microplastics and cadmium on the germination characteristics of rice seeds[J].Journal of Agro-Environment Science, 2021, 40(1): 44-53.
[21] 趙玉紅, 拉巴曲吉, 羅布, 等.銅、鎘、鉛、鋅對(duì)4種豆科植物種子萌發(fā)的影響[J].種子, 2017, 36(1): 22-28.
ZHAO Yuhong, LA Baquji, LUO BU, et al.Effects of heavy metals copper, cadmium, lead and zinc on seed germination and seedling growth of leguminous species[J].Seed, 2017, 36(1): 22-28.
[22] Bae J, Benoit D L, Watson A K.Effect of heavy metals on seed germination and seedling growth of common ragweed and roadside ground cover legumes[J].Environmental Pollution, 2016, 213: 112-118.
[23] Sperdouli I.Heavy metal toxicity effects on plants[J].Toxics, 2022, 10(12): 715.
[24] Khalid N, Aqeel M, Noman A.Microplastics could be a threat to plants in terrestrial systems directly or indirectly[J].Environmental Pollution, 2020, 267: 115653.
[25] Tan W J, Peralta-Videa J R, Gardea-Torresdey J L.Interaction of titanium dioxide nanoparticles with soil components and plants: current knowledge and future research needs-a critical review[J].Environmental Science: Nano, 2018, 5(2): 257-278.
[26] Bosker T, Bouwman L J, Brun N R, et al.Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum[J].Chemosphere, 2019, 226: 774-781.
[27] Gao X, Hassan I, Peng Y T, et al.Behaviors and influencing factors of the heavy metals adsorption onto microplastics: a review[J].Journal of Cleaner Production, 2021, 319: 128777.
[28] Lang M F, Yu X Q, Liu J H, et al.Fenton aging significantly affects the heavy metal adsorption capacity of polystyrene microplastics[J].Science of the Total Environment, 2020, 722: 137762.
[29] Yu H, Hou J H, Dang Q L, et al.Decrease in bioavailability of soil heavy metals caused by the presence of microplastics varies across aggregate levels[J].Journal of Hazardous Materials, 2020, 395: 122690.
[30] 陳春樂, 劉雅慧, 田甜.幾種典型微塑料對(duì)鎘離子的吸附行為及其影響因素研究[J].安全與環(huán)境學(xué)報(bào), 2023, 23(6): 2081-2089.
CHEN Chunle, LIU Yahui, TIAN Tian.Study on the adsorption behaviors of cadmium ion by several typical microplastics and its influencing factors[J].Journal of Safety and Environment, 2023, 23(6): 2081-2089.
[31] 顧馨悅, 徐修媛, 咸澤禹, 等.老化聚氯乙烯微塑料與鎘對(duì)小麥的聯(lián)合毒性[J].環(huán)境化學(xué), 2021, 40(9): 2633-2639.
GU Xinyue, XU Xiuyuan, XIAN Zeyu, et al.Joint toxicity of aged polyvinyl chloride microplastics and cadmium to the wheat plant[J].Environmental Chemistry, 2021, 40(9): 2633-2639.
[32] Cui Y Y, Zhang Q Y, Liu P, et al.Effects of polyethylene and heavy metal cadmium on the growth and development of Brassica chinensis var.chinensis[J].Water, Air, amp; Soil Pollution, 2022, 233(10): 426.
Effects of combined exposure of zinc and different ""microplastics on seed germination and growth of maize
LIAO Caiyun, MA Gui, ZHOU Yanyan, DING Jiafu, ZHOU Yue, BI Kexin, SUN Rong, LI Youhua
(College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan Ningxia 756000, China)
Abstract:【Objective】 ""Study on the effect of Zn on maize seed germination and growth under microplastics.
【Methods】 ""The effects of different single and combination treatments of zinc (Zn) and three microplastics: polyethylene (PE), polypropylene (PP) and polyvinyl chloride (PVC) on the germination of maize seeds and their growth was investigated using maize seeds.
【Results】 ""Maize seed germination, germination index, germination potential, vigor index, stem length, and root length generally showed a decreasing trend with increasing concentrations of Zn mono-treatment.The three microplastics had slight effects on the germination and growth of maize seeds compared to Zn.Maize germination, maize germination index, germination potential, and vigor index were greater in the combined Zn and microplastic treatments than in the corresponding Zn mono-treatment.Maize germination was 14.29%, 14.29%, and 9.52% higher under 50 mg/L Zn + 100 mg/L PE, 50 mg/L Zn + 100 mg/L PP, 50 mg/L Zn + 100 mg/L PVC treatments, respectively, as compared to 50 mg/L Zn mono-treatment.Germination index, germination potential, and vigor index were 59.10%, 76.91%, and 131.16% higher under 100 mg/L Zn+PE100 mg/L PE treatment and 15.76%, 39.53%, and 15.47% higher under 50 mg/L Zn+100 mg/L PVC treatment compared to 100 mg/L Zn treatment, respectively.Maize seed stem and root length increased with increasing PE concentration under 50 mg/L Zn+PE treatment.For Zn+PP treatments, maize stem lengths were all lower than the corresponding Zn mono-treatments, and root lengths were 45.35% higher at 50 mg/L Zn+100 mg/L PE compared to 50 mg/L Zn, 45.20% higher at 50 mg/L Zn+100 mg/L PP compared to 50 mg/L Zn, and greatest at 50 mg/L Zn+100 mg/L PVC compared to 50 mg/L Zn by 55.91%.
【Conclusion】 """The addition of lower concentrations (100 mg/L) of microplastics significantly improves the tolerance of maize seeds to excess Zn and promotes seed germination and growth.
Key words:""microplastics; Zn; maize; seed germination and growth
Fund projects:""Funding Program for Construction of First-class Disciplines in Ningxia Higher Education Institutions (Education Discipline) (NXYLXK2021B10)
Correspondence author:"""MA Gui (1982-), male, from Xiji, Ningxia, associate professor, research direction: the environmental behavior and ecological effects of new pollutants, (E-mail) nxsfxymg@163.com
收稿日期(Received):
2024-05-11
基金項(xiàng)目:
寧夏高等學(xué)校一流學(xué)科建設(shè)(教育學(xué)學(xué)科)項(xiàng)目(NXYLXK2021B10)
作者簡(jiǎn)介:
廖彩云(1997-),女,江蘇贛州人,碩士研究生,研究方向?yàn)榄h(huán)境毒理學(xué),(E-mail)82007056@nxnu.edu.cn
通訊作者:
馬貴(1982-),男,寧夏西吉人,副教授,碩士生導(dǎo)師,研究方向?yàn)樾滦臀廴疚锃h(huán)境行為及生態(tài)效應(yīng),(E-mail)nxsfxymg@163.com