摘"要:【目的】""研究新疆牛冠狀病毒(Bovine coronavirus,BCoV)流行株的遺傳變異規(guī)律,分析纖突(Spike,S)蛋白結(jié)構(gòu)與功能特征。
【方法】""對(duì)新疆巴楚縣某牛場(chǎng)BCoV陽(yáng)性的犢牛糞便,提取病毒RNA,采用RT-PCR方法擴(kuò)增S基因,通過(guò)序列測(cè)定和拼接,獲得BCoV S基因全長(zhǎng)序列,對(duì)其開(kāi)展生物信息學(xué)分析和遺傳進(jìn)化分析。
【結(jié)果】""獲得BCoV S基因核苷酸序列(GenBank索引號(hào):OR136878.1)。S基因全長(zhǎng)4 092核苷酸(nucleotide,nt),編碼1 363氨基酸(amino acid,aa)。BCoV S蛋白分子量為150.67 Ku,等電點(diǎn)為5.29,有1個(gè)跨膜螺旋區(qū),親水性較弱,疏水性略強(qiáng)。S蛋白主要分布于宿主細(xì)胞的內(nèi)質(zhì)網(wǎng)膜和高爾基體,具有信號(hào)肽的概率為0.984 2,是分泌型蛋白,含有14個(gè)潛在的N-糖基化位點(diǎn)和132個(gè)磷酸化位點(diǎn)。S蛋白具有3個(gè)結(jié)構(gòu)域,其中受體結(jié)合結(jié)構(gòu)域(Receptor binding domain,RBD)共含有215 aa,無(wú)規(guī)則卷曲(Coiled coil, Cc)占比最高(62.79%),其次為延伸鏈(Extended strand, Es)(20.47%)和α-螺旋(α-helix, Hh)(12.56%),β-轉(zhuǎn)角(β-turn, Tt)占比最少(4.19%)。篩選出S蛋白15個(gè)優(yōu)勢(shì)B細(xì)胞表位和11個(gè)T細(xì)胞表位。S蛋白能與SWISS-MODEL數(shù)據(jù)庫(kù)中模板(SMTL ID:7sbw.1.C)同源建模,二者序列相似性為92.00%,模型GMQE值為0.76,QMEAN值為0.82,符合率較高,拉氏圖(Ramachandran plots)的Ramachandran favored值為96.14%,表明空間構(gòu)象合理,模型準(zhǔn)確可靠。遺傳進(jìn)化試驗(yàn)擴(kuò)增的BCoVS基因序列,與2016年我國(guó)新疆的BCV-Aks-01株處于同一小分支,兩者S基因核苷酸序列同源性為99.1%。
【結(jié)論】""BCoV S蛋白存在多個(gè)抗原表位。RBD在病毒進(jìn)入宿主細(xì)胞時(shí)具有重要作用,可針對(duì)RBD序列設(shè)計(jì)疫苗靶點(diǎn),阻止病毒與宿主受體結(jié)合。采用生物信息學(xué)方法首次分析BCoV S蛋白理化性質(zhì)、信號(hào)肽和亞細(xì)胞定位、磷酸化位點(diǎn)、糖基化位點(diǎn)、結(jié)構(gòu)域、抗原表位、三級(jí)結(jié)構(gòu)和RBD二級(jí)結(jié)構(gòu)等特征,為BCoV S基因遺傳進(jìn)化、結(jié)構(gòu)與功能研究、疫苗研發(fā)、靶向藥物設(shè)計(jì)提供參考。
關(guān)鍵詞:""牛冠狀病毒;纖突蛋白;生物信息學(xué)分析
中圖分類(lèi)號(hào):"S858.23""""文獻(xiàn)標(biāo)志碼:"A""""文章編號(hào):"1001-4330(2024)11-2844-09
0"引 言
【研究意義】犢牛腹瀉是由多因素引起的以腹瀉為主要特征的癥候群。腹瀉可引起低血容量和酸中毒,對(duì)犢牛甚至是致命的,腹瀉還可導(dǎo)致厭食癥和共濟(jì)失調(diào)[1]。BCoV是引起腹瀉的病原之一,可導(dǎo)致?tīng)倥8篂a、成年牛冬痢和牛呼吸道疾病,還可引起犢牛死亡率升高、牛生產(chǎn)性能及產(chǎn)奶量下降,常造成經(jīng)濟(jì)損失[2-5]。分析BCoV S蛋白生物信息學(xué)特征,為BCoV疫苗研發(fā)提供理論依據(jù)?!厩叭搜芯窟M(jìn)展】近年來(lái)對(duì)BCoV的研究,包括檢測(cè)、遺傳進(jìn)化分析和流行病學(xué)調(diào)查。Lotfollahzadeh S等[6]擴(kuò)增了BCoV S基因,對(duì)其進(jìn)行遺傳進(jìn)化分析。Qinghe Zhu等[7]對(duì)我國(guó)東北1 016頭腹瀉牛的BCoV流行病學(xué)調(diào)查顯示,糞便陽(yáng)性率為12.20%(124/1 016),鼻拭子陽(yáng)性率21.53%(79/367)。寇美玲等[8]通過(guò)RT-PCR擴(kuò)增,獲得了BCoV的全基因組序列,并分析了遺傳進(jìn)化關(guān)系。張瑩鈺等[9]分離到BCV-Aks-01株,且進(jìn)行了遺傳進(jìn)化分析。張坤[10]對(duì)新疆北疆7個(gè)奶牛場(chǎng)的BCoV開(kāi)展檢測(cè),陽(yáng)性率為0%~40%(ELISA)和0%~60%(RT-PCR)。【本研究切入點(diǎn)】BCoV屬于套式病毒目(Nidovirales)冠狀病毒科(Coronaviridae)冠狀病毒屬(Coronavirus)2a亞群,基因組全長(zhǎng)約31 000 nt,編碼5種結(jié)構(gòu)蛋白:纖突蛋白(S)、核衣殼蛋白(N)、跨膜蛋白(M)、血凝素酯酶蛋白(HE)、小衣殼蛋白(E)[11-14]。其中S蛋白的主要負(fù)責(zé)病毒與易感細(xì)胞的結(jié)合,介導(dǎo)膜融合及誘導(dǎo)機(jī)體產(chǎn)生中和抗體[15]。目前,對(duì)BCoV S蛋白遺傳進(jìn)化分析的報(bào)道較多[6,8-9],但尚無(wú)生物信息學(xué)分析方面較全面的報(bào)道。需研究新疆牛冠狀病毒流行株的遺傳變異規(guī)律?!緮M解決的關(guān)鍵問(wèn)題】從腹瀉犢牛糞便中提取BCoV RNA,通過(guò)RT-PCR擴(kuò)增S基因,采用生物信息學(xué)方法分析S蛋白結(jié)構(gòu)與功能,并分析遺傳進(jìn)化關(guān)系,為病毒-宿主相互作用、S蛋白基因工程疫苗研究奠定基礎(chǔ)。
1"材料與方法
1.1"材 料
1.1.1"樣 品
新疆巴楚縣某牛場(chǎng)腹瀉犢牛糞便,干冰運(yùn)輸,-80℃凍存?zhèn)溆谩?/p>
1.1.2"主要試劑
體液病毒DNA/RNA小量制備試劑盒AP-MN-BF-VNA-250、DNA凝膠回收試劑盒AP-GX-250,購(gòu)自Axygen;RT-PCR試劑盒購(gòu)自TaKaRa公司;GeneRuler 1 kb Plus DNA Ladder購(gòu)自Thermo Fisher。
1.1.3"主要儀器、器皿
Eppendorf低溫高速離心機(jī)、德國(guó)耶拿Biometra PCR儀、美國(guó)Bio-Rad核酸電泳系統(tǒng)和凝膠成像系統(tǒng),錐形瓶、50 mL離心管。
1.1.4"引物設(shè)計(jì)與合成
以GenBank中BCoV S基因序列(GenBank索引號(hào):KU886219.1)為參考序列,應(yīng)用Oligo6.0軟件,將S基因分為相互重疊的6段,分別設(shè)計(jì)6對(duì)特異性引物,由通用生物(安徽)股份有限公司合成。表1
1.2"方 法
1.2.1"BCoV S基因的擴(kuò)增
將腹瀉犢牛糞便用1∶"PBS稀釋5倍,5 000 r/min離心5 min,取上清200 μL,提取病毒RNA,具體方法按體液病毒DNA/RNA小量制備試劑盒說(shuō)明書(shū)操作。以RNA為模板,用RT-PCR試劑盒擴(kuò)增BCoV S基因的6個(gè)片段。采用反轉(zhuǎn)錄PCR(RT-PCR)方法擴(kuò)增S基因,反應(yīng)條件:50℃ 30 min;94℃ 2 min,預(yù)變性;再以94℃ 30 s,54℃ 20 s,72℃ 50 s,30個(gè)循環(huán)擴(kuò)增;最后72℃ 10 min,延伸。RT-PCR產(chǎn)物經(jīng)1%瓊脂糖凝膠電泳,DNA凝膠回收試劑盒純化后,送通用生物(安徽)股份有限公司測(cè)序,將測(cè)序結(jié)果拼接后得到S基因全長(zhǎng)序列。
1.2.2"S蛋白理化性質(zhì)、生物信息學(xué)及遺傳進(jìn)化
利用多種在線(xiàn)網(wǎng)站和相關(guān)軟件對(duì)BCoV S蛋白開(kāi)展理化性質(zhì)與生物信息學(xué)分析。將S基因序列在NCBI中用BLAST搜索同源序列,根據(jù)序列一致性分值的排序,依次下載得分高的部分序列,再下載國(guó)內(nèi)外具有代表性的部分序列,運(yùn)用分子生物學(xué)軟件Mega 5.0,選擇連接近鄰法構(gòu)建系統(tǒng)發(fā)生樹(shù)。表2
2"結(jié)果與分析
2.1"BCoV S基因擴(kuò)增
研究表明,獲得BCoV S基因的6個(gè)片段,每個(gè)片段的大小與預(yù)期相符。經(jīng)序列測(cè)定和拼接,獲得4092 nt的BCoV S基因全長(zhǎng)核苷酸序列,已將該序列發(fā)布于GenBank(索引號(hào):OR136878.1)。圖1
2.2"S蛋白的理化性質(zhì)
研究表明,S蛋白編碼1363 aa,S蛋白分子量為150.67 kDa,分子式為C6745H10311N1729O2038S76,等電點(diǎn)理論值為5.29,負(fù)電荷(Asp+Glu)殘基總數(shù)為112個(gè),正電荷(Arg + Lys + His) 殘基總數(shù)為89個(gè),脂肪指數(shù):85.30。波長(zhǎng)280 nm條件下,在水溶液中的消光系數(shù)為197 750 L/(mol·cm)。在體外培養(yǎng)的哺乳動(dòng)物網(wǎng)織紅細(xì)胞內(nèi)半衰期為30 h,在酵母體內(nèi)半衰期gt;20 h,在大腸埃希氏桿菌體內(nèi)的半衰期gt;10 h。不穩(wěn)定系數(shù)為33.37,該蛋白屬于穩(wěn)定蛋白。
2.3"S蛋白跨膜結(jié)構(gòu)預(yù)測(cè)
研究表明,S蛋白具有1個(gè)跨膜螺旋區(qū),處于W1308~I(xiàn)1328位置,依此確定S蛋白為跨膜蛋白。同時(shí),該蛋白細(xì)胞膜外的肽段處于V15~P1307,細(xì)胞膜內(nèi)的肽段處于C1329~D1363。圖2"
2.4"S蛋白親/疏水性對(duì)比
研究表明,S蛋白親水性最強(qiáng)的殘基是R764,Score=-2.833,而疏水性最強(qiáng)的是F1326,Score=3.411。比較親水氨基酸與疏水氨基酸的數(shù)目,二者相差不大。S蛋白親水性較弱,疏水性略強(qiáng)。圖3
2.5"S蛋白亞細(xì)胞定位和信號(hào)肽預(yù)測(cè)
研究表明,內(nèi)質(zhì)網(wǎng)膜占44.4%、高爾基體占33.3%、細(xì)胞膜占22.2%。S蛋白具有信號(hào)肽的概率為0.984 2,遠(yuǎn)高于閾值0.5,說(shuō)明該蛋白是分泌型蛋白。此外,信號(hào)肽切割位點(diǎn)位于A14和V15之間(TFA-VI),概率為0.752 1。圖4
2.6"S蛋白糖基化位點(diǎn)預(yù)測(cè)
研究表明,采用在線(xiàn)軟件對(duì)糖基化位點(diǎn)預(yù)測(cè),發(fā)現(xiàn)S蛋白含有14個(gè)潛在的N糖基化位點(diǎn),其位置分別為59、133、198、359、437、444、649、676、696、739、852、1 194、1 224和1 234。圖5
2.7"S蛋白磷酸化位點(diǎn)預(yù)測(cè)
研究表明,S蛋白共有132個(gè)磷酸化位點(diǎn),各類(lèi)氨基酸位點(diǎn)所占數(shù)量為:絲氨酸(Serine,S)63個(gè),蘇氨酸(Threonine,T)46個(gè),酪氨酸(Tyrosine,Y)23個(gè)。圖6
2.8"S蛋白結(jié)構(gòu)域
研究表明,共有3個(gè)保守的功能結(jié)構(gòu)域,分別是N端結(jié)構(gòu)域(N-terminal Domain,NTD)、纖突RBD和S2糖蛋白。NTD位于I16~S292,纖突RBD(S1亞基)位于P326~T540,S2糖蛋白(S2亞基)位于E780~S1360。S蛋白在761~772 aa(序列為:STKRRSRRSITT)區(qū)域存在一個(gè)低復(fù)雜度區(qū)域(玫紅色位點(diǎn)處)。768~769 aa之間存在一個(gè)蛋白酶切割位點(diǎn)。圖7
2.9"S蛋白R(shí)BD二級(jí)結(jié)構(gòu)
研究表明,RBD共有215個(gè)aa,其中α-螺旋(α-helix, Hh)27個(gè)(12.56%),延伸鏈(Extended strand, Es)44個(gè)(20.47%),β-轉(zhuǎn)角(β-turn, Tt)9個(gè)(4.19%),無(wú)規(guī)則卷曲(Coiled coil, Cc)135個(gè)(62.79%)。圖8
2.10"BCoV S蛋白B細(xì)胞和T細(xì)胞表位預(yù)測(cè)
研究表明,采用ABCpred軟件預(yù)測(cè)可能的B細(xì)胞表位,Scoregt;0.80的B細(xì)胞表位數(shù)量為64個(gè),Scoregt;0.90的B細(xì)胞表位數(shù)量為15個(gè)。在SYFPEITHI網(wǎng)站中HLA-A*0201條件下,篩選出11個(gè)細(xì)胞毒性T細(xì)胞(CLT)表位(Score≥25)。表3,表4
2.11"BCoV S蛋白三級(jí)結(jié)構(gòu)同源建模
研究表明,在SWISS-MODEL數(shù)據(jù)庫(kù)中選擇模板(SMTL ID:7sbw.1.C),對(duì)BCoV S蛋白的氨基酸序列同源建模,獲得BCoV S蛋白三維結(jié)構(gòu)模型,兩者序列一致性為92.00%,模型GMQE值為0.76,QMEAND值為0.82。利用拉氏圖評(píng)價(jià)所建模型,Ramachandran favored值為96.14%,空間構(gòu)象合理,模型準(zhǔn)確可靠。圖9,圖10
2.12"BCoV S基因系統(tǒng)發(fā)生樹(shù)的構(gòu)建
研究表明,試驗(yàn)擴(kuò)增的BCoV S基因序列,與2016年我國(guó)新疆南疆的BCV-AKS-01毒株(GenBank索引號(hào):KU886219.1)處于同一小分支。利用DANMAN軟件將兩者S基因核苷酸序列比對(duì),序列一致性為99.07%。圖11,圖12
3"討 論
BCoV在牛群中廣泛存在[16-17]。BCoV與新冠病毒(SARS-CoV-2)同屬于β冠狀病毒屬,對(duì)SARS-CoV-2研究表明,S蛋白在病毒表面呈三聚體狀態(tài)排列,對(duì)病毒入侵宿主細(xì)胞至關(guān)重要[20],是疫苗、治療性抗體和診斷的關(guān)鍵靶點(diǎn)[18-19]。SARS-CoV-2的生物信息學(xué)已有報(bào)道[20],但未見(jiàn)對(duì)BCoV S蛋白生物信息學(xué)分析較全面的報(bào)道。我國(guó)尚無(wú)商品化BCoV疫苗,因此,有必要對(duì)BCoV S蛋白進(jìn)行生物信息學(xué)分析,為疫苗研發(fā)提供參考。
BCoV S蛋白包含2個(gè)疏水區(qū):一個(gè)位于蛋白質(zhì)的N端作為分泌信號(hào),另一個(gè)位于C端作為膜錨定區(qū)[21-22]。研究結(jié)果顯示,S蛋白親水性較弱,疏水性略強(qiáng),推測(cè)與上述報(bào)道的2個(gè)疏水區(qū)有關(guān)。糖基化和磷酸化修飾是生物體內(nèi)最重要的翻譯后修飾方式。病毒的糖基化過(guò)程對(duì)病毒蛋白的折疊與穩(wěn)定、病毒的感染和入侵、宿主細(xì)胞受體識(shí)別和病毒免疫逃逸等起著重要作用[23]。磷酸化修飾的病毒蛋白參與調(diào)控病毒復(fù)制、病毒增殖和病毒粒子裝配等一系列代謝活動(dòng),在調(diào)控病毒與宿主的代謝中起著重要作用[24]。研究分析顯示,BCoV S有14個(gè)潛在的N-糖基化位點(diǎn),132個(gè)磷酸化位點(diǎn);3類(lèi)氨基酸在該蛋白中的磷酸化位點(diǎn)數(shù)量分別是:S63個(gè)、T46個(gè)、Y23個(gè)。這些位點(diǎn)為S蛋白糖基化和磷酸化的修飾提供了基礎(chǔ)。
Parker等[21]認(rèn)為,病毒感染細(xì)胞時(shí)BCoV S的初始切割發(fā)生在763~769 aa之間的某個(gè)位點(diǎn),其中764~768 aa序列為RRSRR。Abraham S等[15]認(rèn)為S蛋白在768~769 aa之間裂解為S1和S2兩個(gè)小亞基。試驗(yàn)中BCoV S蛋白761~772 aa(序列為:STKRRSRRSITT)區(qū)域存在一個(gè)低復(fù)雜度區(qū)域(圖7中玫紅色位點(diǎn)處),其中764~768 aa(序列為:RRSRR)與上述報(bào)道相同,因此,推測(cè)其切割位點(diǎn)也在768~769 aa之間。BCoV S蛋白主要負(fù)責(zé)細(xì)胞的粘附、血凝、膜融合及誘導(dǎo)中和抗體,S1負(fù)責(zé)病毒-宿主細(xì)胞的識(shí)別與結(jié)合,S2與病毒-細(xì)胞間的融合有關(guān)[15]。冠狀病毒進(jìn)入細(xì)胞,依賴(lài)于病毒粒子表面的S蛋白三聚體與宿主細(xì)胞受體之間的特異性相互作用[25]。S1亞基的NTD在病毒附著到宿主細(xì)胞表面聚糖時(shí)起著關(guān)鍵作用,RBD負(fù)責(zé)特異性結(jié)合宿主蛋白受體;S1的 C端結(jié)構(gòu)域(C-terminal domain,CTD)保持著無(wú)活性的“平放”構(gòu)象,一旦S蛋白三聚體與宿主受體結(jié)合,CTD就會(huì)擴(kuò)展為有活性的“直立”構(gòu)象[18]。與宿主受體結(jié)合后,S蛋白三聚體被組織蛋白酶、TMPRRS2或其它蛋白酶切割,病毒與細(xì)胞膜融合,病毒進(jìn)入宿主細(xì)胞[25]。上述過(guò)程是冠狀病毒感染機(jī)制的關(guān)鍵步驟,因此,可針對(duì)RBD序列設(shè)計(jì)疫苗靶點(diǎn),阻止病毒與受體的結(jié)合,從而阻止病毒進(jìn)入宿主細(xì)胞。
S蛋白結(jié)構(gòu)復(fù)雜,多種二級(jí)結(jié)構(gòu)混合存在,為其功能提供了基礎(chǔ)。通過(guò)表位預(yù)測(cè),篩選出S蛋白優(yōu)勢(shì)B細(xì)胞表位15個(gè),優(yōu)勢(shì)T細(xì)胞表位11個(gè),可為疫苗靶點(diǎn)的設(shè)計(jì)提供參考。研究的BCoV S蛋白氨基酸序列,與SWISS-MODEL數(shù)據(jù)庫(kù)模板(SMTL ID:7sbw.1.C)同源建模,GMQE值(0.76)和QMEAN值(0.82)較高,序列一致性為92.00%,說(shuō)明二者相似度較高,經(jīng)拉氏圖評(píng)價(jià),表明所建模型準(zhǔn)確可靠。從預(yù)測(cè)圖看出,S蛋白由三個(gè)單體結(jié)合而成。蛋白質(zhì)序列一級(jí)結(jié)構(gòu)的同源性高,相應(yīng)結(jié)構(gòu)的可靠性也高,這為S蛋白設(shè)計(jì)和改造提供了較為堅(jiān)實(shí)的結(jié)構(gòu)基礎(chǔ)。遺傳進(jìn)化分析顯示,研究擴(kuò)增的序列與2016年我國(guó)新疆南疆的BCV-Aks-01毒株處于同一小分支,兩者核苷酸序列同源性很高(99.1%),表明在局部地區(qū),BCoV的遺傳距離相對(duì)較近,毒株之間交叉保護(hù)的可能性會(huì)較高。
4"結(jié) 論
研究的BCoV S基因核苷酸序列與2016年我國(guó)新疆BCV-Aks-01株序列在同一分支,親緣關(guān)系最近。S蛋白存在多個(gè)抗原表位,推測(cè)其免疫原性較強(qiáng)。RBD在病毒進(jìn)入宿主細(xì)胞時(shí)具有重要作用,可針對(duì)RBD序列設(shè)計(jì)疫苗靶點(diǎn),阻止病毒與宿主受體結(jié)合。BCoV S蛋白同源建模結(jié)果準(zhǔn)確可靠。研究采用生物信息學(xué)方法,首次全面分析了BCoV S蛋白理化性質(zhì)、信號(hào)肽和亞細(xì)胞定位、磷酸化位點(diǎn)、糖基化位點(diǎn)、結(jié)構(gòu)域、抗原表位、三級(jí)結(jié)構(gòu)和RBD二級(jí)結(jié)構(gòu)等特征,并對(duì)S基因進(jìn)行遺傳進(jìn)化分析。
參考文獻(xiàn)"(References)
[1]"Maier G U, Breitenbuecher J, Gomez J P, et al.Vaccination for the prevention of neonatal calf diarrhea in cow-calf operations: a scoping review[J].Veterinary and Animal Science, 2022, 15: 100238.
[2] Woode G N, Bridger J C, Meyling A.Significance of bovine coronavirus infection[J].The Veterinary Record, 1978, 102(1): 15-16.
[3] Benfield D A, Saif L J.Cell culture propagation of a coronavirus isolated from cows with winter dysentery[J].Journal of Clinical Microbiology, 1990, 28(6): 1454-1457.
[4] Geng HL, Meng XZ, Yan WL.et al.Prevalence of bovine coronavirus in cattle in China: A systematic review
and meta-analysis, Microbial Pathogenesis [J].Microb Pathog, 2023, 176:106009.
[5] Saif L J.Bovine respiratory coronavirus[J].The Veterinary Clinics of North America Food Animal Practice, 2010, 26(2): 349-364.
[6] Lotfollahzadeh S, Madadgar O, Reza Mohebbi M, et al.Bovine coronavirus in neonatal calf diarrhoea in Iran[J].Veterinary Medicine and Science, 2020, 6(4): 686-694.
[7] Zhu Q H, Su M J, Li Z J, et al.Epidemiological survey and genetic diversity of bovine coronavirus in Northeast China[J].Virus Research, 2022, 308: 198632.
[8] 寇美玲, 謝佳芮, 楊佳萍, 等.牛冠狀病毒的全基因組測(cè)序及遺傳進(jìn)化分析[J].動(dòng)物醫(yī)學(xué)進(jìn)展, 2022, 43(10): 1-7.
KOU Meiling, XIE Jiarui, YANG Jiaping, et al.Whole genome sequencing and Genetic Evolution Analysis of Bovine Coronavirus[J].Progress in Veterinary Medicine, 2022, 43(10): 1-7.
[9] 張瑩鈺, 張迎春, 王青青, 等.新疆南疆牛冠狀病毒BCV-Aks-01株分離及基因型鑒定[J].中國(guó)獸醫(yī)雜志, 2018, 54(2): 12-14, 18, 2.
ZHANG Yingyu, ZHANG Yingchun, WANG Qingqing, et al.Isolation and genotype identification of bovine coronavirus BCV-aks-01 strain in southern Xinjiang[J].Chinese Journal of Veterinary Medicine, 2018, 54(2): 12-14, 18, 2.
[10] 張坤.新疆北疆地區(qū)規(guī)?;膛?chǎng)犢牛病毒性腹瀉相關(guān)病原的調(diào)查研究[D].石河子: 石河子大學(xué), 2016.
ZHANG Kun.Investigation of Calves Viral Diarrhea Related Pathogen of Large-scale Dairy Farm in Northern Xin Jiang Region[D].Shihezi: Shihezi University, 2016.
[11] Masters P S.The molecular biology of coronaviruses[J].Advances in Virus Research, 2006, 66: 193-292.
[12] Gunn L, Collins P J, O’Connell M J, et al.Phylogenetic investigation of enteric bovine coronavirus in Ireland reveals partitioning between European and global strains[J].Irish Veterinary Journal, 2015, 68: 31.
[13] Franzo G, Drigo M, Legnardi M, et al.Bovine coronavirus: variability, evolution, and dispersal patterns of a No longer neglected betacoronavirus[J].Viruses, 2020, 12(11): 1285.
[14] Singh S, Singh R, Singh K P, et al.Immunohistochemical and molecular detection of natural cases of bovine rotavirus and coronavirus infection causing enteritis in dairy calves[J].Microbial Pathogenesis, 2020, 138: 103814.
[15] Abraham S, Kienzle T E, Lapps W, et al.Deduced sequence of the bovine coronavirus spike protein and identification of the internal proteolytic cleavage site[J].Virology, 1990, 176(1): 296-301.
[16] Boileau M J, Kapil S.Bovine coronavirus associated syndromes[J].The Veterinary Clinics of North America Food Animal Practice, 2010, 26(1): 123-146.
[17] Toftaker I, Holmy I, Ndtvedt A, et al.A cohort study of the effect of winter dysentery on herd-level milk production[J].Journal of Dairy Science, 2017, 100(8): 6483-6493.
[18] Yoshizawa N, Ishihara R, Omiya D, et al.Application of a photocatalyst as an inactivator of bovine coronavirus[J].Viruses, 2020, 12(12): 1372.
[19] Salem E, Dhanasekaran V, Cassard H, et al.Global transmission, spatial segregation, and recombination determine the long-term evolution and epidemiology of bovine coronaviruses[J].Viruses, 2020, 12(5): 534.
[20] Wrapp D, Wang N S, Corbett K S, et al.Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation[J].Science, 2020, 367(6483): 1260-1263.
[21] Yuan M, Wu N C, Zhu X Y, et al.A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV[J].Science, 2020, 368(6491): 630-633.
[22] 閆靜靜, 遲曉妍, 盧佳琪, 等.SARS-CoV-2結(jié)構(gòu)蛋白S和N的生物信息學(xué)比較分析及應(yīng)用研究[J].中國(guó)病原生物學(xué)雜志, 2023, 18(4): 377-384.
YAN Jingjing, CHI Xiaoyan, LU Jiaqi, et al.Comparative bioinformatics analysis of structural proteins s and N of SARS-CoV-2 and their application[J].Journal of Pathogen Biology, 2023, 18(4): 377-384.
[23] Parker M D, Yoo D, Cox G J, et al.Primary structure of the S peplomer gene of bovine coronavirus and surface expression in insect cells[J].The Journal of General Virology, 1990, 71 ( Pt 2): 263-270.
[24] St Cyr-Coats K S, Storz J, Hussain K A, et al.Structural proteins of bovine coronavirus strain L 9: effects of the host cell and trypsin treatment[J].Archives of Virology, 1988, 103(1/2): 35-45.
[25] 向田, 章曉聯(lián).病毒與宿主細(xì)胞的糖基化修飾及相關(guān)功能[J].生物化學(xué)與生物物理進(jìn)展, 2017, 44(10): 898-907.
XIANG Tian, ZHANG Xiaolian.Glycosylation modification and related functions of virus and host cells[J].Progress in Biochemistry and Biophysics, 2017, 44(10): 898-907.
Structure and function analysis of spike protein ""of bovine coronavirus
LU Guili, MIAO Shukui, "WEI Jie, WEI Yurong, MI Xiaoyun, Hailiqiemu Maimaitiyiming
(Xinjiang Key Laboratory of Animal Infectious Diseases/ Institute of Veterinary Medicine, Xinjiang Academy of Animal Sciences, Urumqi 830013, China)
Abstract:【Objective】 ""The purpose of this paper is to grasp the genetic variation patterns of the prevalent strains of bovine coronavirus (BCoV) in Xinjiang, and analyze the characteristics of structural and functional of spike (S) protein.Providing data support for the genetic evolution, structure and function research, vaccine research and development, and targeted drug design of S gene of BCoV.
【Methods】 """The viral genomic RNA was extracted from the feces of BCoV positive calves in a cattle farm in Bachu County, Xinjiang, and the S gene was amplified by RT-PCR.The full length of the S gene was obtained through sequencing and splicing, and after that, the bioinformatics analysis and genetic evolution analysis were carried out.
【Results】 """The BCoV S gene nucleotide sequence (Published on GenBank.Accession number: OR136878.1) was successfully obtained, with a total length of 4 092 nucleotides (nt).The S gene was encoded by 1 363 amino acids (aa).The molecular weight of S protein was 150.67 Ku, and its isoelectric point was 5.29.It had a transmembrane helical region with weak hydrophilicity and slightly stronger hydrophobicity.It has a transmembrane spiral region, with weak hydrophilicity and slightly strong hydrophobicity.S protein was mainly located in the endoplasmic reticulum membrane and golgi apparatus of the host cell, and the probability of signal peptide in N-terminal was 0.9842.The S protein contained 14 potential N-glycosylation sites and 132 phosphorylation sites, and had 3 structural domains, among which the receptor binding domain (RBD) had a total of 215 aa.The proportion of random curls in RBD was the highest (62.79%), followed by extended chains (20.47%) and α-helices (12.56%), the lowest proportion comprised β-turns (4.19%).15 dominant B cell epitopes and 11 T cell epitopes were picked out by software ABCpred and SYFPEITHI.The S protein could be homologously modeled with the template (MTL ID: 7sbw.1.C) in the SWISS-MODEL database, with a sequence identity of 92.00%.The GMQE score of the model was 0.76, and the QMEAND score was 0.82, which indicated a high coincidence rate between them.The Ramachandran favored value of the ramachandran plot is 96.14%, indicating that the spatial conformation was reasonable and the model was accurate and reliable.Evolutionary analysis showed that the BCoV S gene amplified in this experiment was located in the same branch as BCV-AKS-01 strain in southern Xinjiang of China in 2016, and the nucleotide sequence identity of those S gene was 99.07%.
【Conclusion】 """The S protein of BCoV has multiple antigenic epitopes and immunogenicity.RBD plays an important role in the entry of viruses into host cells, and vaccine targets can be designed based on the RBD sequence to prevent the virus from binding to host receptors.The results of homologous modeling of the S protein of BCoV are accurate and reliable.In this study, the physicochemical properties, signal peptides and subcellular localization, phosphorylation sites, glycosylation sites, domains, antigenic epitopes, tertiary structures, and RBD secondary structures of the S protein of BCoV are analyzed using bioinformatics methods.
Key words:""bovine coronavirus; spike protein; bioinformatics analysis
Fund projects:"nbsp;Natural Science Foundation of Xinjiang Uygur Autonomous Region(2021D01A60)
Correspondence author:"""MIAO Shukui(1983- ), male,from Gansu,master, senior experimentalist, research direction:etiology and immunology of animal viruses, (E-mail) 903076760@qq.com
收稿日期(Received):
2024-04-11
基金項(xiàng)目:
新疆維吾爾自治區(qū)自然科學(xué)基金項(xiàng)目(2021D01A60)
作者簡(jiǎn)介:
陸桂麗(1977- ),女,江蘇人,研究員,博士,研究方向?yàn)閯?dòng)物傳染病防控,(E-mail)66498744@qq.com
通訊作者:
苗書(shū)魁(1983- ),男,甘肅人,正高級(jí)實(shí)驗(yàn)師,碩士,研究方向?yàn)閯?dòng)物病毒病原學(xué)及免疫學(xué),(E-mail)903076760@qq.com