摘""要:電磁場的邊界條件是電磁場理論教學中尤為重要的部分,是后續(xù)諸多教學內(nèi)容的基礎。然而電磁場在不同材料、不同方向的邊界條件各不相同,學生往往難于理解、記憶。用有限元方法設計了帶電金屬球殼、帶電介質(zhì)球、同軸傳輸線、波導管、電介質(zhì)平板波導等幾種穩(wěn)恒電磁場和時諧電磁場模型,展示并討論了不同情形下電、磁邊界條件的特點,使得電磁場邊界條件的教學內(nèi)容更豐富、直觀,有助于學生區(qū)分和理解不同情形下電、磁邊界條件各自的特點,提高教學質(zhì)量。
關鍵詞:電磁場""邊界條件""有限元方法""電磁場理論教學
中圖分類號:G642
Application"of"Finite"Element"Method"in"Teaching"Electromagnetic"Boundary"Conditions
FU"Yulan
School"of"Physics"and"Optoelectronic"Engineering,"Beijing"University"of"Technology,"Beijing,"100124"China
Abstract:"The"boundary"conditions"for"electromagnetic"fields"are"an"essential"part"of"electromagnetic"field"theory"teaching,"and"they"are"the"basis"of"many"subsequent"teaching"contents."However,"the"boundary"conditions"of"electromagnetic"fields"vary"in"different"materials"and"directions,"making"it"difficult"for"students"to"understand"and"remember."The"finite"element"method"is"used"to"design"several"stable"electromagnetic"field"and"time-harmonic"electromagnetic"field"models,"such"as"charged"metal"spherical"shells,"charged"dielectric"spheres,"coaxial"transmission"lines,"metal"waveguides,"and"dielectric"planar"waveguides."The"characteristics"of"electric"and"magnetic"boundary"conditions"under"different"situations"are"demonstrated"and"discussed,"making"the"teaching"content"of"electromagnetic"field"boundary"conditions"richer"and"more"intuitive,"which"helps"students"distinguish"and"understand"the"characteristics"of"electric"and"magnetic"boundary"conditions"under"different"situations,"and"improves"the"teaching"quality.
Key"Words:"Electromagnetic"field;"Boundary"Conditions;"Finite"element"method;"Electromagnetic"field"theory"teaching
電磁場理論是光電信息科學與工程專業(yè)及其相近專業(yè)的核心課程之一,以“場”的觀點講授電磁運動規(guī)律,是后續(xù)諸多專業(yè)課程的重要基礎。電磁場的邊界條件是電磁場理論的教學重點與難點,它是后續(xù)講授靜態(tài)電磁場邊值問題,以及電磁波傳播中波導管、諧振腔模式求解的必要條件和重要基礎。電磁場的邊界條件涉及微分方程在幾何界面具體化的問題,在不同物理情境下又各不相同,對學生的數(shù)學基礎和空間想象力有較高要求,在教學中需要一種清晰、具體的方法輔助學生區(qū)分記憶。有限元方法是求解電磁問題的有效數(shù)值方法[1-2]。將有限元方法應用于電磁場教學中可以直觀的展示電磁場各方面的特性[3-4]。本文利用基于有限元方法的COMSOL軟件[5],分別給出靜態(tài)場和電磁波邊界條件的幾個模型,以便學生理解不同物理情景下的電磁場各物理量的邊界條件。
1""靜電場的邊界條件
1.1""帶電金屬球殼的電場邊界條件
在幾何中建立半徑分別為4"cm、4.2"cm、10"cm的3個同心球,它們構(gòu)成3個域,中間一個域為厚度為0.2"cm的球殼,如圖1(a)所示。在材料庫中添加空氣和銅兩種材料,選擇球殼材料為銅,球殼內(nèi)外均為空氣。在靜電模塊的設置菜單“方程”下拉選項中可以看到求解的方程即為電場高斯定理和電場-電勢關系方程,如圖1(b)所示。在物理場中添加“表面電荷密度”邊界條件,從設置菜單中可以看到這一邊界條件處理的方程為電位移矢量D的邊界條件,如圖1(c)所示。設置表面電荷密度ρs為“rho”,并在參數(shù)設置中將rho賦值為1。在“圖形”界面中,選擇“表面電荷密度”邊界條件的作用區(qū)域為銅球殼外表面。添加“接地”邊界條件,選擇半徑為10"cm的球面接地。為使獲得電場的解更為準確,在網(wǎng)格設置中,設置“物理場控制網(wǎng)格”的單元大小為“更細”。在“研究”中求解穩(wěn)態(tài)場。為體現(xiàn)電場分布隨電荷密度的變化,在研究中添加參數(shù)掃描,掃描rho的取值為1、2、3"(C/m2)。
通過求解即可得到帶電金屬球殼及其周圍環(huán)境的電場分布,圖1(d)給出了電場模和電場線的空間分布??梢钥吹皆谇驓ね獠侩妶鼍€垂直于球殼表面放射性發(fā)出,電場自球殼向遠處逐漸減小。而在球殼內(nèi)部,電場強度為0,無法正確繪制電場線。在z軸上建立自z=-10"cm至z=10"cm的截線,繪制沿這一截線的電場z分量Ez和電位移矢量z分量Dz的分布曲線,分別如圖1(e)和圖1(f)所示。可以看到,電場強度和電位移矢量分布規(guī)律相似,在金屬球殼外表面均不連續(xù),在球殼外部向遠處衰減,在球殼內(nèi)部為0。從圖1(f)中還可看出,球殼外表面電位移矢量大小的階躍值恰為參數(shù)掃描所設置的面電荷密度rho的取值,即滿足圖1(c)所示的金屬界面電位移矢量的邊界條件。而此時E和D的x、y分量均為零,即金屬球殼表面切向電場為零,電場方向沿球殼表面法相??梢赃x擇其他截線或界面進行驗證和展示。
1.2""電介質(zhì)球的電場邊界條件
在幾何中建立半徑分別為4"cm、10"cm"的兩個球。在材料中添加空氣和云母,并選擇半徑4"cm的球為云母,其外部為空氣。在靜電模塊中添加空間“空間電荷密度”域條件,設置電荷密度為“rho”,并選中云母球區(qū)域。在設置中可以看到此條件對應的方程為電場的高斯定理。注意,這里rho的單位不同于上一節(jié),為C/m3。同樣對rho進行1-3"(C/m3)的參數(shù)掃描。添加“接地”邊界條件,另外部大球表面接地。網(wǎng)格的設置與上一節(jié)相似。
通過求解得到均勻帶電云母球的電場分布。在球的外部,電場線垂直于球面,電場向遠處衰減,這與金屬球殼類似。不同的是,電場是由球心發(fā),球內(nèi)部電場強度不為零。同樣沿z軸做z=-10"cm到z=10"cm的截線??梢钥吹剑谠颇盖蛲獗砻骐娢灰剖噶糠ㄏ蜻B續(xù)和電場強度法向不連續(xù)。
2"穩(wěn)恒磁場的邊界條件
2.1"同軸傳輸線的磁場
同軸傳輸線是穩(wěn)恒磁場教學中的常用案例,由于可以認為傳輸方向無限長,我們只需建立二維模型求解。在幾何中分別建立半徑為1"cm、3"cm、4"cm、10"cm的同心圓。在材料中添加空氣和銅,將半徑1"cm的內(nèi)圓和內(nèi)徑3"cm外徑4"cm的圓環(huán)設置為銅,構(gòu)成同軸傳輸線。其他區(qū)域設為空氣。采用“磁場”物理場,在設置中可以看到求解的方程為安培光路定理、磁感應強度和磁矢勢關系、擴展的歐姆定律。假設同軸傳輸線內(nèi)、外層總電流為±1"A,電流密度為總電流與截面面積的比值。添加兩個“外部電荷密度”域條件,分別設置內(nèi)、外層的z方向電流密度為3183.1"A/m2和-545.7"A/m2。網(wǎng)格設置與前文類似。求解后,可以繪制磁場強度H大小“normH”的分布圖,可以看出磁場分布在同軸傳輸線內(nèi)部,外部磁場為0。建立沿x軸自x=0至x=5"cm的截線,繪制磁場強度y分量Hy沿的分布曲線,可以看出磁感強度在空間始終保持連續(xù)。
2.2"有面電流時的磁場邊界條件
改變上一節(jié)電流密度分布的條件,在上節(jié)建立的模型中將兩個“外部電流密度”域條件禁用,添加兩個“表面電流密度”邊界條件,分別選中半徑1"cm和半徑3"cm的圓,即同軸傳輸線內(nèi)層的外表面和外層的內(nèi)表面。依然假設它們的z方向總電流為±1"A,電流密度為總電流與圓周長的比值,分別為15.92"A/m和-5.31"A/m。在設置中可以看到此條件對應的方程即為有面電流時的磁場邊界條件。求解后繪制此時的磁感應強度模的分布圖,發(fā)現(xiàn)此時磁場只位于內(nèi)、外導線之間,導線內(nèi)部磁場為零。
3"電磁波的邊界條件
雖然電磁場的邊界條件在靜態(tài)電磁場部分講授,但在時變電磁場部分仍有重要應用,如求解電磁波的波動方程,下面分別以矩形金屬波導管和電介質(zhì)平板波導為例,考察電磁波在界面處的邊界條件。這里應該注意,COMSOL是在頻域求解,假定所考察的是單色時諧波,穩(wěn)態(tài)求解器所求解的電磁場是不含時的,即求解復振幅。COMSOL的射頻模塊和波動光學模塊均可仿真電磁波,為方便比較波長和波導尺寸的關系,這里采用波動光學模塊。
3.1"波導管
在幾何中建立長、高分別為5"cm和4"cm的矩形,作為波導管的內(nèi)表面;建立長、高分別為5.4"cm和5.4"cm的矩形,和前一矩形共心,作為波導管的外表面。波導管壁厚0.2"cm。在材料中添加空氣和銅,將波導管壁設為銅,其內(nèi)部為空氣,如圖2(a)所示。金屬外部電磁波衰減為0,因此不需要設置外部環(huán)境。選擇“電磁波,頻域”物理場,從設置中可以看到此時求解的方程即為電磁場的波動方程,如圖2(b)所示。添加“理想電導體”邊界條件,選中波導管內(nèi)表面,從設置中可以看到此條件對應的方程正為導體的電場邊界條件,如圖2(c)所示。求解電磁波時的網(wǎng)格大小一般為波長的1/10~1/5,由于趨膚效應,電磁場只在金屬表面很小的范圍內(nèi)存在,因此金屬表面附近的網(wǎng)格需要進一步細化。這里將波導管內(nèi)表面上的網(wǎng)格尺寸最大值設為0.1"cm,其他區(qū)域設為0.2"cm。在“研究”中添加“模式分析”步驟,求解波長為4"cm的電磁波在波導管中各模式的有效折射率。設置求解有效折射率在1附近的5個模式。
求解得到有效折射率分別為0.916"81、0.745"72、0.629"37、0.629"36、0.600"45,分布對應TE10、TE01、TE11、TM11、TE20"這5個模式,這也是這一波長的電磁波在該波導中能存在的所有模式??紤]到各模式電磁場各分量數(shù)量級的差異,這里以TE10和TE20兩個模式為例進行討論,其電場的y分量Ey空間分布分別如圖2(d)和圖2(e)所示,可以看出TE10模式在波導管中有一個半波分布,而TE20模式在波導管中有正負兩個半波分布。沿波導x軸自x=-2.7"cm至x=2.7"cm做截線,圖2(f)和圖2(g)分別為沿這一截線Ey和Hx的分布曲線??梢钥吹剑篍y在波導管x方向的兩個表面上為零,滿足切向電場為零的邊界條件;Hx在這兩個表面上也為0,滿足法向磁場為零的邊界條件。
3.2"電介質(zhì)平板波導
這里考慮一個通信波段的平面光波導。在幾何中建立一個長6"μm、高4"μm的矩形作為波導。建立一個長6"μm、高6"μm的矩形,與前一矩形共心。兩個矩形之間厚度為1"μm,設為空氣層。在材料中分別建立折射率為1和1.5的兩種材料,波導內(nèi)部折射率設為1.5,外部折射率設為1。同樣采用“電磁波,頻域”物理場。由于波導x方向也為無限長,需要添加一對“周期性邊界條件”,選中x=-3和x=3兩條邊界,這樣可以保證兩側(cè)電場分布相等。在設置中選擇周期性類型為“連續(xù)性”。在“模式分析”中,求解波長為1"550"μm,有效折射率在1.5附近的10個解。
在求出結(jié)果中,只有有效折射率為1.489"8、1.488"6、1.459、1.454四個解為平面光波導的導波模式,分別為TE0、TM0、TE1、TM1。TE0的電場在波導中沒有節(jié)點,而TE1的電場在波導中有一個節(jié)點。沿著y軸自y=-3至y=3做截線。二者的電場在波導內(nèi)部分別為余弦和正弦分布,在波導外部均向遠處呈冪指數(shù)衰減,在波導表面Ex連續(xù)。即電介質(zhì)界面處,法向電位移矢量連續(xù),法向電場強度不連續(xù)。
4"結(jié)語
本文利用有限元方法仿真了幾種靜態(tài)電磁場和電磁波的模型,在模型建立過程中結(jié)合邊界條件設置和相應的方程討論不同情形下不同電磁場的邊界條件,根據(jù)仿真結(jié)果繪制電磁場空間分布圖和分布曲線,直觀展示邊界上電磁場切向、法向的特點。以上模型在電磁場教學中具有典型性,又靈活多變,反應了根據(jù)電磁場在邊界上的各方面特點,方便學生區(qū)理解、區(qū)分和記憶。本文主要討論了有限元方法在電磁場邊界條件教學中的應用,從本文中也可看出,有限元方法在電磁場及電流求解、模式分析等電磁場理論的多個方面都有強大的計算能力和直觀展示性,可以在電磁場理論教學中發(fā)揮巨大的作用。此外,可以進一步引導學生自行設計模型來展示電磁場邊界條件特點,增強教學的趣味性,提高學生的自主學習能力。
參考文獻
[1]"GRAND"J,"ERIC"C"L"R."Practical"implementation"of"accurate"finite-element"calculations"for"electromagnetic"scattering"by"nanoparticles[J].Plasmonics,2020,15(1):109-121.
[2]"任賀.靜電/磁力探針表征介電及鐵磁納米薄膜有限元電磁場模擬[D].哈爾濱:哈爾濱理工大學,2021.
[3]"曾沖,向靜,周登梅.基于三維有限元仿真技術的電磁場課程教學方法[J].現(xiàn)代信息科技,2021,5(3):196-198.
[4]"高永潘,蘆鵬飛,王川.有限元仿真輔助電磁場時域頻域性質(zhì)教學[J].物理與工程,2022,"32(4):39-45.
[5]"崔小斌,季文杰."COMSOL"Multiphysics"軟件在矩形波導課堂教學中的應用[J].實驗室研究與探索,2021,40(11):130-135.