摘 要:牛呼吸道疾病(BRD)仍然是養(yǎng)牛業(yè)發(fā)病、死亡和經(jīng)濟(jì)損失的主要原因。BRD是一種多因素引起的疾病,主要由病毒(D型流行感染病毒、冠狀病毒、鼻炎病毒、皰疹病毒、副流感病毒-3、病毒性腹瀉病毒、呼吸道合胞病毒和腺病毒)和細(xì)菌(多殺性巴氏桿菌、溶血性曼氏菌、睡眠嗜組織桿菌和支原體)引起。綜述了近年來全球引起B(yǎng)RD感染的病毒和細(xì)菌的流行情況,以期為BRD的預(yù)防和治療起到一定的作用。
關(guān)鍵詞:牛呼吸道疾病; 牛呼吸道綜合征; 流行率; 牛
中圖分類號:S858.23""""" 文獻(xiàn)標(biāo)識碼:A""""" 文章編號:1002-204X(2024)12-0013-10
doi:10.3969/j.issn.1002-204x.2024.12.004
基金項目:四川省自然科學(xué)基金項目(2022NSFSC1620)、國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系四川省肉牛創(chuàng)新團(tuán)隊項目(SCCXTD-2024-13)、寧夏肉牛疫病預(yù)警與防治科技創(chuàng)新團(tuán)隊項目(2023CXTD0011)。
作者簡介:付星鑫(1997—),男,重慶人,碩士在讀,研究方向為牛呼吸道疾病。
*為通信作者。
收稿日期:2024-10-24
Pathogenesis and Global Prevalence of Bovine Respiratory Syndrome
Fu Xingxin1,2, Chen Jie1,3, Ma Xiaoping1, Wang Ya1, Zhang Yilin1,4,
Shen Zifan1, Lin Yulin1, Ma Lanjing1, Wang Jiandong5*, Cai Dongjie1*
(1.Sichuan Provincial Key Laboratory of Animal Disease and Human Health/College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130; 2.Second Affiliated Hospital of Chongqing Medical University, Chongqing 408599; 3.Sichuan Xuanhan County Animal Disease Prevention and Control Center, Dazhou, Sichuan 636150; 4.Animal Disease Prevention and Control Center, Luoping County Bureau of Agriculture and Rural Affairs, Qujing, Yunnan 655800; 5.Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia 750002)
Abstract Bovine respiratory disease (BRD) remains the main cause of morbidity, mortality, and economic losses in the cattle industry. BRD is a disease caused by multiple factors, mainly caused by viruses (D-type epidemic infection virus, coronavirus, rhinitis virus, herpes virus, parainfluenza virus-3, viral diarrhea virus, respiratory syncytial virus, and adenovirus) and bacteria (Pasteurella multocida, Salmonella haemolyticus, Streptococcus thermophilus, and Mycoplasma). The prevalence of viruses and bacteria causing BRD infection both domestically and internationally in recent years is reviewed in order to play a certain role in the prevention and treatment of BRD.
Key word Bovine respiratory disease; Bovine respiratory syndrome; Prevalence rate; Cattle
1 牛呼吸道疾病
牛呼吸道疾病(Bovine respiratory disease, BRD)又被稱為“運(yùn)輸熱”,是由病毒或細(xì)菌單獨及混合感染引起的牛肺炎、支氣管炎等疾病的統(tǒng)稱。BRD是影響幼牛的最重要的疾病,會導(dǎo)致動物福利的降低及增加抗生素的使用,還對牛的生產(chǎn)性能和獸醫(yī)成本的增加產(chǎn)生重大的影響。BRD不僅導(dǎo)致藥物成本增加和死亡,而且病態(tài)牛生長速度也較慢,飼料轉(zhuǎn)化效率較低,并且往往需要額外的飼喂時間才能達(dá)到與臨床健康犢牛相似的胴體質(zhì)量[1]。牛的肺部解剖結(jié)構(gòu)具有與動物體型成比例的小的獨特性,這使得它更容易患呼吸道疾病。越來越多的研究表明[2],牛呼吸道內(nèi)的細(xì)菌群落對呼吸系統(tǒng)健康很重要,微生物群的破壞會降低宿主對定植和致病細(xì)菌增殖的抵抗力。牛呼吸道微生物群的發(fā)展是高度變化的,通常是由各種宿主和環(huán)境因素決定,包括宿主遺傳學(xué)、分娩方式、飲食和母親的微生物群、環(huán)境住房、斷奶、喂養(yǎng)類型、運(yùn)輸、混合、抗生素治療、疫苗接種和病原體暴露[3-4]。BRD的發(fā)生通常是由一種或多種病毒和/或細(xì)菌的存在引發(fā),最常涉及的病原體[5-7]是牛D型流感病毒(IDV)、牛呼吸道合胞體病毒(BRSV)、牛副流感3型病毒(PI3V)、牛皰疹病毒1型(BoHV-1)、牛鼻炎病毒(BRV)、牛病毒性腹瀉病毒(BVDV)、牛冠狀病(BCoV)、牛腺病毒(Badv)、牛支原體(M. bovis)、多殺性巴氏桿菌(P.multocida)、溶血性曼氏菌(M. haemolytica)和睡眠嗜組織桿菌(H. somni)。呼吸道病毒可以到達(dá)下呼吸道并自行誘發(fā)疾病,也可能引起免疫抑制,破壞呼吸道上皮和呼吸道的防御機(jī)制。兩種發(fā)病機(jī)制都可能有利于繼發(fā)性細(xì)菌在下呼吸道的增殖和隨后的定植,其中一些可能存在于鼻咽部。這種病理的復(fù)雜性通常因存在涉及病毒和細(xì)菌的混合感染(合并感染)而加劇。除了控制風(fēng)險因素外,許多由細(xì)菌和減毒活或滅活病毒組合組成的商業(yè)疫苗被廣泛用于預(yù)防BRD。BRD在美國牛飼養(yǎng)場發(fā)病率為70%~80%,在墨西哥發(fā)病率84.5%~99.9%,在加拿大超過80%的牛疫苗用于控制和預(yù)防BRD[8]。因此,BRD對肉牛疫病的預(yù)防和控制提出了重大挑戰(zhàn)。
2 引起B(yǎng)RD的主要病毒
2.1 牛D型流感病毒(IDV)
D型流感病毒(IDV)是一種新的RNA病原體,屬于正粘病毒科,于2011年首次發(fā)現(xiàn)。IDV已被證明在BRD中發(fā)揮作用,已被證明能夠引起呼吸道疾病,具有高傳播率,并增強(qiáng)其他病原體的影響。這種病毒的傳播機(jī)制是通過直接接觸和短距離氣溶膠途徑。IDV會導(dǎo)致小牛上呼吸道病變,也會在下呼吸道復(fù)制并導(dǎo)致肺炎。它是一種對pH和溫度具有高度抵抗力的病毒,具有廣泛的細(xì)胞嗜性和宿主數(shù)量,其中牛是IDV在世界范圍內(nèi)分布的主要宿主。目前還沒有針對IDV的商業(yè)疫苗或特效治療方法。應(yīng)該注意的是,IDV具有人畜共患的潛力,如果其對人類的致病性發(fā)生劇烈變化,可能會成為一個主要的公共衛(wèi)生問題。
2.2 牛冠狀病毒(B-CoV)
冠狀病毒是一種包膜病毒,其RNA單鏈大基因組為27.6-31kb。這一大類病毒屬于尼多病毒目、冠狀病毒亞目、冠脈病毒科、正角病毒亞科,根據(jù)這些病毒的抗原和遺傳物質(zhì)[3]分為4個屬:α、β、γ和δ冠狀病毒。牛冠狀病毒(Bovine Coronaviruses,B-CoV)會導(dǎo)致3周以下小牛的胃腸炎和呼吸道疾病[26],B-CoV會引起哺乳期奶牛的冬季痢疾使產(chǎn)奶量下降,給牛群帶來重大經(jīng)濟(jì)損失[27]。有研究表明,B-CoV可以在初乳缺失的小?;虺跞槲桂B(yǎng)的小牛中持續(xù)存在,反復(fù)的流涕以及長達(dá)3年內(nèi)都能檢測到B-CoV抗體[28]。B-CoV的廣泛分布有兩個主要因素:①病毒可以通過糞口和呼吸道途徑快速傳播;②受感染牛群中存在載體牛只[29]。表2中統(tǒng)計了在確診為BRD的牛中檢測到B-CoV。
2.3 牛鼻炎病毒(BRV)
牛鼻炎病毒(Bovine Rhinitis Virus,BRV)是小核糖核酸病毒科Aphthovirus屬的一種新興病毒物種?,F(xiàn)有的研究表明,BRV被認(rèn)為是牛呼吸系統(tǒng)疾病綜合征(BRDC)的潛在病原體。已經(jīng)確定了兩種血清型BRV1和BRV2。盡管BRV于1962年首次被發(fā)現(xiàn),但對其在BRD發(fā)病機(jī)制中的作用知之甚少。NG T F等[37]報告,在奶牛犢鼻分泌物中檢測到BRV與BRD之間存在顯著關(guān)聯(lián),記錄的鼻腔患病率為30%,而未檢測到公認(rèn)的BRD病毒。在BRD病例的6.4%的鼻咽或肺部樣本中記錄了牛鼻炎病毒[38],并通過對其中一部分子集的宏基因組測序表明,牛中常見多種血清型牛鼻炎病毒的合并感染。表3統(tǒng)計了在確診為BRD的牛中檢測到BRV。
2.4 牛副流感病毒3型(BPIV3)
牛副流感病毒3型(BPIV3)是導(dǎo)致BRD的幾種病毒之一。BPIV3是一種有包膜、非分段的負(fù)鏈病毒,是副粘病毒科的成員,牛感染后會引起以咳嗽、發(fā)熱和鼻涕為特征的呼吸道疾病。在應(yīng)激條件下,牛極易感染BPIV3,病毒通過削弱肉牛的免疫力從而繼發(fā)性感染細(xì)菌,最終引起B(yǎng)RD的發(fā)生[41-42]。BPIV3在中國[43]、美國[44]、澳大利亞、韓國[45]、意大利[46]和其他畜牧業(yè)發(fā)達(dá)的國家都有報道,并造成了重大的經(jīng)濟(jì)損失。由于BPIV3對外界環(huán)境非常敏感,難以體外分離,因此,BPIV3分離株的數(shù)量和基因組數(shù)據(jù)量在全球范圍內(nèi)都是有限的。表4統(tǒng)計了在確診為BRD的牛中檢測到BPIV3。
2.5 牛皰疹病毒1型(BHV1)
牛皰疹病毒1型(BHV-1)是皰疹病毒亞科和水痘病毒屬的成員?;蚪M為135.3 kb,鳥嘌呤和胞嘧啶(GC)含量高,排列為D類皰疹病毒基因組,自然BHV-1感染是通過接觸牛上呼吸道或生殖道黏膜中的病毒而發(fā)生的[51-52]。病毒可通過氣溶膠或直接接觸鼻腔分泌物中的病毒進(jìn)入呼吸道,BHV-1暴發(fā)的并發(fā)臨床癥狀包括發(fā)熱、結(jié)膜炎、眼部分泌物增多、呼吸頻率加快伴持續(xù)劇烈咳嗽和厭食,成年奶牛的產(chǎn)奶量也嚴(yán)重下降。原發(fā)感染發(fā)生于鼻甲和氣管,而鼻孔和眼黏液膿性分泌物與鼻黏膜膿皰病變和結(jié)膜炎有關(guān)[53]。BHV-1感染是牛呼吸系統(tǒng)疾?。˙RD)的主要危險因素,這是一種多種微生物疾病,可最終導(dǎo)致細(xì)菌性肺炎導(dǎo)致的死亡[54]。表5統(tǒng)計了在確診為BRD的牛中檢測到BHV-1。
2.6 牛病毒性腹瀉病毒(BVDV)
牛病毒性腹瀉病毒(BVDV)屬于黃病毒科中的瘟病毒屬,是一種包膜正鏈RNA病毒[55]。BVDV被分為BVDV-1和BVDV-2,BVDV-1當(dāng)前至少有21種不同的亞基因型,而BVDV-2只有四種亞基因型[56-57]。根據(jù)是否在細(xì)胞培養(yǎng)中誘導(dǎo)細(xì)胞病變的能力,將BVDV區(qū)分為細(xì)胞病變(cp)和非細(xì)胞病變(ncp)兩種類型。一般來說,ncp的BVDV對成年動物的感染會導(dǎo)致全身性感染,主要與急性呼吸道和胃腸道疾病、免疫抑制作用和牛的生殖衰竭有關(guān)。ncp的BVDV還可穿過胎盤的上皮屏障誘發(fā)胎兒感染,導(dǎo)致胎兒死亡、流產(chǎn)或持續(xù)感染(PI)動物的出生,PI動物持續(xù)性地排出大量病毒,這也是BVDV傳播的最重要來源[58]。由于BVDV對牛生產(chǎn)的重大經(jīng)濟(jì)影響,許多國家包括奧地利、比利時、丹麥、英國、德國、愛爾蘭、美國、威爾士等,都實施了強(qiáng)制或自愿控制和/或根除計劃[59]。表6統(tǒng)計了在確診為BRD的牛中檢測到BVDV。
2.7 牛呼吸道合胞體病毒(BRSV)
BRSV是一種有包膜、非分段、負(fù)鏈的RNA病毒,屬于肺炎病毒亞科副粘病毒科的肺炎病毒屬。自1970年以來,BRSV已被公認(rèn)為幼牛呼吸系統(tǒng)疾病的主要原因[62]。BRSV病毒粒子由含有三種表面糖蛋白(糖蛋白、融合蛋白和小疏水蛋白)的脂質(zhì)包膜組成。包膜包裹著由核蛋白(N)、磷蛋白(P)、病毒RNA依賴性聚合酶蛋白(L)、M蛋白和稱為M2-1的轉(zhuǎn)錄抗終止因子組成的螺旋核衣殼[63]。實驗性BRSV感染證明,BRSV能夠誘發(fā)嚴(yán)重的臨床呼吸道疾病,是犢牛肺炎的主要致病原。表7統(tǒng)計了在確診為BRD的牛中檢測到BRSV。
2.8 牛腺病毒(BADV)
牛腺病毒(BADV)被認(rèn)為是牛(尤其是新生小牛)的重要呼吸道病原體之一。臨床體征包括發(fā)熱、呼吸窘迫以及鼻腔和結(jié)膜分泌物[66],與其他腺病毒一樣,BADV-3是一種直徑為75~80 nm的無包膜二十面體顆粒,具有雙鏈線性基因組DNA[67]。已經(jīng)報道了BADV-1的E3、E4及其完整的基因組序列。血清學(xué)調(diào)查顯示,BADV在世界各地廣泛分布[38]。表8統(tǒng)計了在確診為BRD的牛中檢測到BADV。
3 引起B(yǎng)RD的主要細(xì)菌
BRD相關(guān)的細(xì)菌病原體是多殺性巴氏桿菌(P.M)、溶血性曼氏桿菌(M.H)、睡眠嗜組織桿菌(H.S)和牛支原體(M.bovis)[68]。一般認(rèn)為共生菌,除牛支原體外,其余均主要分布于上呼吸道。通常依靠呼吸道病毒損傷和基于壓力的免疫抑制來成為致命的BRD病原體。
多殺性巴氏桿菌有5種莢膜血清群(A、B、D、E和F)和體細(xì)胞血清型1-16。牛呼吸系統(tǒng)疾病中最常見的多殺性巴氏桿菌是A-3,其次是D-3[69]。多殺性巴氏桿菌不僅僅參與肺炎[70],還包括了免疫調(diào)節(jié)應(yīng)激,如不利的氣候和其他環(huán)境條件、不利的營養(yǎng)條件、霉變的飼料、突然的口糧變化、動物處理和運(yùn)輸,以及與其他牛健康疾病的相互作用,如與其他先前列出的BRD細(xì)菌病原體的伴隨感染[71]。
溶血曼氏桿菌是反芻動物(牛、羊)肺炎、新生羔羊急性敗血癥的重要病原菌,該菌為條件性致病菌,雖然與反芻動物的上呼吸道共棲,但一般認(rèn)為毒力較強(qiáng)的菌株才具有致病性,臨床上多因運(yùn)輸應(yīng)激或與其他病原體共同感染而導(dǎo)致疾病發(fā)生,給養(yǎng)殖戶造成巨大的經(jīng)濟(jì)損失[72]。根據(jù)溶血曼氏桿菌莢膜抗原的不同,可將血清型劃分為12個(1,2,5,6,7,8,9,12,13,14,
16,17)。有文獻(xiàn)表明,在健康牛中,常見2型溶血曼氏桿菌的定殖,但真正引發(fā)疾病的卻是致病菌株1型[73],其中臨床上1和6型主要感染牛,且均是牛肺炎的主要病原菌。
睡眠嗜組織桿菌是一種革蘭氏陰性、非包膜多形性細(xì)菌,屬于變形桿菌門,巴氏桿菌科[74]。睡眠嗜組織桿菌通常在牛呼吸道黏膜上,是一種機(jī)會性病原體。睡眠嗜組織桿菌可引起各種疾病,包括呼吸和生殖疾病、多關(guān)節(jié)炎、乳腺炎、眼部疾病和敗血癥。目前研究已經(jīng)確定了睡眠嗜組織桿菌的許多逃避機(jī)制,包括吞噬細(xì)胞功能下降和免疫抑制[75]。
牛支原體是一種無細(xì)胞壁的細(xì)菌病原體,屬于柔膜菌綱[76],其特征是基因組小,體外培養(yǎng)營養(yǎng)需求高,牛支原體通常與慢性BRD有關(guān),伴有特征性肺炎病變[77]。幾種毒力因素與牛支原體在患有BRD的牛的肺部持續(xù)存在的能力有關(guān),例如可變表面蛋白、黏附素、核酸酶,牛支原體還具有產(chǎn)生生物膜的能力,使細(xì)菌能夠在環(huán)境中存活,同時承受熱或干燥的作用[78]。表9統(tǒng)計了在確診為BRD的牛中檢測到相關(guān)細(xì)菌。
4 討論
運(yùn)輸應(yīng)激當(dāng)前已經(jīng)成為BRD發(fā)病最主要的因素,在運(yùn)輸?shù)倪^程中由于各種因素導(dǎo)致肉牛免疫力降低,從而使病原體得以侵入肉牛機(jī)體[80-81]。當(dāng)前大多數(shù)研究都認(rèn)為,犢牛在運(yùn)輸過程中經(jīng)歷的多種壓力源導(dǎo)致整體免疫抑制,使呼吸道被許多機(jī)會性病原體侵入。BRD通過干擾上呼吸道的黏膜纖毛清除,并使呼吸道先天防御的氣管抗菌肽失調(diào),最終增強(qiáng)繼發(fā)性細(xì)菌感染。在過去的研究中,很少會將一些次要的病原體被確定為誘發(fā)BRD的主要原因[82],然而這些次要病原體的潛在致病作用以及混合感染發(fā)生的高頻率使BRD成為一種難以控制的復(fù)雜疾病。飼養(yǎng)場在運(yùn)輸前和到場后都會使用抗生素來降低發(fā)病率和死亡率,但是抗生素的大量使用會促使耐藥細(xì)菌的加速產(chǎn)生,成為全球健康的威脅之一[83]。因此,為了減緩抗生素耐藥性的發(fā)展,非常有必要對當(dāng)前導(dǎo)致BRD發(fā)病的病毒和細(xì)菌進(jìn)行流行率的統(tǒng)計,以便在運(yùn)輸前對動物進(jìn)行針對性的給藥和檢測及其他類型的預(yù)防措施。當(dāng)前疫苗預(yù)防BRD的預(yù)期效果尚未達(dá)到,再加上對抗生素耐藥性的擔(dān)憂增加,抗生素的大規(guī)模給藥需要嚴(yán)格把控[84-85]。益生菌等替代療法正越來越多地用于治療BRD和改善管理[86],AMAT S等[87]從牛鼻咽乳酸桿菌屬研發(fā)的鼻內(nèi)細(xì)菌療法可以減少乳牛犢中病原體溶血曼氏桿菌的定植。
最近使用二代測序(NGS)的宏基因組學(xué)研究表明,BRD中合并感染的頻率非常高[11]。例如,在北美BRD病例中,D型流感病毒(IDV)、B-CoV和BRV之間經(jīng)常發(fā)生合并感染[88]。眾所周知,原發(fā)性病毒感染會使呼吸道易發(fā)生繼發(fā)性細(xì)菌感染,從而導(dǎo)致呼吸道并發(fā)癥[89]。研究表明[90],病毒感染可以促進(jìn)細(xì)菌交叉感染,但預(yù)先存在的細(xì)菌感染也可以促進(jìn)病毒的傳播和擴(kuò)散。在加拿大奶牛場發(fā)現(xiàn)了具有臨床呼吸道癥狀的牛中IDV和牛支原體的頻繁共檢[12]。許多牛支原體病例是與其他細(xì)菌或病毒的混合感染[91]。
針對當(dāng)前全球BRD的流行趨勢,應(yīng)當(dāng)制定符合各國國情的BRD的防控策略,在這個過程中需要投入更多的人力、財力在BRD主要病原的致病與免疫機(jī)制等領(lǐng)域開展持續(xù)、深入的研究,開發(fā)有效的疫苗、診斷試劑和治療藥物,保障全球養(yǎng)牛業(yè)的健康發(fā)展的同時避免抗生素的濫用造成細(xì)菌耐藥性的產(chǎn)生。
參考文獻(xiàn):
[1] HOLLAND B P, BURCIAGA-ROBLES L O, VAN OVERBEKE D L, et al. Effect of bovine respiratory disease during preconditioning on subsequent feedlot" performance, carcass characteristics, and beef attributes[J]. J Anim Sci, 2010, 88(7): 2486-2499.
[2] MAN W H, DE STEENHUIJSEN P W, BOGAERT D. The microbiota of the respiratory tract: gatekeeper to respiratory health[J]. Nat Rev Microbiol, 2017, 15(5): 259-270.
[3] DECARO N, LORUSSO A. Novel human coronavirus (SARS-CoV-2): A lesson from animal coronaviruses[J]. Vet Microbiol, 2020, 244: 108693.
[4] HOLMAN D B, TIMSIT E, BOOKER C W, et al. Injectable antimicrobials in commercial feedlot cattle and their effect on the nasopharyngeal microbiota and antimicrobial resistance[J]. Vet Microbiol, 2018, 214: 140-147.
[5] ELLIS J A. Update on viral pathogenesis in BRD[J]. Anim
Health Res Rev, 2009, 10(2): 149-153.
[6] CALLAN R J, GARRY F B. Biosecurity and bovine respiratory disease[J]. Vet Clin North Am Food Anim Pract, 2002, 18(1): 57-77.
[7] MAYA-RODRIGUEZ L M, CARRILLO-CASAS E M, ROJAS-TREJO V, et al. Prevalence of three Mycoplasma sp. by multiplex PCR in cattle with and without respiratory disease in central Mexico[J]. Trop Anim Health Prod, 2022, 54(6): 394.
[8] EDWARDS T A. Control methods for bovine respiratory disease for feedlot cattle[J]. Vet Clin North Am Food Anim Pract, 2010, 26(2): 273-284.
[9] COLLIN E A, SHENG Z Z, LANG Y K, et al. Cocirculation of two distinct genetic and antigenic lineages of proposed influenza D virus in cattle[J]. J Virol, 2015, 89(2):
1036-1042.
[10] FERGUSON L, ECKARD L, EPPERSON W B, et al. Influenza D virus infection in Mississippi beef cattle[J]. Virology, 2015, 486: 28-34.
[11] ZHANG M D, HILL J E, FERNANDO C, et al. Respiratory viruses identified in western Canadian beef cattle by metagenomic sequencing and their association with bovine respiratory disease[J]. Transbound Emerg Dis, 2019, 66(3): 1379-1386.
[12] SAEGERMAN C, GAUDINO M, SAVARD C, et al. Influenza D virus in respiratory disease in Canadian, province of Québec, cattle: Relative importance and evidence of new reassortment between different clades[J]. Transbound Emerg Dis, 2022, 69(3): 1227-1245.
[13] MITRA N, CERNICCHIARO N, TORRES S, et al. Metagenomic characterization of the virome associated with bovine respiratory disease in feedlot cattle identified novel viruses and suggests an etiologic role for influenza D virus[J]. J Gen Virol, 2016, 97(8): 1771-1784.
[14] OLIVA J, EICHENBAUM A, BELIN J, et al. Serological Evidence of Influenza D Virus Circulation Among Cattle and Small Ruminants in France[J]. Viruses, 2019, 11(6): 516.
[15] CHINPPONI C, FACCINI S, DE MATTIA A, et al. Detection of Influenza D Virus among Swine and Cattle, Italy[J]. Emerg Infect Dis, 2016, 22(2): 352-354.
[16] CHINPPONI C, FACCINI S, FUSARO A, et al. Detection of a New Genetic Cluster of Influenza D Virus in Italian Cattle[J]. Viruses, 2019, 11(12): 1110.
[17] AMOROSO M G, LUCIFORA G, DEGLI U B, et al. Fatal Interstitial Pneumonia Associated with Bovine Coronavirus in Cows from Southern Italy[J]. Viruses, 2020, 12(11): 1331.
[18] FLYNN O, GALLAGHER C, MOONEY J, et al. Influenza D Virus in Cattle, Ireland[J]. Emerg Infect Dis, 2018, 24(2): 389-391.
[19] O'DONOVAN T, DONOHOE L, DUCATEZ M F, et al. Seroprevalence of influenza D virus in selected sample groups of Irish cattle, sheep and pigs[J]. Ir Vet J, 2019, 72: 11.
[20] DANE H, DUFFY C, GUELBENZU M, et al. Detection of influenza D virus in bovine respiratory disease samples, UK[J]. Transbound Emerg Dis, 2019, 66(5): 2184-2187.
[21] ZHAI S L, ZHANG H, CHEN S N, et al. Influenza D Virus in Animal Species in Guangdong Province, Southern China[J]. Emerg Infect Dis, 2017, 23(8): 1392-1396.
[22] MEKATA H, YAMAMOTO M, HAMABE S, et al. Molecular epidemiological survey and phylogenetic analysis of bovine influenza D virus in Japan[J]. Transbound
Emerg Dis, 2018, 65(2): e355-e360.
[23] YILMAZ A, UMAR S, TURAN N, et al. First report of influenza D virus infection in Turkish cattle with respiratory disease[J]. Res Vet Sci, 2020, 130: 98-102.
[24] AMBROSE R K, BLAKEBROUGH-HALL C, GRAVEL J L, et al. Characterisation of the Upper Respiratory Tract Virome of Feedlot Cattle and Its Association with Bovine Respiratory Disease[J]. Viruses, 2023, 15(2): 455.
[25] PARDON B, CALLENS J, MARIS J, et al. Pathogen-specific risk factors in acute outbreaks of respiratory disease in calves[J]. J Dairy Sci, 2020, 3(3): 2556-2566.
[26] BOILEAU M J, KAPIL S. Bovine coronavirus associated syndromes[J]. Vet Clin North Am Food Anim Pract,
2010, 26(1): 123-146.
[27] NATSUAKI S, GOTO K, NAKMURA K, et al. Fatal winter dysentery with severe anemia in an adult cow[J]. J Vet Med Sci, 2007, 69(9): 957-960.
[28] HECKERT R A, SAIF L J, HOBLET K H, et al. A longitudinal study of bovine coronavirus enteric and respiratory infections in dairy calves in two herds in Ohio[J]. Vet Microbiol, 1990, 22(2-3): 187-201.
[29] DECARO N, CAMPOLO M, DESARIO C, et al. Respiratory disease associated with bovine coronavirus infection in cattle herds in Southern Italy[J]. J Vet Diagn Invest, 2008, 20(1): 28-32.
[30] GOTO Y, FUKUNARI K, SUZUKI T. Multiplex RT-qPCR Application in Early Detection of Bovine Respiratory Disease in Healthy Calves[J]. Viruses, 2023,
15(3): 1-18.
[31] MEKATA H, HAMABE S, SUDARYATMA P E, et al. Molecular epidemiological survey and phylogenetic analysis of bovine respiratory coronavirus in Japan from 2016 to 2018[J]. J Vet Med Sci, 2020, 82(6): 726-730.
[32] OLIVEIRA V, DALL A A, FRITZEN J, et al. Microbial diversity involved in the etiology of a bovine respiratory disease outbreak in a dairy calf rearing unit[J]. Comp Immunol Microbiol Infect Dis, 2020, 71: 101494.
[33] FRUCCHI A, DALL A A, BRONKHORST D E, et al. Bovine Coronavirus Co-infection and Molecular Characterization in Dairy Calves With or Without Clinical Respiratory Disease[J]. Front Vet Sci, 2022, 9: 895492.
[34] O'NEILL R, MOONEY J, CONNAGHAN E, et al. Patterns of detection of respiratory viruses in nasal swabs from calves in Ireland: a retrospective study[J]. Vet Rec, 2014, 175(14): 351.
[35] FULTON R W, D'OFFAY J M, LANDIS C, et al. Detection and characterization of viruses as field and vaccine strains in feedlot cattle with bovine respiratory disease[J]. Vaccine, 2016, 34(30): 3478-3492.
[36] LACHOWICZ-WOLAK A, KLIMOWICZ-BODYS M D, PLONECZKA-JANECZKO K, et al. The Prevalence, Coexistence, and Correlations between Seven Pathogens Detected by a PCR Method from South-Western Poland Dairy Cattle Suffering from Bovine Respiratory Disease[J]. Microorganisms, 2022, 10(8): 1487.
[37] NG T F F, KONDOV N O, Deng X T, et al. A metagenomics and case-control study to identify viruses associated with bovine respiratory disease[J]. J Virol, 2015, 89(10): 5340-5349.
[38] HAUSE B M, COLLIN E A, ANDERSON J, et al. Bovine rhinitis viruses are common in U.S. cattle with bovine respiratory disease[J]. PLoS One, 2015, 10(3): e121998.
[39] ZHOU Y X, Chen X, Tang C, et al. Detection and Genomic Characterization of Bovine Rhinitis Virus in China[J]. Animals (Basel), 2023, 13(2): 312.
[40] XIE Y L, LV D H, WEN X H, et al. Development of a Real-Time Quantitative RT-PCR Assay for Detection of Bovine Rhinitis B Virus[J]. Front Vet Sci, 2021, 8: 80707.
[41] HORWOOD P F, GRAVEL J L, MAHONY T J. Identification of two distinct bovine parainfluenza virus type 3 genotypes[J]. J Gen Virol, 2008, 89(Pt7): 1643-1648.
[42] ZHU Y M, SHI H F, GAO Y R, et al. Isolation and genetic characterization of bovine parainfluenza virus type 3 from cattle in China[J]. Vet Microbiol, 2011, 149(3-4): 446-451.
[43] WANG X, HU J J, MENG F Y, et al. Isolation, Identification, and Genetic Phylogenetic Analysis of Two Different Genotypes of Bovine Parainfluenza 3 Virus in China[J]. Viruses, 2022, 14(10): 1-10.
[44] NEILL J D, RIDPATH J F, VALAYUDHAN B T. Identification and genome characterization of genotype B and genotype C bovine parainfluenza type 3 viruses isolated in the United States[J]. BMC Vet Res, 2015, 11: 112.
[45] OEM J K, LEE E Y, LEE K K, et al. Molecular characterization of a Korean bovine parainfluenza virus type 3 isolate[J]. Vet Microbiol, 2013, 162(1): 224-227.
[46] PRATELLI A, CIRONE F, CAPOZZA P, et al. Bovine respiratory disease in beef calves supported long transport stress: An epidemiological study and strategies for control and prevention[J]. Res Vet Sci, 2021, 135: 450-455.
[47] KLIMA C L, ZAHEER R, COOK S R, et al. Pathogens of bovine respiratory disease in North American feedlots conferring multidrug resistance via integrative conjugative elements[J]. J Clin Microbiol, 2014, 52(2): 438-448.
[48] YE IL BA"" K, GüNGg?R B. Seroprevalence of bovine respiratory viruses in North-Western Turkey[J]. Trop
Anim Health Prod, 2008, 40(1): 55-60.
[49] REN Y X, TANG C, YUE H. Prevalence and Molecular Characterization of Bovine Parainfluenza Virus Type 3 in" Cattle Herds in China[J]. Animals (Basel), 2023, 13
(5): 793.
[50] OLIVEIRA T, PELAQUIM I F, FLORES E F, et al. Mycoplasma bovis and viral agents associated with the development of bovine respiratory disease in adult dairy cows[J]. Transbound Emerg Dis, 2020, 67(Suppl 2): 82-93.
[51] TAYLOR R E, SEAL B S, ST J S. Isolation of infectious bovine rhinotracheitis virus from the soft-shelled tick, Ornithodoros coriaceus[J]. Science, 1982, 216(4543):
300-301.
[52] OSTLER J B, JONES C. The Bovine Herpesvirus 1 Latency-Reactivation Cycle, a Chronic Problem in the Cattle Industry[J]. Viruses, 2023, 15(2): 552.
[53] JONES C, CHOWDHURY S. Bovine herpesvirus type 1 (BHV-1) is an important cofactor in the bovine respiratory disease complex[J]. Vet Clin North Am Food
Anim Pract, 2010, 26(2): 303-321.
[54] JOHNSON K K, PENDELL D L. Market Impacts of Reducing the Prevalence of Bovine Respiratory Disease in United States Beef Cattle Feedlots[J]. Front Vet
Sci, 2017, 4: 189.
[55] SMITH D B, MEYERS G, BUKH J, et al. Proposed revision to the taxonomy of the genus Pestivirus, family Flaviviridae[J]. J Gen Virol, 2017, 98(8): 2106-2112.
[56] YE ILBA" K, ALPAY G, BECHER P. Variability and Global Distribution of Subgenotypes of Bovine Viral Diarrhea Virus[J]. Viruses, 2017, 9(6): 128.
[57] 諶婕,左之才,才冬杰,等. 牛病毒性腹瀉病毒全球基因型與亞型流行情況[J]. 浙江農(nóng)業(yè)學(xué)報,2022,34(12):2622-2628.
[58] BROWNLIE J, HOOPER L B, THOMPSON I, et al. Maternal recognition of foetal infection with bovine virus diarrhoea virus (BVDV)--the bovine pestivirus[J]. Clin Diagn Virol, 1998, 10(2-3): 141-150.
[59] ANTOS A, MIROSLAW P, ROLA J, et al. Vaccination Failure in Eradication and Control Programs for Bovine Viral Diarrhea Infection[J]. Front Vet Sci, 2021, 8: 688911.
[60] FANELLI A, CIRILLI M, LUCENTE M S, et al. Fatal Calf Pneumonia Outbreaks in Italian Dairy Herds Involving Mycoplasma bovis and Other Agents of BRD Complex[J]. Front Vet Sci, 2021, 8: 742785.
[61] SAIPINTA D, PANYAMONGKOL T, CHUAMMITRI P, et al. Reduction in Mortality of Calves with Bovine Respiratory Disease in Detection with Influenza C and D Virus[J]. Animals (Basel), 2022, 12(23): 3252.
[62] PACCAUD M F, JACQUIER C. A respiratory syncytial virus of bovine origin[J]. Arch Gesamte Virusforsch, 1970, 30(4): 327-342.
[63] SARMIENTO-SILVA R E, NAKAMURA-LOPEZ Y, VAUGHAN G. Epidemiology, molecular epidemiology and evolution of bovine respiratory syncytial virus[J]. Viruses, 2012, 4(12): 3452-3467.
[64] URBAN-CHMIEL R, WERNICKI A, PUCHALSKI A, et al. Detection of bovine respiratory syncytial virus infections in young dairy and beef cattle in Poland[J]. Vet Q, 2015, 35(1): 33-36.
[65] CHANG Y M, YUE H, TANG C. Prevalence and Molecular Characteristics of Bovine Respiratory Syncytial Virus in Beef Cattle in China[J]. Animals (Basel), 2022, 12(24): 3511.
[66] ZHU Y M, YU Z, CAI H, et al. Isolation, identification, and complete genome sequence of a bovine adenovirus" type 3 from cattle in China[J]. Virol J, 2011,
8: 557.
[67] MATTSON D E, NORMAN B B, DUNBAR J R. Bovine adenovirus type-3 infection in feedlot calves[J]. Am J Vet Res, 1988, 49(1): 67-69.
[68] GRIFFIN D, CHENGAPPA M M, KUSZAK J, et al. Bacterial pathogens of the bovine respiratory disease complex[J]. Vet Clin North Am Food Anim Pract,
2010, 26(2): 381-394.
[69] HARPER M, BOYCE J D, ADLER B. Pasteurella multocida pathogenesis: 125 years after Pasteur[J]. FEMS
Microbiol Lett, 2006, 265(1): 1-10.
[70] CALDERóN B J, FERNáNDEZ A, ARNAL J L, et al. Molecular Epidemiology of Pasteurella multocida Associated with Bovine Respiratory Disease Outbreaks
[J]. Animals (Basel), 2022, 13(1).
[71] DUFF G C, GALYEAN M L. Board-invited review: recent advances in management of highly stressed, newly" received feedlot cattle[J]. J Anim Sci, 2007, 85(3): 823-840.
[72] TIMSIT E, HALLEWELL J, BOOKER C, et al. Prevalence and antimicrobial susceptibility of Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni isolated from the lower respiratory tract of healthy feedlot cattle and those diagnosed with bovine respiratory disease[J]. Vet Microbiol, 2017, 208: 118-125.
[73] COZENS D, SUTHERLAND E, LAUDER M, et al. Pathogenic Mannheimia haemolytica Invades Differentiated Bovine Airway Epithelial Cells[J]. Infect Immun, 2019, 87(6): e00078-19.
[74] ANGEN O. Taxonomy of Histophilus somni[J]. Curr Top Microbiol Immunol, 2016, 396: 1-14.
[75] CORBEIL L B. Host Immune Response to Histophilus somni[J]. Curr Top Microbiol Immunol, 2016, 396:
109-129.
[76] BROWN D R, WHITECOMB R F, BRADBURY J M. Revised minimal standards for description of new species of the class Mollicutes (division Tenericutes)[J]. Int J Syst Evol Microbiol, 2007, 57(Pt 11): 2703-2719.
[77] DUDEK K, NICHOLAS R A J, SZACAWA E, et al. Mycoplasma bovis Infections-Occurrence, Diagnosis and Control[J]. Pathogens, 2020, 9(8): 1-24.
[78] MCAULIFFE L, ELLIS R J, MILES K, et al. Biofilm formation by mycoplasma species and its role in environmental persistence and survival[J]. Microbiology (Reading), 2006, 152(Pt 4): 913-922.
[79] LEE H H, THONGRUEANG N, LIU S S, et al. Prevalence of respiratory bacterial pathogens and associated management factors in dairy calves in Taiwan[J]. J Vet Med Sci, 2022, 84(7): 946-953.
[80] HOLMAN D B, TIMSIT E, AMAT S, et al. The nasopharyngeal microbiota of beef cattle before and after transport to a feedlot[J]. BMC Microbiol, 2017, 17(1): 70.
[81] EARLY B, BUCKHAM S K, GUPTA S. Invited review: Relationship between cattle transport, immunity and respiratory disease[J]. Animal, 2017, 11(3): 486-492.
[82] MURRAY G M, O'NEILL R G, MORE S J, et al. Evolving views on bovine respiratory disease: An appraisal of selected key pathogens - Part 1[J]. Vet J, 2016,
217: 95-102.
[83] MCEACHRAN A D, BLACKWELL B R, HANSON J D, et al. Antibiotics, bacteria, and antibiotic resistance genes: aerial transport from cattle feed yards via particulate matter[J]. Environ Health Perspect, 2015, 123(4): 337-343.
[84] BAPTISTE K E, KYVSGAARD N C. Do antimicrobial mass medications work? A systematic review and meta-analysis of randomised clinical trials investigating antimicrobial prophylaxis or" metaphylaxis against naturally occurring bovine respiratory disease[J/OL]. Pathog Dis, 2017, 75(7)[2024-11-17]. http://123.161.203.183:9999/DOI/65600000/10.1093/FEMSPD_2FFTX083.PDF
[85] O'CONNOR A M, HU D, TOTTON S C, et al. A systematic review and network meta-analysis of injectable antibiotic options" for the control of bovine respiratory disease in the first 45 days post arrival at the feedlot[J]. Anim Health Res Rev, 2019, 20(2): 163-181.
[86] AMAT S, TIMSIT E, WORKENTINE M, et al. A Single Intranasal Dose of Bacterial Therapeutics to Calves Confers Longitudinal Modulation of the Nasopharyngeal Microbiota: a Pilot Study[J]. mSystems, 2023, 8(2): e101622.
[87] AMAT S, ALEXANDER T W, HOLMAN D B, et al. Intranasal Bacterial Therapeutics Reduce Colonization by the Respiratory Pathogen Mannheimia haemolytica in Dairy Calves[J]. mSystems, 2020, 5(2): e00629-19.
[88] ZHANG M D, HILL J E, ALEXANDER T W, et al. The nasal viromes of cattle on arrival at western Canadian feedlots and their relationship to development of bovine respiratory disease[J]. Transbound Emerg Dis, 2021, 68(4): 2209-2218.
[89] MCCULLERS J A. The co-pathogenesis of influenza viruses with bacteria in the lung[J]. Nat Rev Microbiol, 2014, 12(4): 252-262.
[90] BAKALETZ L O. Viral-bacterial co-infections in the respiratory tract[J]. Curr Opin Microbiol, 2017, 35: 30-35.
[91] CASWELL J L, BATEMAN K G, CAI H Y, et al. Mycoplasma bovis in respiratory disease of feedlot cattle[J]. Vet Clin North Am Food Anim Pract, 2010, 26(2): 365-379.
責(zé)任編輯:周慧