• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stimulated brillouin scattering in double-clad thulium-doped fiber amplifier

    2024-02-05 09:07:02LIUQingminSUNHuijieHOUShanglinLEIJingliWUGangYANZuyong
    中國光學(xué) 2024年1期

    LIU Qing-min,SUN Hui-jie,HOU Shang-lin ,LEI Jing-li,WU Gang,YAN Zu-yong

    (1.College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China;2.School of Science, Lanzhou University of Technology, Lanzhou 730050, China)

    Abstract: In this paper,the effect of Stimulated Brillouin Scattering(SBS) on the laser output performance in a 2 μm thulium-doped fiber amplifier was analyzed theoretically.The optical mode distribution,the effective refractive index,the effective mode field area,and the normalized frequency of the double-clad thuliumdoped fiber at 793 nm pump wavelength and 1.9-2.1 μm laser waveband were studied.The stimulated Brillouin scattering characteristics,including the Brillouin frequency shift and the Brillouin gain spectrum,in the double-clad thulium-doped fiber were numerically simulated in the laser waveband of 1.9-2.1 μm.The influence of stimulated Brillouin scattering on the laser output performance of thulium-doped fiber amplifiers was investigated using the theoretical model of stimulated Brillouin scattering in gain fibers.In the DTDF-10/130 double-clad thulium-doped fiber,a continuous wave with power of 100 W and wavelength of 793 nm is used as a pump to amplify a continuous signal wave with wavelength of 2 μm and power of 0.01 W.The maximum output powers of the signal wave are 25.27 W,31.08 W and 34.06 W when the pump power filling factors are 0.01,0.02 and 0.03,respectively.The corresponding optimal double-clad fiber lengths are 2.66 m,2.02 m and 1.75 m.Additionally,the Stokes optical powers generated by the stimulated Brillouin scattering are 1.68 W,1.39 W and 1.14 W,respectively.The results show that the double-clad fiber with large pump power filling factor in the thulium-doped fiber amplifier can effectively reduce the fiber length,thus to minimize the influence of stimulated Brillouin scattering on the output power of the signal laser.The numerical model can optimize the fiber length of the fiber amplifier,which is of great significance to improve experimental efficiency and reduce experimental costs.

    Key words: stimulated brillouin scattering;double-clad;thulium-doped fiber;amplifier

    1 Introduction

    Fiber lasers are one of the earliest types of realized laser.Initially,most fiber lasers used a singleclad fiber as the laser medium,but it is difficult to effectively couple high power pump wave into the fiber core due to the geometry of the fiber core.Consequently,fiber lasers were formerly regarded as a weak wave source with low output power[1-3].In 1988,Snitzeret al.[4]reported a double-clad fiber,in which,the pump wave is transmitted in the inner cladding,providing a new solution for increasing fiber laser output power,while successfully coupling high-power pump waves into a single-mode core.Double-clad fiber lasers are highly favored by researchers due to their high efficiency,superior mode quality,compact structure,and easy to dissipate heat[5-8].

    In recent years,the performance requirements of fiber lasers have increased with the development of fiber optic communication technology.Currently,researchers primarily focus on achieving high power output,narrow linewidth spectrum,and high beam quality in fiber lasers[9-10].Thulium-doped fiber lasers in the 2 μm band are widely used in laser medicine[11-12],laser active remote sensing[13-14]and military science and technology[15]due to their advantages including human eye safety and wide tunable range.As a result,they have garnered significant attention in the optical society.In recent years,there has been a growing interest in ultrashort pulse and multi-wavelength fiber laser light sources in the 2.0 μm[16-19].In addition,thulium-doped fiber lasers offer great advantages in terms of a narrow linewidth and high-power laser output[20].To further improve the laser output wave’s beam quality,a Master Oscillation Power Amplification (MOPA)structure is usually used[21].However,in the highpower fiber amplifiers,the small core cross-sectional area and high transmission power can easily cause nonlinear effects.The Stimulated Brillouin Scattering (SBS) effect[22]can convert part of the signal wave in the amplifer into a Stokes wave,thus affects the efficiency of the amplifier and leads to a significant reduction in the output power[23].Therefore,the suppression of SBS in fiber lasers or amplifiers is a very important research topic.For example,Yang Let al.[24]broadened the pump wave by using white noise as the RF signal to reduce the Brillouin scattering gain coefficient.As a result,the SBS threshold was increased,and a continuous laser output with an average power of 90 W was achieved.Liu Y Ket al.[25]reduced the Brillouin gain peak by broadening the linewidth of the seed laser by using phase modulation to suppress SBS.Harishet al.[26]suppressed stimulated Brillouin scattering in an erbium-doped optical fiber amplifier for 50-ns-long transform limited signal pulses by employing counter-directional pumping with a pulse burst.Furthermore,the effect of SBS can be reduced by increasing the mode field area of the fiber[27]and increasing the doping concentration of the gain fiber[28].

    Numerical modeling was conducted on the double-clad thulium-doped fiber,with reference to GB/T 28 504.2-2021[29].An investigation was carried out on the optical field distribution,Brillouin gain coefficient,and Brillouin gain spectrum,along with other characteristics of the double-clad thulium-doped fiber at the pump wavelength of 793 nm and the laser waveband of 1.9~2.1 μm.Subsequently,the numeric solution for the laser output characteristics of the thulium-doped fiber amplifier is obtained,considering the effect of SBS on the output power of the signal wave.The results show that the effect of SBS on the signal laser output can be reduced by choosing a shorter fiber in the fiber amplifier,while a double-clad fiber with a larger pump optical power filling factor can be used to guarantee the laser output power.

    2 Models and theory

    A Double-Clad Thulium-Doped Fiber (DCTDF) has a four-layer structure.The core portion is made of Tm3+-doped silica,with an inner cladding layer of pure silica,an outer cladding layer of a lowrefractive index polymer,and a coating layer of a common polymer[29].For its geometry,optical properties,mechanical properties,and other parameters,please refer to GB/T 28 504.2-2021.The DTDFs can be categorized as DTDF-10/130 and DTDF-25/400 according to the size of their core and inner cladding.Table 1 gives their respective geometry and optical properties.

    The refractive index of silica is determined using the Sellmeier equation[30]

    whereλrepresents the wavelength in microns andrepresents the refractive index of silica.

    Figs.1 and 2 depict the structure and refractive index distribution of DTDF-10/130 and DTDF-25/400 DCTDFs,respectively.In these diagrams,n1,n2andn3represent the refractive indices of the core,inner cladding,and outer cladding.It is worth noting that in both fibers,n2represents the refractive index of silica,whilen1andn3can be calculated from the numerical apertures of the core and inner cladding.

    3 Results and discussion

    3.1 Analyses of optical properties of double-clad thulium-doped fiber

    Analytical calculations were performed using the finite element method for both DTDF-10/130 and DTDF-25/400 DCTDFs.This study focuses on the operating waveband of thulium-doped fiber lasers at 1.9~2.1 μm.The coupling intensity of the optical wave in the Tm3+doped region is quantitatively expressed through the power filling factor shown in the following equation[31-32]where the integration region of the numerator term is the doping region of Tm3+,while the integration region of the denominator term covers the entire fiber cross section,andkrepresents various optical modes.

    Figs.3 and 4 show the optical field distributions of the two fibers for the signal wave with a wavelength of 2 μm.As the refractive index of the core-doped region is greater than that of the inner cladding,the signal wave at 2 μm wavelength can be effectively confined in the core-doped region.Fig.5 (color online) illustrates the normalized frequencies of the two fibers within the signal wave wavelength range of 1.9~2.1 μm.It can be seen from Fig.5 that the normalized frequency of DTDF-25/400 DCTDF is consistently above 2.405 in this range,indicating that it is a few-mode fiber allowing LP01and LP11modes existence in the core.On the other hand,the normalized frequency of DTDF-10/130 DCTDF surpasses 2.405 only at wavelengths lower than 1.96 μm,suggesting that it maintains single-mode transmission with only LP01mode in the core.

    Figs.6(a) and (b) (color online) demonstrate the effective refractive index and effective mode field area for LP01mode of DTDF-10/130 DCTDF and LP11mode of DTDF-25/400 DCTDF in the 1.9~2.1 μm signal wave.The plots clearly indicate a positive correlation between the effective mode field area and wavelength.When the signal wave has a wavelength of 2 μm,the effective mode field area for LP01mode in DTDF-10/130 DCTDF is 94.8 μm2.For DTDF-25/400 DCTDF,the LP01and LP11modes have effective mode filed areas of 415.5 μm2and 677.4 μm2,respectively.To calculate the power filling factors for both fibers,equation (2) can be used assuming that Tm3+is uniformly doped in the core region.The results are shown in Fig.7.

    In DTDF-10/130 DCTDF,analysis is limited to only the optical power filling factor of LP01mode due to the cutoff of LP11mode for signal wave with wavelength above 1.96 μm.As the wavelength increases from 1.9 μm to 2.1 μm,the optical power filling factor of LP01mode decreases from 0.838 to 0.797.In DTDF-25/400 DCTDF,both LP01and LP11modes exist within the 1.9~2.1 μm signal waveband.As the wavelength increases from 1.9 μm to 2.1 μm,the optical power filling factor of LP01mode decreases from 0.939 to 0.922,while that of LP11mode decreases from 0.815 to 0.754.It is worth noting that the optical power filling factor of LP01mode remains consistently larger than that of LP11mode.Therefore,LP01mode has a stronger Tm3+doping gain capability than LP11mode.This advantages allowed LP01mode to persevere in the mode competition with LP11mode.

    The 793 nm pump wave can be transmitted in the core and cladding.Hence,in this paper,the coupling capability of the 793 nm pump wave in the core region and its transmission characteristics in the inner cladding of DTDF-10/130 and DTDF-25/400 DCTDFs are numerically investigated.

    The distribution of the optical modes with higher power filling factors in both fibers at a pump wave wavelength of 793 nm are shown in Fig.8.Power filling factors of optical modes corresponding to 8(a) to 8(d) are 5.11×10-4,2.28×10-3,4.90×10-3,and 3.11×10-3,respectively,while those corresponding to 8(e) to 8(h) are 5.64×10-4,2.46×10-3,5.17×10-3,and 7.90×10-3,respectively.These optical modes are generally radially symmetric.The number of optical modes which can be accommodated in the inner cladding of the fiber is much greater than those found in Fig.8.Additionally,optical modes with lower power filling factor in DTDF-10/130 DCTDF can be seen in Fig.9,with optical modes in Figs.9(a) to (c) corresponding to power filling factors of 8.98×10-6,6.84×10-7,and 7.00×10-8,respectively.These are over two orders of magnitude less than those shown in Fig.8.

    3.2 Stimulated Brillouin scattering in double-clad thulium-doped fibers

    In double-clad thulium-doped fiber application,a 793 nm pump wave is pumped through the cladding,while a laser with a wavelength of 2 μm is amplified and transmitted in the core.The Brillouin scattering threshold is proportional to the effective mode field area,the effective mode field area of the pump wave transmitted in the cladding is significantly greater than that of the laser transmitted in the core.For example,the effective mode field area of the optical wave corresponding to the 793 nm pump wave,as shown in Fig.8(a),is 8.11×10-9m2,while that of the LP01mode shown in Fig.3 at a laser wavelength of 2 μm transmitted in the core is only 9.48×10-11m2.Consequently,the effective mode field area of the optical mode of the laser is two orders of magnitude smaller than that of the pump wave.Thus,the Brillouin threshold of the pump wave is significantly higher than that of the laser.In the proceeding discussion,we only consider the SBS effect arising in the laser.

    The different Brillouin frequency shifts of the two fibers in the laser waveband,ranging from 1.9 to 2.1 μm,can be calculated by equation (2).Fig.10 depicts a decrease in the Brillouin frequency shift of LP01-LP01intra-mode Brillouin scattering in DTDF-10/130 DCTDF from 8.867 GHz to 8.176 GHz as the laser wavelength increases from 1.9 μm to 2.1 μm.The Brillouin frequency shifts for intramode and inter-mode Brillouin scattering in DTDF-25/40 DCTDF have decreased.Specially,the shifts for LP01-LP01intra-mode were from 8.258 GHz to 8.166 GHz,the shifts for LP11-LP11intra-mode were from 8.251 GHz to 8.159 GHz,and the shifts for LP01-LP11inter-mode were from 8.255 GHz to 8.162 GHz.

    Fig.2 Structure and refractive index distribution of DTDF-25/400 double-clad thulium-doped fiber

    Fig.3 Schematic diagrams of the (a) two-dimensional and(b) three-dimensional optical field distributions of the LP01 mode of the DTDF-10/130 double-clad thulium-doped fiber at 2 μm wavelength,respectively

    Fig.4 Optical field distribution of DTDF-25/400 doubleclad thulium-doped fiber at 2 μm wavelength.(a)-(c) Schematic diagrams of the two-dimensional optical field distributions for LP01,LP11 (o) and LP11(e);(d)-(f) schematic diagrams of three-dimensional optical field distributions for LP01,LP11 (o) and LP11 (e)

    Fig.5 Schematic diagram of the normalized frequency with signal wave wavelength for DTDF-10/130 and DTDF-25/400 double-clad thulium-doped fibers

    Fig.6 Effective refractive index and effective mode field area of different optical wave modes in two fibers in the 1.9~2.1 μm band.(a) LP01 mode in DTDF-10/130 double-clad thulium-doped fiber;(b) LP01 and LP11 modes in DTDF-25/400 double-clad thulium-doped fiber

    Fig.7 Variation of power filling factor with wavelength in double-clad thulium-doped fibers DTDF-10/130 and DTDF-25/400

    Fig.8 Optical wave modes of 793 nm pump wave in different fibers.(a)-(d) DTDF-10/130;(e)-(h) DTDF-25/400 double-clad thulium-doped fiber

    Fig.9 Optical modes corresponding to small power filling factor in the inner cladding at a wavelength of 793 nm for the pump wave

    Fig.10 Schematic diagram of intra-and inter-mode Brillouin scattering of different optical wave modes in two fibers operating at 1.9~2.1 μm laser wave lengths

    The Brillouin gain coefficients of LP01-LP01intra-mode Brillouin scattering in DTDF-10/130 DCTDF,LP01-LP01intra-mode,LP11-LP11intramode and LP01-LP11inter-mode Brillouin scattering in DTDF-25/400 DCTDF at 1.9~2.1 μm signal waveband are presented in Fig.11 (color online).The Brillouin gain coefficients in DTDF-10/130 DCTDF are greater than those in DTDF-25/400 DCTDF.While conducting experiments within DTDF-25/400 DCTDF,the Brillouin gain coefficient exhibited the largest value for LP01-LP01intramode Brillouin scattering,followed by LP11-LP11intra-mode Brillouin scattering,and ultimately LP01-LP11inter-mode Brillouin scattering,which is the smallest gain coefficient among the three.

    Fig.11 LP01-LP01 intra-mode Brillouin gain coefficient in DTDF-10/130 double-clad thulium-doped fiber,LP01-LP01 intra-mode,LP11-LP11 intra-mode and LP01-LP11 inter-mode Brillouin gain coefficients in DTDF-25/400 double-clad thulium-doped fiber at the 1.9~2.1 μm laser waveband

    According to Fig.5,it can be observed that DTDF-10/130 DCTDF is a single-mode fiber at a laser wavelength of 2 μm,while DTDF-25/400 DCTDF is a few-mode fiber.Therefore,only intramode Brillouin scattering is present in DTDF-10/130 DCTDF and its Brillouin gain spectrum is shown in Fig.12(a).The Brillouin frequency shift is observed to be 8.595 GHz and the Brillouin gain coefficient is determined to be 2.149×10-11m/W.In DTDF-25/400 DCTDF,both LP01and LP11modes exist,and intra-mode Brillouin scattering and intermode Brillouin scattering can exist.The Brillouin gain spectrum is shown in Fig.12(b) (color online),where the Brillouin frequency shifts and the Brillouin gain coefficients of LP01-LP01intra-mode,LP11-LP11intra-mode and LP01-LP11inter-mode Brillouin scattering are 8.583 GHz,8.577 GHz and 8.580 GHz,and 2.129×10-11m/W,2.117×10-11m/W,and 1.8×10-11m/W,respectively.

    Fig.12 Brillouin gain spectra at laser wavelength of 2 μm.(a) Brillouin scattering within LP01-LP01 mode in DTDF-10/130 double-clad thulium-doped fiber;(b) Brillouin scattering within LP01-LP01 mode,LP11-LP11 mode and LP01-LP11 inter-mode in DTDF-25/400 double-clad thulium-doped fiber

    3.3 Stimulated Brillouin scattering in thuliumdoped fiber amplifiers

    The laser in the 2 μm band can be generated or amplified by a DCTDF,which corresponds to a thulium-doped fiber laser and an amplifier respectively.In this paper,we mainly study the SBS in DTDF-10/130 DCTDF amplifier,whose simulation parameters are shown in Table 2[33-35].

    The effect of SBS on the output power of the signal wave was simulated in a DCTDF amplifier with pump wave power filling factors of 0.01,0.02 and 0.03.The seed wave was a continuous wave with a wavelength of 2 μm and a power of 0.01 W,while the pump wave was a continuous wave with a wavelength of 793 nm and a power of 100 W,respectively.

    Tab.2 Simulation parameters of thulium-doped fiber amplifier

    The distribution of pump wave,signal wave,and Stokes wave power along a 2.1 m DTDF-10/130 DCTDF with a pump wave power filling factor of 0.02 is shown in Fig.13 (color online).The direction of forward wave propagation is specified as the direction of increasing fiber length.The pump wave travels forward and is absorbed by the doped Tm3+in the core,resulting in a gradual decrease in intensity as fiber length increases.This process excites the Tm3+to the upper energy level of the laser.The signal wave is continuously amplified during transimission process,and when the power of signal wave reaches the SBS threshold,a portion of its energy can be converted into the backward transmitted Stokes wave by SBS.As the SBS process continues,the backward transmitted Stokes wave undergoes gradual amplification.As the transmission direction of the Stokes wave is opposite to that of the signal wave.Fig.13 illustrates a gradual decrease in the power of the former Stokes wave as the fiber length increases.To maintain optimal output power of the signal wave,suppression of SBS in thulium-doped fiber amplifiers is required.

    Fig.13 Distribution of pump wave power,signal wave power and Stokes wave power along the fiber

    In this paper,we investigate how fiber length affects the output power of a thulium-doped fiber amplifier.First,the effect of fiber length on the pump wave absorption is studied,and the results are shown in Fig.14 (color online).It can be seen that as fiber length increases,the power of pump wave which is not absorbed by Tm3+decreases gradually.Therefore,a shorter fiber length is required to absorb the same power of pump wave for a DCTDF with a larger power filling factor.For example,when 80% of the pump wave is absorbed,the lengths of DCTDFs with pump wave power filling factors of 0.01,0.02 and 0.03 need to be approximately about 3.6 m,1.9 m and 1.3 m,respectively.

    Fig.14 Residual pumping optical powers varying with fiber length at different pump optical power filling factors

    As shown in Fig.15 (color online),the 2 μm laser achieves a maximum output power of 25.27 W,31.08 W and 34.06 W when the pump optical power filling factors are 0.01,0.02 and 0.03,respectively.The corresponding fiber lengths are 2.66 m,2.02 m and 1.75 m.The reverse transmitted Stokes optical power caused by SBS is 1.68 W,1.39 W and 1.14 W,respectively.The laser output power increases and then decreases as the fiber length increases,while the Stokes power for reverse transmission continues to increase,as shown in the figure 15.Therefore,effective laser amplification can be realized by selecting a shorter fiber and a DCTDF with a larger pump power filling factor as the gain medium to suppress the SBS.To this end,the pump power filling factor can be optimized by the rational design of the inner cladding structure.

    Fig.15 Variation of laser output power and Stokes optical power with fiber length when pump power filling factors are (a) 0.01,(b) 0.02,and (c) 0.03,respectively

    4 Conclusion

    Compared to DTDF-25/400 double-clad thulium-doped fiber,DTDF-10/130 double-clad thuliumdoped fiber can maintain single-mode transmission at 793 nm pump wavelength in the laser waveband of 1.9~2.1 μm.Only the SBS of the signal wave in the core was investigated in both fibers since the pump’s Brillouin threshold is considerably larger than that of the signal wave.The study indicates the presence of both intra-and inter-mode Brillouin scattering in DTDF-25/400 as the signal wavelength increases from 1.9 μm to 2.1 μm.On the other hand,only intra-mode Brillouin scattering is observed in DTDF-10/130.For DTDF-10/130 double-clad thuli-um-doped fiber amplifier with varying pump wavepower filling factors of 0.01,0.02 and 0.03,by us-i ng 100 W continuous wave with wavelength of 793 nm as the pump wave and 0.01 W continuous wave wavelength of 2 μm as the signal wave,the maximum output power of the signal wave is 25.27 W,31.08 W and 34.06 W,respectively.The optimal double-clad fiber lengths are 2.66 m,2.02 m and 1.75 m,respectively.The Stokes optical power generated by stimulated Brillouin scattering is 1.68 W,1.39 W and 1.14 W.The results show that using double-clad fiber with a high pump power filling factor in the thulium-doped fiber amplifier can minimize the effects of stimulated Brillouin scattering on the signal laser output power by reducing the fiber length.The numerical model presented in this paper optimizes the fiber length of the fiber amplifier.This optimization is significant in improving experimental efficiency and reducing experimental costs.

    成人特级av手机在线观看| 乱码一卡2卡4卡精品| 亚洲在久久综合| 国产免费福利视频在线观看| av又黄又爽大尺度在线免费看 | av线在线观看网站| 国产毛片a区久久久久| 国产精品国产三级专区第一集| 国产一区亚洲一区在线观看| 欧美色视频一区免费| 国产av一区在线观看免费| 女人久久www免费人成看片 | 夜夜爽夜夜爽视频| 亚洲电影在线观看av| 菩萨蛮人人尽说江南好唐韦庄 | 精品久久久久久久人妻蜜臀av| 国产成人精品久久久久久| 日韩制服骚丝袜av| 亚洲综合精品二区| 国产免费又黄又爽又色| 22中文网久久字幕| 男女边吃奶边做爰视频| 韩国av在线不卡| 午夜视频国产福利| 人人妻人人澡欧美一区二区| 午夜亚洲福利在线播放| 内地一区二区视频在线| 精品酒店卫生间| eeuss影院久久| 免费大片18禁| 欧美3d第一页| 国产精品国产高清国产av| 美女大奶头视频| 一级毛片久久久久久久久女| 亚洲国产成人一精品久久久| av福利片在线观看| 亚洲av男天堂| 一边摸一边抽搐一进一小说| 国产成人a区在线观看| 中文亚洲av片在线观看爽| 亚洲怡红院男人天堂| 日本av手机在线免费观看| 成年免费大片在线观看| 欧美不卡视频在线免费观看| 99久久中文字幕三级久久日本| 18禁在线无遮挡免费观看视频| 99热这里只有精品一区| 精品国产露脸久久av麻豆 | 久久精品综合一区二区三区| 日韩一区二区三区影片| 亚洲欧美日韩东京热| 日本色播在线视频| 18禁在线无遮挡免费观看视频| 亚洲国产精品久久男人天堂| 精品熟女少妇av免费看| 久久久久久国产a免费观看| 精品人妻熟女av久视频| 久久亚洲国产成人精品v| 久久久午夜欧美精品| 国国产精品蜜臀av免费| 久久久久性生活片| 亚洲无线观看免费| 亚洲乱码一区二区免费版| 舔av片在线| 国产视频内射| 国产免费男女视频| 97人妻精品一区二区三区麻豆| 少妇裸体淫交视频免费看高清| 啦啦啦啦在线视频资源| 国产白丝娇喘喷水9色精品| 久久精品久久久久久噜噜老黄 | 国产成人精品久久久久久| 久久人人爽人人爽人人片va| 麻豆乱淫一区二区| 国产白丝娇喘喷水9色精品| 亚洲av成人精品一二三区| 男女视频在线观看网站免费| 国产在视频线在精品| 精品国产露脸久久av麻豆 | av在线天堂中文字幕| 建设人人有责人人尽责人人享有的 | 不卡视频在线观看欧美| 久久久久久伊人网av| 日本一二三区视频观看| 久久久久久久久中文| 国产三级中文精品| 免费大片18禁| 乱码一卡2卡4卡精品| 寂寞人妻少妇视频99o| 国产高清视频在线观看网站| 青春草国产在线视频| 欧美+日韩+精品| av国产免费在线观看| 91久久精品国产一区二区成人| 亚洲久久久久久中文字幕| 一级黄色大片毛片| 亚洲av免费在线观看| 毛片女人毛片| 久久久欧美国产精品| 国产精品福利在线免费观看| 永久免费av网站大全| 高清av免费在线| 国产美女午夜福利| 国产精品乱码一区二三区的特点| 色吧在线观看| 国产精品美女特级片免费视频播放器| 国产成人午夜福利电影在线观看| 亚洲欧美日韩无卡精品| 午夜福利在线观看吧| 男女那种视频在线观看| 边亲边吃奶的免费视频| 在线观看美女被高潮喷水网站| 如何舔出高潮| 精品国产一区二区三区久久久樱花 | 午夜免费激情av| 欧美一级a爱片免费观看看| 日韩人妻高清精品专区| 国产黄片视频在线免费观看| 午夜精品国产一区二区电影 | 九九爱精品视频在线观看| 小说图片视频综合网站| 久久久久久国产a免费观看| 韩国高清视频一区二区三区| 国产高清不卡午夜福利| 麻豆国产97在线/欧美| 免费在线观看成人毛片| 波野结衣二区三区在线| av又黄又爽大尺度在线免费看 | 国产午夜福利久久久久久| 国产一区亚洲一区在线观看| 女人被狂操c到高潮| 亚洲色图av天堂| 国产成人免费观看mmmm| 精品欧美国产一区二区三| 午夜视频国产福利| 日韩制服骚丝袜av| 亚洲国产色片| 亚洲色图av天堂| 五月玫瑰六月丁香| 女人被狂操c到高潮| 波野结衣二区三区在线| 国产精品爽爽va在线观看网站| 亚洲欧美精品综合久久99| 一级黄色大片毛片| 国产av不卡久久| 99热6这里只有精品| 一个人看视频在线观看www免费| 精品国产三级普通话版| av女优亚洲男人天堂| 尾随美女入室| 日日撸夜夜添| 麻豆av噜噜一区二区三区| 黄色一级大片看看| 又粗又硬又长又爽又黄的视频| 国产精品一二三区在线看| 色综合色国产| 国产人妻一区二区三区在| 久久久a久久爽久久v久久| 国内少妇人妻偷人精品xxx网站| 视频中文字幕在线观看| 亚洲国产精品国产精品| 久久久午夜欧美精品| 欧美zozozo另类| 又黄又爽又刺激的免费视频.| ponron亚洲| 深爱激情五月婷婷| 国产免费又黄又爽又色| 26uuu在线亚洲综合色| 国语对白做爰xxxⅹ性视频网站| 联通29元200g的流量卡| 少妇被粗大猛烈的视频| 国产黄色视频一区二区在线观看 | 插阴视频在线观看视频| 国产成人一区二区在线| 黑人高潮一二区| 99热6这里只有精品| 久久久久久久久久久免费av| a级毛片免费高清观看在线播放| 久久精品国产亚洲网站| 熟女电影av网| 天美传媒精品一区二区| 啦啦啦韩国在线观看视频| 亚洲乱码一区二区免费版| 性插视频无遮挡在线免费观看| 国产淫语在线视频| 精品人妻视频免费看| 国模一区二区三区四区视频| 午夜视频国产福利| 最近最新中文字幕免费大全7| 最近的中文字幕免费完整| 黄色配什么色好看| 噜噜噜噜噜久久久久久91| 99热这里只有精品一区| 午夜福利网站1000一区二区三区| 91久久精品国产一区二区成人| 青春草视频在线免费观看| 男女啪啪激烈高潮av片| 最近视频中文字幕2019在线8| 日韩一区二区三区影片| 亚洲色图av天堂| 日本色播在线视频| 水蜜桃什么品种好| 久久久久久久久久久免费av| 91久久精品国产一区二区三区| 欧美成人免费av一区二区三区| 天堂中文最新版在线下载 | 国产午夜精品久久久久久一区二区三区| 色播亚洲综合网| 啦啦啦韩国在线观看视频| 3wmmmm亚洲av在线观看| 国内精品宾馆在线| 看十八女毛片水多多多| 亚洲最大成人av| 蜜桃久久精品国产亚洲av| 久久久久久九九精品二区国产| 69人妻影院| 国产日韩欧美在线精品| 久久精品国产自在天天线| 麻豆成人午夜福利视频| 国产黄片美女视频| 一级毛片电影观看 | 亚洲成人中文字幕在线播放| 欧美xxxx性猛交bbbb| 免费无遮挡裸体视频| 99在线人妻在线中文字幕| 亚洲欧美精品综合久久99| 1000部很黄的大片| 成人无遮挡网站| 亚洲欧美成人精品一区二区| 国产一区亚洲一区在线观看| 久久久久久久久久久丰满| 久久精品人妻少妇| 精品欧美国产一区二区三| 国内精品一区二区在线观看| 亚洲av福利一区| 91精品国产九色| 亚洲精品aⅴ在线观看| 少妇猛男粗大的猛烈进出视频 | 国产一区有黄有色的免费视频 | 中文欧美无线码| 欧美xxxx黑人xx丫x性爽| 看黄色毛片网站| 亚洲伊人久久精品综合 | 国产高潮美女av| av视频在线观看入口| 美女被艹到高潮喷水动态| 免费播放大片免费观看视频在线观看 | 国产成人精品一,二区| 少妇人妻一区二区三区视频| 熟女人妻精品中文字幕| 夜夜看夜夜爽夜夜摸| 一夜夜www| 国产精品电影一区二区三区| 99久久精品热视频| 国产单亲对白刺激| 纵有疾风起免费观看全集完整版 | 国产老妇伦熟女老妇高清| 少妇熟女aⅴ在线视频| 99在线人妻在线中文字幕| 亚洲精品乱码久久久v下载方式| 男人舔奶头视频| 亚洲综合精品二区| 国产精品一区二区在线观看99 | 一边摸一边抽搐一进一小说| 99久久九九国产精品国产免费| 欧美一区二区国产精品久久精品| 国产av一区在线观看免费| 日本与韩国留学比较| 老司机影院成人| 女人久久www免费人成看片 | 午夜福利在线观看免费完整高清在| 综合色丁香网| 亚洲成av人片在线播放无| 国产成年人精品一区二区| 中文字幕亚洲精品专区| 国产一区二区三区av在线| 久99久视频精品免费| 国产高清不卡午夜福利| 天美传媒精品一区二区| 中文资源天堂在线| 国产精品日韩av在线免费观看| 天堂影院成人在线观看| 欧美bdsm另类| 极品教师在线视频| 欧美日韩在线观看h| 久久久色成人| 亚洲第一区二区三区不卡| 国产高清有码在线观看视频| 国产免费男女视频| 久久精品综合一区二区三区| 欧美潮喷喷水| 亚洲内射少妇av| 国产 一区 欧美 日韩| 久久国产乱子免费精品| 国产精品一二三区在线看| 纵有疾风起免费观看全集完整版 | 午夜激情福利司机影院| 两个人的视频大全免费| 2021少妇久久久久久久久久久| 黄色一级大片看看| 两个人视频免费观看高清| 日韩欧美在线乱码| 亚洲精品国产成人久久av| 又黄又爽又刺激的免费视频.| 国内揄拍国产精品人妻在线| 亚洲国产成人一精品久久久| 婷婷色综合大香蕉| 99久国产av精品| 久久欧美精品欧美久久欧美| 国产麻豆成人av免费视频| 亚洲第一区二区三区不卡| 久久午夜福利片| 国产成人freesex在线| 久久久久久大精品| 看片在线看免费视频| 爱豆传媒免费全集在线观看| 国产大屁股一区二区在线视频| 午夜a级毛片| 韩国高清视频一区二区三区| 汤姆久久久久久久影院中文字幕 | 特大巨黑吊av在线直播| 国产真实伦视频高清在线观看| 精品人妻熟女av久视频| 日本免费一区二区三区高清不卡| 麻豆成人午夜福利视频| 在线天堂最新版资源| av卡一久久| 欧美激情国产日韩精品一区| 精品午夜福利在线看| 三级毛片av免费| 在线天堂最新版资源| 久久99热这里只频精品6学生 | 人人妻人人澡欧美一区二区| 韩国高清视频一区二区三区| av播播在线观看一区| 非洲黑人性xxxx精品又粗又长| av在线蜜桃| 禁无遮挡网站| 日本黄大片高清| av国产久精品久网站免费入址| 99久久九九国产精品国产免费| 天美传媒精品一区二区| 日韩,欧美,国产一区二区三区 | 成人亚洲欧美一区二区av| 99国产精品一区二区蜜桃av| 国产精品一区二区三区四区免费观看| 欧美zozozo另类| 免费看光身美女| 久久综合国产亚洲精品| 特级一级黄色大片| 日韩成人av中文字幕在线观看| 久久亚洲国产成人精品v| 欧美性猛交黑人性爽| 日韩一区二区视频免费看| 亚洲av成人av| 欧美潮喷喷水| 九九热线精品视视频播放| 国产欧美日韩精品一区二区| 亚洲欧洲日产国产| 少妇的逼水好多| 一边亲一边摸免费视频| 免费人成在线观看视频色| 亚洲国产欧美在线一区| 啦啦啦观看免费观看视频高清| 国产精品,欧美在线| 中文字幕人妻熟人妻熟丝袜美| 亚洲伊人久久精品综合 | 日本午夜av视频| 久久久国产成人精品二区| 欧美日本亚洲视频在线播放| 99热这里只有是精品在线观看| 亚洲精品日韩在线中文字幕| 99热全是精品| 2021天堂中文幕一二区在线观| 国产中年淑女户外野战色| 男人舔奶头视频| 韩国av在线不卡| 久久99精品国语久久久| 男人狂女人下面高潮的视频| 成人三级黄色视频| 亚洲av电影不卡..在线观看| 在线观看一区二区三区| 亚洲不卡免费看| 亚洲欧美成人综合另类久久久 | 日本猛色少妇xxxxx猛交久久| 夜夜爽夜夜爽视频| 久久精品综合一区二区三区| 久久亚洲国产成人精品v| 欧美性猛交╳xxx乱大交人| 国产精品不卡视频一区二区| 一个人免费在线观看电影| 国产精品99久久久久久久久| av视频在线观看入口| 99久久九九国产精品国产免费| 久久韩国三级中文字幕| 人体艺术视频欧美日本| 亚洲av免费高清在线观看| 大话2 男鬼变身卡| 51国产日韩欧美| 亚洲av中文av极速乱| 国产精品国产三级国产专区5o | 天堂影院成人在线观看| 国产男人的电影天堂91| 亚洲丝袜综合中文字幕| 久久久精品欧美日韩精品| av在线亚洲专区| 一夜夜www| 99久久九九国产精品国产免费| 六月丁香七月| 国产成人精品久久久久久| 亚洲国产色片| 自拍偷自拍亚洲精品老妇| 国产一级毛片在线| 精品一区二区免费观看| 成人美女网站在线观看视频| 色综合站精品国产| 两性午夜刺激爽爽歪歪视频在线观看| 69av精品久久久久久| 国产黄片美女视频| 毛片女人毛片| 亚洲av中文av极速乱| 干丝袜人妻中文字幕| 97人妻精品一区二区三区麻豆| 亚洲人成网站在线播| 精品一区二区免费观看| 欧美一级a爱片免费观看看| 国产一区二区在线av高清观看| 国产成人午夜福利电影在线观看| 69人妻影院| 三级男女做爰猛烈吃奶摸视频| 男人的好看免费观看在线视频| 国产免费一级a男人的天堂| 热99re8久久精品国产| 亚洲乱码一区二区免费版| 亚洲av不卡在线观看| 婷婷六月久久综合丁香| 日本一本二区三区精品| 国产亚洲最大av| 内射极品少妇av片p| av卡一久久| 免费观看在线日韩| 午夜激情福利司机影院| av国产免费在线观看| 亚洲精品一区蜜桃| 床上黄色一级片| 97超碰精品成人国产| 精品免费久久久久久久清纯| 人体艺术视频欧美日本| 国产精品美女特级片免费视频播放器| 国产真实伦视频高清在线观看| 久久草成人影院| 亚洲伊人久久精品综合 | 五月伊人婷婷丁香| 亚州av有码| 一个人免费在线观看电影| 国产精品一区二区三区四区免费观看| 亚洲欧美清纯卡通| 又粗又爽又猛毛片免费看| 欧美3d第一页| 国产成人91sexporn| 亚洲在线观看片| 国产精品爽爽va在线观看网站| 日韩国内少妇激情av| 日日摸夜夜添夜夜爱| 亚洲中文字幕日韩| 最近2019中文字幕mv第一页| 五月伊人婷婷丁香| 国产高清三级在线| 中国国产av一级| 成人高潮视频无遮挡免费网站| 好男人视频免费观看在线| 大话2 男鬼变身卡| 欧美丝袜亚洲另类| 国产一区二区在线观看日韩| 真实男女啪啪啪动态图| 国产亚洲最大av| 大香蕉久久网| 日韩亚洲欧美综合| 免费看a级黄色片| 亚洲美女搞黄在线观看| 久久人人爽人人爽人人片va| 麻豆成人av视频| 好男人视频免费观看在线| 纵有疾风起免费观看全集完整版 | 99热这里只有精品一区| 亚洲av福利一区| 日日摸夜夜添夜夜添av毛片| 久久韩国三级中文字幕| 一区二区三区高清视频在线| 国产精品一二三区在线看| 亚洲美女视频黄频| 成人一区二区视频在线观看| 狠狠狠狠99中文字幕| av.在线天堂| 在线免费观看不下载黄p国产| 日韩欧美精品v在线| 国产av一区在线观看免费| 国产av不卡久久| 熟妇人妻久久中文字幕3abv| 日本一二三区视频观看| 国产精品国产三级专区第一集| 内地一区二区视频在线| 有码 亚洲区| 亚洲最大成人中文| 亚洲欧美清纯卡通| 欧美日本亚洲视频在线播放| 老师上课跳d突然被开到最大视频| 久久精品综合一区二区三区| 白带黄色成豆腐渣| 久久久国产成人免费| 国产 一区精品| 男女那种视频在线观看| 免费大片18禁| 久久精品91蜜桃| 久久99热6这里只有精品| 精品久久久久久电影网 | 噜噜噜噜噜久久久久久91| 久久鲁丝午夜福利片| 亚洲精品国产av成人精品| 亚洲精品日韩在线中文字幕| 亚洲国产精品久久男人天堂| 一级毛片电影观看 | 最近视频中文字幕2019在线8| 国语自产精品视频在线第100页| 国产人妻一区二区三区在| 欧美日韩精品成人综合77777| 亚洲在线观看片| 视频中文字幕在线观看| 国产极品精品免费视频能看的| 美女高潮的动态| 丰满人妻一区二区三区视频av| 中国美白少妇内射xxxbb| 亚洲高清免费不卡视频| 亚洲精品日韩在线中文字幕| 99久久成人亚洲精品观看| 久久久久久久午夜电影| 国产精品.久久久| 国产淫片久久久久久久久| 日韩中字成人| 成人一区二区视频在线观看| 日韩av在线大香蕉| 久久精品人妻少妇| 国产乱人偷精品视频| 色综合站精品国产| 老司机影院毛片| 99热全是精品| av免费在线看不卡| 亚洲,欧美,日韩| 美女cb高潮喷水在线观看| 欧美日韩在线观看h| 成人美女网站在线观看视频| 日日干狠狠操夜夜爽| 亚洲精品aⅴ在线观看| 亚洲av电影不卡..在线观看| 男女边吃奶边做爰视频| 国产精品1区2区在线观看.| 热99re8久久精品国产| www.色视频.com| 日日摸夜夜添夜夜添av毛片| 免费观看的影片在线观看| 亚洲欧美日韩无卡精品| 国产色婷婷99| 日日摸夜夜添夜夜爱| 日韩一本色道免费dvd| 久久精品国产鲁丝片午夜精品| 激情 狠狠 欧美| 精品国产露脸久久av麻豆 | 国产在视频线在精品| 99九九线精品视频在线观看视频| 免费观看在线日韩| 女的被弄到高潮叫床怎么办| 久久精品影院6| 成年版毛片免费区| 精品无人区乱码1区二区| 美女国产视频在线观看| 91狼人影院| 日韩亚洲欧美综合| 国内揄拍国产精品人妻在线| 18+在线观看网站| 久久久久九九精品影院| 国产精品无大码| 精品国内亚洲2022精品成人| 天天躁日日操中文字幕| 午夜日本视频在线| 老师上课跳d突然被开到最大视频| 免费观看人在逋| 永久免费av网站大全| 久久精品国产亚洲av天美| 最近视频中文字幕2019在线8| 久久精品91蜜桃| 亚洲av不卡在线观看| 久久久久久大精品| 夜夜看夜夜爽夜夜摸| 老司机福利观看| 亚洲国产欧美人成| 99视频精品全部免费 在线| 欧美丝袜亚洲另类| 天堂√8在线中文| 成年版毛片免费区| 青春草国产在线视频| 国产男人的电影天堂91| h日本视频在线播放| 久久精品国产亚洲网站| 国产一区亚洲一区在线观看| 色综合色国产| a级毛色黄片| 天堂√8在线中文| 夫妻性生交免费视频一级片| 美女高潮的动态| 床上黄色一级片| 人体艺术视频欧美日本| 极品教师在线视频| 淫秽高清视频在线观看| 夜夜看夜夜爽夜夜摸| 午夜精品国产一区二区电影 |