• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optical simulation design of surface mounted device beads for wide beam and high uniformity display

    2024-02-05 09:07:00WEIWeiCHENZhizhongGUOHaozhongJIAChuanyuFANGFangZOUJunFANGQianWUYouSUNMinghaoLIQianKUANGYuhanYINQikaiZHANGGuoyi
    中國(guó)光學(xué) 2024年1期

    WEI Wei ,CHEN Zhi-zhong,GUO Hao-zhong,JIA Chuan-yu,F(xiàn)ANG Fang,ZOU Jun,F(xiàn)ANG Qian,WU You,SUN Ming-hao,LI Qian,KUANG Yu-han,YIN Qi-kai,ZHANG Guo-yi

    (1.Yancheng Teachers University, Jiangsu Intelligent Optoelectronic Device and Measurement and Control Engineering Research Center, Yancheng 224007, China;2.School of International Academy of Microelectronics, Dongguan University of Technology, Dongguan 523000, China;3.Gold Medal Analysis, Guangzhou 511338, China;4.College of Physics, Peking University, Beijing 100871, China;5.Department, Dongguan Institute of Opto-electronics, Peking University, Dongguan 523808, China;6.Semiconductor Research Center, Hon Hai Research Institute, New Taipei city 236, China;7.Shanghai Institute of Technology, Shanghai 201418, China)

    Abstract: Through analysing the optical requirements of wide beam and high uniformity light beads,which are currently used in displays,and packaging micro Light-Emitting Diode (LED) chips with a novel non-Lambertian distribution,we realized the production of wide beam and high uniformity micro-LED chip light beads.The light output efficiency and beam angle of fixed beads were simulated using brackets made of copper,titanium,aluminium and silver,as well as materials that were completely reflecting and absorbing.The simulations were conducted at various fixture angles,packaging heights,packaging materials,sapphire thicknesses,and patterned sapphire substrate sizes.By adjusting the chip and packaging parameters,we can obtain one,two,or three light beams with Surface Mounted Device (SMD) lamp beads characteristics that provide wide angles,high uniformity,and far-field light distribution.These characteristics can meet the current display requirements for LED and LCD.

    Key words: non-lambertian distribution;lambertian distribution;displays;SMD lamp beads

    1 Introduction

    Backlight displays that use Light-Emitting Diode (LED) and Liquid-Crystal Display (LCD) technologies have several advantages such as high energy efficiency and improved contrast,low cost,and a better spliceability[1-7].Consequently,these displays have entered a stage of rapid development.However,backlight displays using LED and LCD technologies have certain drawbacks,including the inability to be fabricated in ultra-thin formats[8-10].This impedes the utilization of various backlight displays,such as laptops and mobile phones,in ultrathin display technology.

    The term “micro-LEDs” refers to LEDs that have chip sizes smaller than 100 μm×100 μm[11].Research has shown that micro-LED chips exhibit high uniformity and wide beam angles,thereby enabling their deployment in ultrathin displays.However,certain difficulties hinder the direct installation of micro-LED chips on display screens.Typical solution is to install a micro-LED chip directly on a Chip-On-Board (COB),and then create a display by splicing the COB or SMD LED+LCD.However,COB technology has seveval disadvantages,including difficulties in achieving its primary optical design.Many COB-based devices use secondary optical designs and lenses to adjust the mixing distance,which makes it difficult to achieve ultrathin mixing distances[12-14].The integration of micro-LED chips into COBs through display technology remains under research and has not yet been widely adopted.After reviewing pre-existing technical methods,we propose a technological path that combines micro-LED chips with Surface-Mount Technology (SMT) packaging to fulfil the current demand for ultrathin displays and mounted devices.As typical LEDs follow the Lambert distribution[15-20],the illumination is stronger at mid-angles but weaker on both sides.The optical design of supplementary lighting requires consideration of modifications to light direction and redistribution of intensity,in conjunction with using precision optical lenses which poses significant challenges to image processing.Numerous studies reveal that under certain conditions[21-23],micro-LEDs conform to a non-Lambert distribution and have uniform light distributions[24-25].It would be advantageous to develop lowcost,standard SMD beads that generate wide-beam and large-angle light output.Using these beads in displays reduces the reliance on lenses and mixing distances,thus providing a better display experience.The objective of this study is to determine an appropriate parameters that satisfies the optical requirements of displays that utilize large-angle,highuniformity SMT beads with micro-LED cells to minimize cell sizes and costs.In addition,micro-LEDs minimize the mixing distance and produce ultrathin displays.

    To perform optical simulations,we implemented the Monte Carlo approach in conjunction with the ray-tracing method using TracePro software.Figure 1 presents a detailed illustration of the specific model,and a schematic of the structure of the SMD lamp bead is shown in Figure 2.For the purpose of this study,we set 0° as the direction perpendicular to the light-emitting plane in front of the chip and downward.This study suggests that an optical design for LED+lenses can be achieved through simulation calculations using a new patch LED.The optical design technology of the novel patch LED can meet display requirements by reducing material costs,light loss,weight,and shortening the mixing distance.

    Fig.1 Top view of the LED device structure rendered using TracePro software

    Fig.2 Sectional view of the unpacked micro-LED device structure

    Table 1-3 present the model parameters.The refractive indices of sapphire,N-type GaN,MQW,P-type GaN,and ITO were 1.7,2.45,2.54,2.45,and 1.5,respectively.The absorption coefficients of sapphire,N-type GaN,MQW,P-type GaN,and ITO were 0.004,2.3,25,2.3,and 0 mm-1,respectively.The thicknesses of the sapphire,N-type GaN,MQW,P-type GaN,and ITO layers were 30,6.75,0.1,0.15,and 0.3 μm,respectively[23,26-29].Micro-LED chips with diameters of 10,20,30,40,and 50μm were fabricated,while sapphire beads with diameters of 2,3,and 4 μm were constructed as hemispherical microstructures.SMD lamp-bead holders of 5 mm× 5 mm were designed interiors featuring a four-sided conical platform inclined at angles of 5°,15°,25°,35°,45°,55°,65°,75°,and 85°.The chip size was 30 μm,with packaging heights of 10,20,40,60,and 80 μm.Brackets were fabricated using various materials including copper,aluminium,silver,and titanium,along with fully absorbing and fully reflective materials.The refractive and absorption indices of each material are listed in Table 1.For packaging,epoxy,PMMA,and silica were used with their respective refractive and absorption indices listed in Table 2[30]for a 30 μm chip.All chips used were micro-LED chips with suitable packaging sizes in accordance with the 5 050 chip packaging requirements.The structure of the LED device is depicted in Figs.1-3.The wave-length of SMD LED is 450 nm,and the distance between the sample and the detector is about 1 000 mm.To calculate light extraction efficiency,we divide the number of photons emitted to the outside of the SMD per unit time by the number of photons emitted by the active region per unit time.

    Tab.1 Simulated optical parameters of different bracket materials

    Tab.2 Simulated optical parameters of different packaging materials

    Tab.3 Simulated optical parameters of light-emitting diodes with different sizes

    Fig.3 Sectional view of the packaged 5050 SMD beads.

    Figs 1 to 3 show images of the unmodified chip’s original structure used in this study.Figure 1 depicts a top view of the packaged 5 050 chip rendered in TracePro software.Figure 2 shows a cross-sectional view of the structure of the unpackaged chip,and Figure 3 offers a cross-sectional view of the packaged 5 050 chip.The size of the chip was set to 10 μm.The inclination angle of the internal packaging was altered across a range of 5°-85°.The beam angles and output efficiencies of the SMD LEDs were simulated and calculated for inclination angles of 5°,15°,25°,35°,45°,55°,65°,75°,and 85°.An assembly comprising Al support material,PMMA packaging material and a chip size of 10 μm was simulated with a fixed inclination angle of 85°.The resulting calculations included the beam angles and output efficiencies of SMT LEDs of 10,20,40,60,and 80 μm,with different packaging heights.The SMD with a packaging height of 0.05 mm was analyzed by fixing the inclination angle at 85° and utilizing Al as the support material and PMMA,epoxy,and silicone as the packaging materials.This analysis resulted in the calculation of the beam angle and output efficiency.The chip size was set to 30 μm with a fixed inclination angle of 85°.The support material was changed from Cu to Al,Ag,and Ti.The inner cone of the packaging was set to full absorption and reflection while utilizing silicone as a packaging material.Therefore,the beam angle and output efficiency of a 0.08 mm high packaged SMD were calculated.At an 85° fixed inclination angle,the bracket was made of Al and PMMA was used as the packaging material.We calculated the beam angle and output efficiency of a 0.1 mm high SMD package at chip sizes of 0.01,0.03,0.05,and 0.1 mm.It is noteworthy that the size of the transformed chip is relatively large when the angle is 85°,which allows for the largest possible placement area in the middle position of the chip.In the following simulation,we set the fixed inclination angle to 85°,the bracket material to Al,the packaging material to PMMA,and the thickness of the sapphire substrate to 0.03 mm.We changed the microstructure dimensions on the sapphire substrate to 0.002,0.003,and 0.004 mm and then calculated the beam angle and output efficiency of a 0.1 mm high packaged SMD for packaging.Finally,a simulation was conducted with an inclination angle fixed at 85°for the aluminium bracket material,and PMMA was used as the packaging material.The beam angle and output efficiency of an SMT LED with a packaging height of 0.08 μm were calculated for sapphire thicknesses at 0.01,0.03,and 0.05 mm.

    2 Optical simulation results and analysis

    Table 4 shows the results for the 5 050 SMT beads with Al bracket and PMMA packaging materials at different angles.It is evident that at the inclination angles of 45°,55°,and 65°,the chip size measured 10 μm,and the far-field light distribution of the SMD LED emitted a single beam.These outcomes were confirmed at beam angles of 160°,140°,and 120°.The far-field light distribution of the SMD LED emitted a dual beam at the angles of 5,15,25,35,75,and 85°,as depicted in Figure 4.The corresponding beam angles were 70° × 2,50° × 2,70° × 2,70° × 2,50° × 2,and 30° × 2,respectively.Fig.4 shows how the light extraction efficiency first increased and then decreased as the inclination angle increased.The highest light extraction efficiency,at 0.654,was achieved when the inclination angle was 65°.

    Tab.4 Far-field beam angle and output efficiency of 5050 SMT beads with Al bracket and PMMA packaging materials at different angles

    Fig.4 Schematic diagram of far-field light distributions of 5050 surface-mount technology (SMT) beads with Al brackets and PMMA packaging material at different inclination angles

    Fig.5 Far-field light distributions of 5050 SMT beads with different packaging heights,Al brackets,and PMMA packaging materials at an inclination of 85°.

    Fig.6 Far-field light distributions of 5050 SMT beads with different support materials,a packaging height of 0.08 mm,and Al support at an inclination of 85°

    Fig.7 Far-field light distributions of 5050 SMT beads with different material supports and silicone,a packaging height of 0.08 mm,and a sapphire thickness of 0.05 mm at an inclination angle of 85°

    Fig.8 Far-field light distributions of 5050 SMT beads with different chip sizes and Al brackets,and PMMA packaging materials at an inclination angle of 85°

    Fig.9 Far-field light distributions of 5050 SMT beads with a sapphire thickness of 30 μm Al brackets,and PMMA packaging materials at an inclination angle of 85°.

    Fig.10 Far-field light distributions of 5050 SMT beads with different sapphire thicknesses,Al brackets and PMMA packaging materials at an inclination of 85°

    Table 5 lists the results for 10 μm chips with different packaging heights.The far-field light distribution of the SMD LED is a single beam at packaging heights of 0.01,0.02,0.04,0.06,and 0.08 mm.Figure 5 verifies this for beam angles of 160°,140°,140°,and 120°.When the packaging height decreased,the beam angle of the packaged chip LED increased from 120° to 160°,however,the light output efficiency decreased from 0.638 to 0.369.

    Tab.5 Far-field beam angles and output efficiencies of 5050 SMT beads with different packaging heights and Al brackets and PMMA packaging material at an inclination of 85°

    Table 6 presents the outcomes for 30 μm chips packaged with different materials.A dual beam was observed in the far-field light distribution of the SMT LED when the packaging material or the inner surface of the package was made of aluminium,silver,or completely reflective materials.This is confirmed in Figure 5,and the corresponding beam angles were 20° × 2,20° × 2,and 30° × 2,respectively.When the packaging material or inner surface of the package consisted of copper,titanium,or fully absorptive materials,the far-field light distribution of the SMD LED produced a single beam,as displayed in Figure 6.The corresponding beam angles measured 140°,160°,and 120°,respectively.According to Table 6,the maximum light output efficiency was 0.813 when the inner surface of the package was fully reflective,and 0.175 when it was fully absorptive.

    Table 7 presents the outcomes for silicone-supported beads with varying packaging materials.The far-field light distribution of the SMD LED was observed to be a dual beam when the packaging material or inner surface was made of epoxy,PMMA,or silica.Figure 7 confirms this for the beam angles of 30° × 2,20° × 2,and 30° × 2,respectively.When silicone was used as the packaging material,the light extraction efficiency reached a maximum of 0.874,and when epoxy was used as the packaging material,the light extraction efficiency reached a minimum of 0.511.

    Tab.6 Far-field beam angles and output efficiencies of 5050 SMT beads with different packaging materials,and a packaging height of 0.08 mm,Al brackets at an inclination of 85°

    Tab.7 Far-field beam angles and output efficiencies of 5050 SMT beads with different materials,a packaging height of 0.08 mm,and a sapphire thickness of 0.05 mm packaged with silicone supports at an inclination of 85°

    Table 8 presents the results obtained for chips with a sapphire thickness of 10 μm,Al brackets,and PMMA packaging material at an inclination angle of 85°.The far-field light distribution of the SMD LED was a dual beam when the chip dimensions were 0.03,0.04,0.05,or 0.1 mm.Figure 8 confirms this,with the corresponding beam angles being 30° × 2.Furthermore,as the chip size decreased,the light output efficiency increased from 0.456 to 0.521.

    Tab.8 Beam angles and output efficiencies of 5050 SMT beads with different chip sizes and Al brackets and PMMA packaging materials at an inclination of 85°

    Table 9 shows the findings obtained from using Al brackets to fix 30 μm sapphire-thick beads with PMMA packaging material at an inclination angle of 85°.The sapphire substrate has hemispherical microstructures with diameters of 0.002,0.003,and 0.004 mm.Each case led to the acquisition of dual-beam far-field SMT LED light distributions,as shown in Figure 9.This is confirmed in Figure 9 with corresponding beam angles of 30° × 2.As the chip size decreased,the efficiency of light output increased from 0.553 to 0.555.

    Tab.9 Beam angles and output efficiencies of 5050 SMT beads with a sapphire thickness of 30 μm,Al brackets,and PMMA packaging materials at an inclination angle of 85°

    Table 10 presents the outcomes obtained while using beads with Al brackets and PMMA packaging material at an inclination of 85° with the sapphire thicknesses varying from 0.01,0.03,and 0.05 mm.In all instances,there were SMT LED,dual-beam,and far-field light distributions,as confirmed by Figure 10,showing corresponding beam angles of 30° × 2.As the chip size decreased,the light output efficiency increased from 0.553 to 0.547.

    The simulation results indicate that variations in reflection angles and materials impact the number of light beams.

    Tab.10 Beam angles and output efficiencies of 5050 SMT beads with different sapphire thicknesses and Al brackets and PMMA packaging materials at an inclination angle of 85°

    3 Conclusion of optical simulation

    The simulations conducted in this study revealed that using silicone packaging material resulted in the highest light output efficiency.Moreover,employing completely absorptive packaging materials on the inner cone improved output efficiency,while using wholly reflective surface materials decreased it.As the angle of the cone within the package increased,the output changed from dual-beam to single beam and then back to the dual-beam.Also,when the angle of the inner cone of the package increased,the light output efficiency first increased,peaked at 65°,and then fell.Although reduction in chip size led to increased light output efficiency,the light extraction efficiency witnessed a riseand then plateaued as the sapphire thickness increased.Finally,as the diameter of the microstructure in the rear hemisphere of the sapphire substrate increased,there was a slight reduction in the efficiency of light output.

    亚洲欧美中文字幕日韩二区| 精品国产露脸久久av麻豆| 精华霜和精华液先用哪个| 日本猛色少妇xxxxx猛交久久| 久久韩国三级中文字幕| 亚洲精品中文字幕在线视频 | 日韩精品有码人妻一区| 日韩成人av中文字幕在线观看| 婷婷色综合www| 欧美成人午夜免费资源| 成人亚洲精品一区在线观看| 久久精品久久久久久噜噜老黄| 美女xxoo啪啪120秒动态图| 国产黄色视频一区二区在线观看| 久久人人爽人人片av| 免费av中文字幕在线| 国产精品久久久久成人av| 亚洲av不卡在线观看| 国产精品不卡视频一区二区| 亚洲精品自拍成人| 久久午夜综合久久蜜桃| 99热全是精品| 国产成人一区二区在线| 国产精品偷伦视频观看了| 精品久久久久久久久av| 久久久久精品性色| 80岁老熟妇乱子伦牲交| 亚洲精品自拍成人| 综合色丁香网| 国产精品伦人一区二区| 女人久久www免费人成看片| 深夜a级毛片| 欧美性感艳星| 香蕉精品网在线| 午夜福利,免费看| 婷婷色麻豆天堂久久| 有码 亚洲区| 老司机亚洲免费影院| 亚洲精品一区蜜桃| 伦理电影大哥的女人| 少妇丰满av| 一区二区三区四区激情视频| 三上悠亚av全集在线观看 | 人人澡人人妻人| 99热全是精品| 亚洲久久久国产精品| 在线观看免费日韩欧美大片 | 久久人人爽人人片av| 免费看不卡的av| 日韩av不卡免费在线播放| 2018国产大陆天天弄谢| 免费在线观看成人毛片| 欧美日本中文国产一区发布| 视频区图区小说| 亚洲欧美日韩卡通动漫| 国产乱人偷精品视频| 国产精品一区二区在线观看99| 精品国产乱码久久久久久小说| 91在线精品国自产拍蜜月| 亚洲精品中文字幕在线视频 | 久久久久人妻精品一区果冻| 成人二区视频| 久久鲁丝午夜福利片| 3wmmmm亚洲av在线观看| 国模一区二区三区四区视频| 精品一区二区三卡| freevideosex欧美| 久久99热这里只频精品6学生| 男人狂女人下面高潮的视频| 亚洲国产日韩一区二区| 最近最新中文字幕免费大全7| 最近手机中文字幕大全| 日韩一区二区视频免费看| 欧美精品一区二区大全| 一级二级三级毛片免费看| 天堂俺去俺来也www色官网| 91精品一卡2卡3卡4卡| 国产精品国产三级专区第一集| 日韩强制内射视频| 麻豆精品久久久久久蜜桃| 久久亚洲国产成人精品v| 久久99精品国语久久久| 久久国产亚洲av麻豆专区| 丝瓜视频免费看黄片| 免费av不卡在线播放| 国产欧美日韩一区二区三区在线 | 黄片无遮挡物在线观看| 嫩草影院入口| 男人添女人高潮全过程视频| 亚洲美女黄色视频免费看| 色视频在线一区二区三区| 国产精品久久久久久精品古装| 十八禁网站网址无遮挡 | 国产日韩欧美在线精品| 最新的欧美精品一区二区| 亚洲av电影在线观看一区二区三区| 韩国高清视频一区二区三区| a级一级毛片免费在线观看| 午夜日本视频在线| 高清不卡的av网站| 国产成人精品一,二区| 国产成人精品久久久久久| 国产国拍精品亚洲av在线观看| 国产 精品1| 久久毛片免费看一区二区三区| 久久99精品国语久久久| 午夜91福利影院| 一个人免费看片子| 午夜日本视频在线| 精品卡一卡二卡四卡免费| 中文字幕人妻熟人妻熟丝袜美| 亚洲电影在线观看av| 在线观看三级黄色| 少妇 在线观看| 午夜福利,免费看| 欧美bdsm另类| 国产淫片久久久久久久久| 99久久精品一区二区三区| 亚洲一区二区三区欧美精品| 日日摸夜夜添夜夜爱| 久久久久久久久久久丰满| 欧美日韩一区二区视频在线观看视频在线| 777米奇影视久久| 欧美精品亚洲一区二区| kizo精华| 九九久久精品国产亚洲av麻豆| 亚洲综合精品二区| 国产精品国产av在线观看| 如日韩欧美国产精品一区二区三区 | 久久久久久伊人网av| 精品一区二区三区视频在线| 伦精品一区二区三区| 搡女人真爽免费视频火全软件| 一本大道久久a久久精品| 精品视频人人做人人爽| 69精品国产乱码久久久| 一本一本综合久久| 日韩,欧美,国产一区二区三区| 亚洲国产精品专区欧美| 免费在线观看成人毛片| 三级经典国产精品| 亚州av有码| 熟女人妻精品中文字幕| 国产黄片美女视频| 爱豆传媒免费全集在线观看| 美女视频免费永久观看网站| 亚洲第一区二区三区不卡| 国产亚洲欧美精品永久| 欧美日韩亚洲高清精品| 伊人亚洲综合成人网| 9色porny在线观看| 99热这里只有是精品50| 国产亚洲5aaaaa淫片| 国精品久久久久久国模美| 丁香六月天网| 日本与韩国留学比较| av在线播放精品| 中文在线观看免费www的网站| 天天躁夜夜躁狠狠久久av| 亚洲欧洲精品一区二区精品久久久 | 在线免费观看不下载黄p国产| 欧美人与善性xxx| 草草在线视频免费看| 麻豆成人午夜福利视频| 伊人久久精品亚洲午夜| 日韩大片免费观看网站| 久热久热在线精品观看| 男的添女的下面高潮视频| 日韩成人av中文字幕在线观看| 新久久久久国产一级毛片| 亚洲av欧美aⅴ国产| 天堂8中文在线网| 精品亚洲乱码少妇综合久久| 亚洲av国产av综合av卡| 春色校园在线视频观看| 不卡视频在线观看欧美| 2018国产大陆天天弄谢| 纯流量卡能插随身wifi吗| 欧美三级亚洲精品| 国产高清有码在线观看视频| 日韩欧美一区视频在线观看 | 老女人水多毛片| 午夜日本视频在线| 国产亚洲精品久久久com| 久久毛片免费看一区二区三区| 国产极品粉嫩免费观看在线 | 久热久热在线精品观看| 伊人亚洲综合成人网| 我要看日韩黄色一级片| 亚洲第一av免费看| 少妇丰满av| 国产精品久久久久久精品电影小说| 国产精品不卡视频一区二区| 亚洲av福利一区| 丝袜在线中文字幕| 在线观看av片永久免费下载| 热re99久久国产66热| 久久婷婷青草| 色婷婷av一区二区三区视频| 亚洲精品中文字幕在线视频 | 好男人视频免费观看在线| 久久狼人影院| 精品一区二区免费观看| 美女视频免费永久观看网站| 亚洲精品日韩在线中文字幕| 一级毛片我不卡| 国产精品人妻久久久久久| 久久精品久久久久久噜噜老黄| av女优亚洲男人天堂| 国产探花极品一区二区| 激情五月婷婷亚洲| 乱码一卡2卡4卡精品| 国产黄色免费在线视频| 亚洲国产最新在线播放| 国产在线免费精品| 一级毛片电影观看| 国产高清三级在线| 五月伊人婷婷丁香| 99热这里只有是精品在线观看| 色94色欧美一区二区| 丰满乱子伦码专区| 亚洲三级黄色毛片| 女人精品久久久久毛片| 韩国av在线不卡| 全区人妻精品视频| 综合色丁香网| 亚洲精华国产精华液的使用体验| 亚洲国产精品专区欧美| 国产欧美日韩一区二区三区在线 | 丁香六月天网| 久久99精品国语久久久| 亚洲精品国产av成人精品| 成人午夜精彩视频在线观看| 国产精品国产三级国产av玫瑰| 一级av片app| 亚洲av日韩在线播放| 啦啦啦视频在线资源免费观看| 青春草视频在线免费观看| 欧美亚洲 丝袜 人妻 在线| 91精品国产国语对白视频| 午夜免费观看性视频| 久久久久精品久久久久真实原创| 韩国高清视频一区二区三区| 日韩av不卡免费在线播放| 日韩欧美精品免费久久| 国产欧美亚洲国产| 亚洲欧洲精品一区二区精品久久久 | 丰满饥渴人妻一区二区三| 永久网站在线| 午夜老司机福利剧场| 久久av网站| 黑人高潮一二区| 美女视频免费永久观看网站| 成年美女黄网站色视频大全免费 | 免费看日本二区| 中文天堂在线官网| 婷婷色综合www| 亚洲国产日韩一区二区| 视频中文字幕在线观看| 久久毛片免费看一区二区三区| 免费不卡的大黄色大毛片视频在线观看| 久热久热在线精品观看| av播播在线观看一区| 色婷婷久久久亚洲欧美| 免费观看av网站的网址| 大片免费播放器 马上看| 亚洲欧美成人精品一区二区| 免费久久久久久久精品成人欧美视频 | 国产男人的电影天堂91| 精品人妻一区二区三区麻豆| 一区二区av电影网| 精品99又大又爽又粗少妇毛片| 国内少妇人妻偷人精品xxx网站| 精品卡一卡二卡四卡免费| 欧美+日韩+精品| 九色成人免费人妻av| 亚洲图色成人| 亚洲av成人精品一二三区| 欧美丝袜亚洲另类| av在线观看视频网站免费| 成年人午夜在线观看视频| 久久久久久久久久久免费av| 久久 成人 亚洲| 18+在线观看网站| 国产亚洲91精品色在线| 成人美女网站在线观看视频| 七月丁香在线播放| 精品人妻一区二区三区麻豆| 亚洲伊人久久精品综合| 国产深夜福利视频在线观看| 视频区图区小说| 国产无遮挡羞羞视频在线观看| 纵有疾风起免费观看全集完整版| 日韩亚洲欧美综合| 天堂中文最新版在线下载| 男男h啪啪无遮挡| 欧美+日韩+精品| a级毛片免费高清观看在线播放| 国产亚洲av片在线观看秒播厂| 婷婷色综合大香蕉| 国产精品久久久久久精品古装| 亚洲精品自拍成人| 少妇人妻精品综合一区二区| 男女边摸边吃奶| 热99国产精品久久久久久7| 成人免费观看视频高清| 久久 成人 亚洲| 欧美人与善性xxx| 精品一区在线观看国产| 人人妻人人看人人澡| 2018国产大陆天天弄谢| 成年女人在线观看亚洲视频| 国产精品免费大片| 久久精品熟女亚洲av麻豆精品| 一本—道久久a久久精品蜜桃钙片| 久久久久久久国产电影| 午夜av观看不卡| 韩国av在线不卡| 美女大奶头黄色视频| 国产精品嫩草影院av在线观看| 黑丝袜美女国产一区| 日日摸夜夜添夜夜爱| 亚洲在久久综合| 欧美性感艳星| 在线精品无人区一区二区三| 日本av手机在线免费观看| 在线播放无遮挡| 免费久久久久久久精品成人欧美视频 | 日韩强制内射视频| 亚洲人成网站在线观看播放| 精品久久国产蜜桃| 亚洲丝袜综合中文字幕| 有码 亚洲区| 大又大粗又爽又黄少妇毛片口| 久久久久久久久大av| 黑人巨大精品欧美一区二区蜜桃 | freevideosex欧美| 秋霞在线观看毛片| 汤姆久久久久久久影院中文字幕| 韩国av在线不卡| 男女边摸边吃奶| 国产 精品1| 纵有疾风起免费观看全集完整版| 精品人妻熟女av久视频| 久久久亚洲精品成人影院| 国产老妇伦熟女老妇高清| 插逼视频在线观看| 大香蕉97超碰在线| 天天操日日干夜夜撸| 亚洲四区av| 大陆偷拍与自拍| 欧美日韩国产mv在线观看视频| 亚洲成色77777| 高清不卡的av网站| 成人免费观看视频高清| 丰满少妇做爰视频| 日本免费在线观看一区| 国产亚洲精品久久久com| 全区人妻精品视频| 国产老妇伦熟女老妇高清| 大话2 男鬼变身卡| 熟女人妻精品中文字幕| 免费高清在线观看视频在线观看| 99热这里只有是精品在线观看| 国产精品国产三级专区第一集| 秋霞在线观看毛片| 日本av免费视频播放| 国产精品久久久久久精品古装| 国产午夜精品久久久久久一区二区三区| 亚洲欧美日韩另类电影网站| 2022亚洲国产成人精品| 在线观看www视频免费| 蜜臀久久99精品久久宅男| 久久精品夜色国产| 免费高清在线观看视频在线观看| 成人二区视频| 成人国产麻豆网| 亚洲精品国产av蜜桃| 国产极品粉嫩免费观看在线 | a级一级毛片免费在线观看| 男女边吃奶边做爰视频| 日韩成人伦理影院| 天美传媒精品一区二区| 大香蕉久久网| 亚洲成人手机| 日本-黄色视频高清免费观看| 一本一本综合久久| 亚洲激情五月婷婷啪啪| 日韩一区二区三区影片| 免费观看a级毛片全部| 纯流量卡能插随身wifi吗| 国内揄拍国产精品人妻在线| 日日啪夜夜爽| 美女国产视频在线观看| 又黄又爽又刺激的免费视频.| 亚洲国产欧美在线一区| 亚洲人成网站在线观看播放| 少妇裸体淫交视频免费看高清| 日本黄色日本黄色录像| 精品国产国语对白av| 成人亚洲欧美一区二区av| 美女cb高潮喷水在线观看| 你懂的网址亚洲精品在线观看| 亚洲四区av| 欧美精品人与动牲交sv欧美| 久久人人爽人人片av| 亚洲在久久综合| 啦啦啦视频在线资源免费观看| 久久女婷五月综合色啪小说| 亚洲四区av| 欧美精品人与动牲交sv欧美| 国产69精品久久久久777片| 国产午夜精品久久久久久一区二区三区| 亚洲国产欧美日韩在线播放 | 国产色婷婷99| 一边亲一边摸免费视频| 亚洲欧美成人精品一区二区| 久久97久久精品| 伦理电影大哥的女人| 最后的刺客免费高清国语| 国产免费福利视频在线观看| 国产淫片久久久久久久久| 久久热精品热| 亚洲精品456在线播放app| 少妇被粗大猛烈的视频| 乱码一卡2卡4卡精品| 亚洲精品乱久久久久久| 少妇的逼水好多| 少妇裸体淫交视频免费看高清| av有码第一页| 亚洲精品国产av成人精品| 纵有疾风起免费观看全集完整版| 久久99热6这里只有精品| 日韩中字成人| 少妇精品久久久久久久| 国产视频首页在线观看| 日本黄色日本黄色录像| 插阴视频在线观看视频| 91久久精品电影网| 亚洲精品中文字幕在线视频 | 亚洲av综合色区一区| 人人妻人人澡人人看| 免费观看a级毛片全部| 欧美日韩亚洲高清精品| 亚洲一级一片aⅴ在线观看| 日韩视频在线欧美| 美女xxoo啪啪120秒动态图| 欧美激情极品国产一区二区三区 | av一本久久久久| 99re6热这里在线精品视频| 热re99久久国产66热| 日本-黄色视频高清免费观看| 亚洲人与动物交配视频| 国产一区二区在线观看日韩| 一个人免费看片子| 成人影院久久| 大香蕉久久网| 日韩亚洲欧美综合| 中文欧美无线码| 久久精品国产亚洲av天美| 国产精品国产三级国产av玫瑰| 久久这里有精品视频免费| 欧美日韩视频高清一区二区三区二| 成人亚洲精品一区在线观看| 亚洲国产色片| 街头女战士在线观看网站| 久久久久久久国产电影| 欧美精品国产亚洲| 午夜福利,免费看| 99久久综合免费| 永久网站在线| 国产69精品久久久久777片| 一区二区av电影网| 午夜免费观看性视频| 人人妻人人添人人爽欧美一区卜| 亚洲中文av在线| 美女cb高潮喷水在线观看| 男人舔奶头视频| 三上悠亚av全集在线观看 | 国产伦在线观看视频一区| 美女内射精品一级片tv| 制服丝袜香蕉在线| 妹子高潮喷水视频| 美女国产视频在线观看| 久久毛片免费看一区二区三区| 亚洲色图综合在线观看| 肉色欧美久久久久久久蜜桃| 99热这里只有是精品在线观看| 亚洲欧洲国产日韩| 中文字幕久久专区| 校园人妻丝袜中文字幕| 久久人妻熟女aⅴ| 国产视频内射| 七月丁香在线播放| 欧美老熟妇乱子伦牲交| 午夜91福利影院| 91午夜精品亚洲一区二区三区| 国产精品伦人一区二区| 国产精品人妻久久久影院| 久久av网站| 最后的刺客免费高清国语| 日韩av在线免费看完整版不卡| 亚洲精品456在线播放app| 18禁裸乳无遮挡动漫免费视频| 欧美高清成人免费视频www| 国产av国产精品国产| av.在线天堂| 韩国高清视频一区二区三区| 色吧在线观看| 国产伦在线观看视频一区| 亚洲va在线va天堂va国产| 汤姆久久久久久久影院中文字幕| 国产乱人偷精品视频| 伦理电影免费视频| 大陆偷拍与自拍| 少妇熟女欧美另类| 国产一区二区在线观看av| 两个人免费观看高清视频 | 中文天堂在线官网| 三上悠亚av全集在线观看 | 亚洲国产日韩一区二区| 在线 av 中文字幕| 日本色播在线视频| 中文字幕久久专区| 啦啦啦视频在线资源免费观看| 国产女主播在线喷水免费视频网站| 久热久热在线精品观看| 久久人人爽人人爽人人片va| 九草在线视频观看| 精品人妻熟女av久视频| 国产精品秋霞免费鲁丝片| 在线观看免费视频网站a站| 日日摸夜夜添夜夜爱| 亚洲av欧美aⅴ国产| 久久久久久久国产电影| 欧美国产精品一级二级三级 | 亚洲欧美一区二区三区国产| 国产欧美日韩综合在线一区二区 | 久久久久视频综合| 人人妻人人爽人人添夜夜欢视频 | 看十八女毛片水多多多| 久久精品夜色国产| 亚洲av男天堂| 欧美老熟妇乱子伦牲交| 久久国内精品自在自线图片| 黄片无遮挡物在线观看| 夜夜爽夜夜爽视频| 国产成人免费无遮挡视频| 美女大奶头黄色视频| 亚洲精品乱码久久久v下载方式| 午夜久久久在线观看| h日本视频在线播放| 免费黄色在线免费观看| 99久久中文字幕三级久久日本| 亚洲性久久影院| 国产精品嫩草影院av在线观看| 3wmmmm亚洲av在线观看| 国产在线男女| 午夜福利影视在线免费观看| 欧美日韩视频精品一区| 免费人成在线观看视频色| 午夜福利视频精品| 亚洲精品久久久久久婷婷小说| 97在线人人人人妻| 成人漫画全彩无遮挡| 国产av码专区亚洲av| 免费看av在线观看网站| 国产亚洲欧美精品永久| 亚洲成色77777| 青春草国产在线视频| 久久久久久久久大av| 亚洲久久久国产精品| 曰老女人黄片| 日韩精品有码人妻一区| 亚洲精华国产精华液的使用体验| 我要看黄色一级片免费的| 五月伊人婷婷丁香| 少妇的逼水好多| 婷婷色综合www| 美女主播在线视频| 国产精品国产av在线观看| 午夜福利影视在线免费观看| 免费观看a级毛片全部| a级一级毛片免费在线观看| 国模一区二区三区四区视频| 如日韩欧美国产精品一区二区三区 | 亚洲av在线观看美女高潮| 国产高清国产精品国产三级| 在线天堂最新版资源| 一级av片app| 国国产精品蜜臀av免费| 国产av码专区亚洲av| 如何舔出高潮| 国产视频首页在线观看| 亚洲第一区二区三区不卡| 精品99又大又爽又粗少妇毛片| 久久久久人妻精品一区果冻| 寂寞人妻少妇视频99o| 狠狠精品人妻久久久久久综合| av天堂久久9| 中文字幕人妻丝袜制服| 国产91av在线免费观看| 亚洲av电影在线观看一区二区三区| 亚洲国产精品一区二区三区在线| 亚洲美女搞黄在线观看| 我要看日韩黄色一级片| 我的老师免费观看完整版| 久久久久久久久久久丰满| 日韩成人av中文字幕在线观看| 精品人妻偷拍中文字幕| 日本91视频免费播放| 久久国产亚洲av麻豆专区| 国产黄频视频在线观看| 青春草视频在线免费观看| av国产久精品久网站免费入址|