曹建艷 閆世雄 張瑞芳 豆騰飛
摘要 雞的免疫性狀是一種由多個微效基因調(diào)控的經(jīng)濟性狀。隨著規(guī)模化和集約化養(yǎng)雞業(yè)的發(fā)展,家雞免疫功能受環(huán)境中的病原體影響加重,傳統(tǒng)的疾病治療方案受限。應(yīng)用分子生物學(xué)技術(shù)手段,探究家雞的免疫相關(guān)基因的調(diào)控機制,有助于從根本上提高家雞的免疫力。對家雞免疫系統(tǒng)進行了概述,從免疫防治和疾病方向綜述了TLRs、MHC、MX、IFN、NRAMP和IL等影響家雞免疫性狀的關(guān)鍵調(diào)控基因,旨在為家雞抗病育種提供理論依據(jù)。
關(guān)鍵詞 家雞;免疫;調(diào)控基因;抗病育種
中圖分類號 S831 文獻標識碼 A
文章編號 0517-6611(2024)02-0010-05
doi:10.3969/j.issn.0517-6611.2024.02.003
開放科學(xué)(資源服務(wù))標識碼(OSID):
Progress in Gene Regulation of Immune Traits in Domestic Chickens
CAO Jian-yan, YAN Shi-xiong, ZHANG Rui-fang et al
(College of Animal Science and Technology, Yunnan Agricultural University, Kunming,Yunnan? 650201 )
Abstract The immune trait in chickens is an economic trait regulated by several microgenes. With the development of large-scale and intensive chicken industry, the immune function of domestic chickens is more affected by the pathogens in the environment, and the traditional disease treatment programs are limited. The application of molecular biology technology to explore the regulation mechanism of immune-related genes in domestic chickens helps to fundamentally improve the immunity of domestic chickens. This paper gives an overview of the immune system of domestic chickens, reviews the key regulatory genes of TLRs, MHC, MX, IFN, NRAMP, IL and so on, aiming to provide a theoretical basis for the breeding of disease resistance.
Key words Domestic chicken;Immunity;Gene regulation;Breeding of disease resistance
基金項目 云南省邱聲祥專家工作站項目(202005AF150039);云嶺產(chǎn)業(yè)技術(shù)領(lǐng)軍人才項目(YNWR-CYJS-2015-027)。
作者簡介 曹建艷(1997—),女,云南大理人,碩士研究生,研究方向:動物營養(yǎng)與飼料科學(xué)。
*通信作者,講師,博士,從事動物遺傳育種研究。
收稿日期 2022-10-27;修回日期 2023-03-22
家雞是疾病研究重要的理想實驗動物模型,其飼養(yǎng)周期短、新陳代謝快以及繁殖力高,但是易受環(huán)境因素的影響,應(yīng)激較大。集約化養(yǎng)殖的快速發(fā)展使高密度下生存的雞群健康受到嚴重影響,免疫力降低和發(fā)病率提高,導(dǎo)致養(yǎng)殖體經(jīng)濟損失。家雞的免疫功能與其生產(chǎn)性能息息相關(guān),其免疫性狀受到多個基因網(wǎng)絡(luò)調(diào)控。影響家雞免疫性狀的因素包括環(huán)境、遺傳、應(yīng)激源、母源抗體、免疫抑制和疫苗接種等。在家雞的選種育種中,免疫性狀的選擇對抗病育種具有重要意義。與家雞免疫相關(guān)的基因是不斷進化的,面對快速進化和多樣化的病原體動物群,高免疫基因多樣性可以為宿主提供選擇性優(yōu)勢。隨著分子生物學(xué)研究的介入,如SNP芯片技術(shù)、全基因組測序技術(shù)、GWAS和MAS,免疫調(diào)控的基因逐續(xù)被發(fā)現(xiàn)。該研究對家雞免疫系統(tǒng)進行概述,從免疫防治和疾病方向綜述了影響家雞免疫性能的關(guān)鍵調(diào)控基因,旨在為分子輔助標記選擇提供理論基礎(chǔ),從根本上提高家雞免疫力,培育出抗病力增強的配套系,充分利用家雞品種資源。
1 家雞免疫系統(tǒng)概述
免疫系統(tǒng)可以識別自身和非己物質(zhì),是機體產(chǎn)生免疫應(yīng)答和執(zhí)行免疫功能的物質(zhì)基礎(chǔ),包括免疫器官、免疫細胞和免疫分子。廣義上免疫系統(tǒng)可以分為天然免疫和獲得性免疫,前者在遇到病原體時反應(yīng)迅速,相對穩(wěn)定且非特異性,后者分為正反應(yīng)和負反應(yīng),且具有特異性和免疫記憶。這2個系統(tǒng)都有一定的生理機制,當(dāng)病原微生物入侵,宿主免疫系統(tǒng)對其識別并做出免疫應(yīng)答,通過破壞和清除抗原性異物,發(fā)揮抗感染作用、維持宿主生理平衡和免疫監(jiān)視作用。家雞免疫系統(tǒng)通過產(chǎn)生抗體和細胞免疫對抗原刺激,是抗病最重要的機制,但是天然免疫和獲得性免疫都不可以獨立發(fā)揮作用,通常是協(xié)同作用的。天然免疫可以通過特異性模式識別受體(PRRs)識別宿主微生物分子中的病原相關(guān)分子模式(PAMPs),誘導(dǎo)免疫應(yīng)答和炎癥反應(yīng),對宿主早期抗感染有重要作用。PRRs能夠介導(dǎo)天然免疫調(diào)節(jié)獲得性免疫,主要機理是微生物感染機體后,通過胞內(nèi)或胞外,抗原遞呈細胞激活天然免疫反應(yīng),識別并清除病原體,發(fā)揮淋巴細胞介導(dǎo)的抗原特異性免疫作用。
2 與家雞免疫性狀相關(guān)的調(diào)控基因
2.1 TLRs
Toll樣受體(TLRs)是最早被研究發(fā)現(xiàn)的天然免疫模式識別受體,PAMPs的識別導(dǎo)致天然免疫被激活,特異性抗原產(chǎn)生,介導(dǎo)TLR信號傳導(dǎo),信號通路由MyD88依賴性通路和TRIF依賴性通路(MyD88非依賴性途徑)組成,兩者都可以誘導(dǎo)基因表達。與哺乳動物一樣,所有雞的TLRs具有相同的蛋白質(zhì)二級結(jié)構(gòu),由幾個富含亮氨酸的結(jié)構(gòu)域、一個跨膜結(jié)構(gòu)域和Toll/白細胞介素-1受體結(jié)構(gòu)域組成。
目前,在雞中已經(jīng)發(fā)現(xiàn)了10個TLRs基因,包括TLR1-Ⅰ、TLR1-Ⅱ、TLR2-Ⅰ、TLR2-Ⅱ、TLR-3、TLR-4、TLR-5、TLR-7、TLR-15和TLR-21,它們可以識別配體并參與TLR信號通路。已研究發(fā)現(xiàn)的TLRs識別配體功能見表1。Fukui等在2001年,用基于小鼠和果蠅進行序列的簡并引物設(shè)計從雞法氏囊cDNA文庫中克隆2種類型的TLR,首次研究發(fā)現(xiàn)雞TLR-1和TLR-2。TLRs基因在雞大多數(shù)組織中都表達,只有少部分基因表現(xiàn)出更受限的表達模式。TLR2僅在雞盲腸扁桃體、脾臟、肝臟、法氏囊、B細胞、CD8 +細胞和嗜異性細胞中表達。TLR-4僅在DC、自然殺傷(NK)細胞和單核細胞的表面上表達,部分在內(nèi)皮細胞中也表達。TLR的多態(tài)性可以影響病原微生物入侵宿主時的反應(yīng)。研究表明,TLR-4、TLR-15、TLR-21、MD-2、ILs、IFN和iNOS是針對沙門氏菌感染的耐藥基因。TLR-4中的G247A位點與腸炎沙門氏菌的耐藥性增加有關(guān)。Chen 等研究發(fā)現(xiàn),TLR-2、 MyD88、 NF-κB 3條信號通路可以激活雞毒支原體(MG)染后NLRP3炎癥小體,降低自噬水平和能量代謝受損,引發(fā)炎癥反應(yīng),從而導(dǎo)致雞胸腺組織損傷,免疫失調(diào)。Tian等研究表明,TLR2-Ⅱ和TLR-6在MG感染時均上調(diào),隨后下游NF-κB介導(dǎo)的炎癥反應(yīng)上調(diào)。TLR的表達模式不同,對雞的病原體產(chǎn)生不同反應(yīng),可能與其遺傳調(diào)節(jié)和免疫增強有聯(lián)系,但是TLR在引起抗病性的個體作用是有限的。Zhang等報道,雞骨髓巨噬細胞系HD11中毒性新城疫病毒的復(fù)制增強,是由于抑制TLR7對細胞的激活而導(dǎo)致的。Barjesteh等研究發(fā)現(xiàn),TLR-2、TLR-4和TLR-21配體能夠在巨噬細胞中誘導(dǎo)IL-1β、IFN-γ、IRF7和IFN-β的表達,與H4N6禽流感病毒(AIV)復(fù)制減少有關(guān)。
2.2 MHC
雞主要組織相容性復(fù)合體(MHC)是在16號染色體長臂上發(fā)現(xiàn)的一組編碼宿主主要組織相容性抗原的基因簇,最主要的功能是參與免疫調(diào)控,與抗病性密切相關(guān),影響病原體入侵的反應(yīng)性和易感性,具有多基因型和多態(tài)性的特點。雞MHC 目前已知至少由F、L和G 3個區(qū)域組成,編碼為Ⅰ類、Ⅱ類和Ⅳ類,G區(qū)域是雞特有的,F(xiàn)區(qū)域和L區(qū)域相連緊密,也被稱為B-F / B-L區(qū)域。B復(fù)合體(B complex)是第1個在分子水平上表征的非哺乳動物MHC。在MHC上,除B位點外,還有Rfp-Y和Rfp-Y。雞MHC在雞基因組中跨越約209 kb區(qū)域中含有約46個基因。雞MHC小而簡單,但是含有哺乳動物MHC基因的基本對應(yīng)物,常被認為是最小的必須基因集。
Kim等研究表明,BF1和BF2免疫功能不相同,BF1負調(diào)節(jié)NK細胞殺傷活性,BF2限制抗原特異性CTL免疫反應(yīng)。MHC與雞多種病毒性和細菌性疾病之間存在抗性,如禽流感、馬立克氏病、肉瘤病、新城疫、禽白血病、沙門氏菌和大腸桿菌感染等,探究其中的分子機制,有利于雞生長發(fā)育,能夠更好地應(yīng)用在育種實踐中。研究表明,雞MHC B單倍型對雛雞呼吸道病原體具有更有效免疫反應(yīng)。B21單倍型對病毒的宿主抵抗力高于雞肉中B2單倍型。MHC Ⅰ類和Ⅱ類基因均對沙門氏菌屬(SE)的耐藥性有作用效果,B18和B15可以誘導(dǎo)SE的死亡。對B2、B12、B13、B19和B21 MHC同源的白來航雞品系和具有不同背景基因但具有相同B2 MHC單倍型的品系,鼻內(nèi)接受低劑量的高致病性禽流感病毒。研究發(fā)現(xiàn),B21影響H5N1高致病性禽流感暴發(fā)的存活率,B13 與其高死亡率相關(guān)。MHC對致癌逆轉(zhuǎn)錄病毒Rous肉瘤病毒(RSV)控制復(fù)雜,各種B基因型之間的RSV腫瘤反應(yīng)的差異可能由于腫瘤特異性抗原的免疫識別或免疫系統(tǒng)對病毒復(fù)制的影響。MHC單倍型B(Q)和B17之間的等位基因互補可以影響免疫應(yīng)答,增加紅細胞肉瘤的消退。多個研究表明,MHC決定馬立克病毒(MDV)的差異性抗性。研究報道,在孵化白來航雞感染禽白血病病毒J亞組(ALV-J)毒株后,免疫反應(yīng)受到B單倍型的影響。雞胚胎感染新城疫病毒(NDV)后誘導(dǎo)的先天免疫反應(yīng)可能由MHC位點遺傳控制。同樣的,Li等研究發(fā)現(xiàn),MHC B-LBII的不同位點與LH、LWH和BR 3個本土雞群的SRBC、ND和AI抗體滴度的抗體有顯著相關(guān)性,影響免疫性狀。Alber等研究發(fā)現(xiàn),不止MHC-Ⅰ類抗原與家禽大腸桿菌感染抗菌天然免疫反應(yīng)有關(guān),MHC-II也有同樣的作用,表明 B-F/B-L區(qū)域的研究有重要意義。
2.3 Mx
Mx蛋白是一種GTP酶活性的三磷酸鳥苷(GTP)結(jié)合蛋白,是主要由Ⅰ型干擾素誘導(dǎo)的基因產(chǎn)物,對致病性RNA病毒具有先天性抗性。研究發(fā)現(xiàn),雞Mx基因的整個長度跨度約為21 kb,1號染色體上有13個外顯子,5′端非編碼區(qū)的多樣性最高,3′端非編碼的多樣性最低。不同宿主物種的抗病毒活性或能力與Mx基因家族基因數(shù)的變化以及Mx基因上游調(diào)節(jié)因子的存在有關(guān)。
在家雞上研究較多的主要是Mx基因?qū)π鲁且卟《竞颓萘鞲胁《镜挠绊?。Mpenda等采用候選基因和選擇性基因分型相結(jié)合的方法,首次研究發(fā)現(xiàn)雞Mx基因啟動子多態(tài)性與雞胚胎存活變異性及新城疫病毒存在關(guān)聯(lián)。Zhang等將具有抗病毒感染的Mx和NA 2種蛋白對新城疫病毒耐藥性進行試驗。研究發(fā)現(xiàn),2個基因結(jié)合在一起對病毒感染的抵抗力要優(yōu)于單個基因。家雞Mx蛋白通過阻斷復(fù)制周期的早期階段來抑制多種病毒的擴繁,可以有效對抗禽流感病毒。Ewald等研究表明,Mx1 Asn631變異等位基因?qū)档透腥靖咧虏⌒訟IV(H5N2)的雞的發(fā)病率、早期死亡率、病毒脫落和細胞因子反應(yīng)有影響。除此之外,陶換等運用q RT-PCR技術(shù),檢測法氏囊病病毒(IBDV)感染后白來航公雞的法氏囊和脾臟中Mx的 mRNA表達水平。結(jié)果表明,法氏囊和脾臟中Mx的轉(zhuǎn)錄水平隨著IBDV在法氏囊中的增殖而迅速升高,脾臟中轉(zhuǎn)錄水平變化更快,而IBDV減少后Mx的轉(zhuǎn)錄水平下降,為Mx蛋白與法氏囊病毒之間作用的抗病毒機制提供進一步研究的理論依據(jù)。通過對Mx基因的多態(tài)性的檢測,可以篩選能夠產(chǎn)生對傳染病具有抗性的品種,為抗病育種提供借鑒。Mx蛋白的抗病毒能力與基因位點、來源以及易感性有關(guān)。研究發(fā)現(xiàn),雞Mx蛋白在631氨基酸位點的多態(tài)性可以改變抗病毒活性和細胞內(nèi)分布位置,雞Mx蛋白的抗病毒特異性由羧基末端的氨基酸取代決定。Gosu 等通過分子建模與動態(tài)模擬,揭示了野生型和突變型chMx之間結(jié)構(gòu)和動力學(xué)差異的信息,為研究與chMx蛋白抗病毒活性相關(guān)的S631N突變體的結(jié)構(gòu)特征提供幫助。Sironi等使用PCR-RFLP基因分型的方案,再次解釋了與S631N突變相關(guān)的Mx基因多態(tài)性。
通過分析多個雞系和祖先品種與禽流感病毒復(fù)制的抗性或易感性相關(guān)的Mx基因密碼子,發(fā)現(xiàn)肉雞品系相對于蛋雞品系,在易感性等位基因方面具有較高的頻率,且該差異在祖先品種中也存在。
2.4 NRAMP
天然抗性相關(guān)巨嗜蛋白(NRAMP)家族可以通過細胞膜運輸必需的過渡金屬微量營養(yǎng)素,如鐵和錳,在生物體內(nèi)充當(dāng)金屬離子轉(zhuǎn)運蛋白,并且和細胞內(nèi)病原體的耐藥性相關(guān)。NRAMP1和NRAMP2是NRAMP的同源物,NRAMP1可以從吞噬體中提取必需金屬來幫助殺死被吞沒的病原體,有利于先天免疫系統(tǒng)的金屬抑制防御;NRAMP2可以促進飲食中的鐵攝取和供應(yīng)紅細胞前體的鐵的全身分布。目前在家雞上研究較多的是NRAMP1,它與雞沙門氏菌的抗性有關(guān),遺傳的差異取決于基因的多態(tài)性。Dar等發(fā)現(xiàn),受感染鼠傷寒沙門氏菌的雞的盲腸、肝臟和脾臟中NRAMP基因mRNA表達顯著增加,表明NRAMP1和NRAMP2基因在鼠傷寒沙門氏菌誘導(dǎo)疾病中具有特定作用。Liu等將近交系肉雞父系和3種不同的高自交系雜交產(chǎn)生的F后代接種致病性SE,檢測脾臟和盲腸細菌負荷和抗體水平。結(jié)果表明,NRAMP1基因的Ser379位SNP與SE感染后雛雞的脾臟細菌減少相關(guān),也與SE疫苗的抗體產(chǎn)生有關(guān)。Hu等研究發(fā)現(xiàn),與易感雛雞相比,抗SE感染的雛雞中由異嗜性粒細胞和脾臟中NRAMP1 mRNA上調(diào)而引起的宿主免疫增強更明顯和出現(xiàn)更早。關(guān)于NRAMP與家雞免疫相關(guān)的報道較少,國內(nèi)將NRAMP1基因與免疫性狀進行相關(guān)分析,為分子標記育種提供新依據(jù)。胡國順等采用PCR - SSCP 技術(shù)檢測如皋雞和隱性白羽雞Nramp1基因第 9 外顯子的多態(tài)性,并對不同基因型與免疫性狀進行聯(lián)合分析。結(jié)果初步顯示,如皋雞的綜合免疫性能優(yōu)于隱性白羽雞,AA 基因型的綜合免疫性能優(yōu)于 AB 型和 BB 型。仇玲玲等研究表明,斗雞AA基因型的綜合免疫性能要優(yōu)于AB和BB型,可作為一種高抗性基因型。
2.5 IFN
干擾素(IFN)是一類廣譜的抗病毒劑,對DNA病毒和RNA 病毒都具有抑制作用,能夠增強宿主自然殺傷有害細胞的活性,調(diào)節(jié)免疫的自身穩(wěn)定。IFN不會直接殺死或抑制病毒,而是通過轉(zhuǎn)錄誘導(dǎo)大量干擾素刺激的基因(ISG)發(fā)揮抗病毒作用。Dai等采用RNA測序技術(shù),在雞中鑒定了25種Ⅰ型、299種Ⅱ型和421種Ⅲ型干擾素刺激基因(ISG)。Ⅰ型IFN是雞先天免疫系統(tǒng)的關(guān)鍵抗病毒劑,尤以IFN-α和IFN-β代表。與IFN途徑的激活相關(guān)的細胞模式識別受體(PRRs)主要包括RLRs家族、TLR家族和DNA傳感器家族。chISG可防止病毒在雞細胞內(nèi)的復(fù)制和傳播,是針對禽流感病毒病原體的有效抗病毒藥物。雞TRIM25可以抑制雞的白血病病毒的復(fù)制并上調(diào)雞中MDA5受體介導(dǎo)的Ⅰ型干擾素反應(yīng)。Susta等將雞IFN-γ基因的編碼序列插入高毒力NDV菌株的基因組中,測定IFN-γ表達量。結(jié)果發(fā)現(xiàn),相比對照組,在4周齡雞中致病性顯著降低,表明IFN-γ的早期表達對雞中高毒力新城疫病毒感染的影響具有顯著的保護作用。Masuda等研究表明,雞肉IFN-λ抑制雞胚胎成纖維細胞中的流感病毒復(fù)制;與雞肉IFN-γ和IFN-β相比,需要更高的劑量來實現(xiàn)有效的抗病毒活性并誘導(dǎo)ISG。張貝從全基因組水平上對雞IFITM/IFIT基因家族成員進行鑒定,研究表明IFITM2、IFITM3和IFIT5參與禽流感病毒誘發(fā)的免疫反應(yīng),IFIT5是H5N1病毒早期誘導(dǎo)免疫應(yīng)答的樞紐基因。Kint等研究報道,感染伽馬冠病毒(IBV)會誘導(dǎo)原代腎細胞、氣管上皮細胞和雞細胞系中I型IFN反應(yīng)的激活,IBV的輔助蛋白3a和3b參與調(diào)節(jié)轉(zhuǎn)錄以及I型IFN的蛋白質(zhì)產(chǎn)生,首次全面分析了伽馬冠病毒與禽類先天免疫反應(yīng)的宿主病毒相互作用。
2.6 IL
白細胞介素(IL)是在白細胞或免疫細胞間相互作用的細胞因子,可以刺激B細胞和T細胞增殖以及CTL活化,參與炎癥反應(yīng),在免疫調(diào)節(jié)和疾病防控方面越來越被人們重視。白介素種類眾多,雞IL-6是一種熱休克基因,是炎癥的負調(diào)節(jié)因子。雞IL-9可能是一種分子量為25 kD的糖基化蛋白質(zhì),重組 IL-9在激活單核細胞/巨噬細胞和促進 CD3 T 細胞增殖方面具有生物學(xué)活性。雞IL-26在T細胞中表達,通過JAK / STAT和NF-κB信號通路激活T細胞和巨噬細胞的分子結(jié)合,誘導(dǎo)促炎細胞因子的表達。白細胞介素治療成本較高,在動物疾病中應(yīng)用較少,但是蛋白純化效果較好,在疫苗開發(fā)有很大前景。Huo 等研究報道,雞chIL-2和chIL-7具有協(xié)同增效的作用,可以增強VP2 DNA疫苗在雞中針對雞傳染性法氏囊病毒的免疫性和保護功效。崔凱玲等采用基因佐劑配合雞球蟲活疫苗對雛雞進行免疫攻毒試驗,研究結(jié)果表明,IL-4 和 IL-2重組基因佐劑可提高雞球蟲活疫苗的免疫效果,縮短免疫產(chǎn)生期和免疫間隔。Wang等對180只感染的京海黃雞DNA進行測序,用于檢測IL-8基因啟動子區(qū)中的單核苷酸多態(tài)性(SNP)。結(jié)果顯示,IL-8基因啟動子區(qū)的突變對球蟲病耐藥指數(shù)具有顯著的調(diào)控作用。Wang 等從無特異性(SPF)雞胚胎脾臟細胞中克隆了全長雞IL-18基因,通過聯(lián)合注射IL-18質(zhì)粒和滅活新城疫病毒疫苗,在雞中檢查ChIL-18質(zhì)粒的潛在遺傳佐劑活性。結(jié)果表明,IL-18質(zhì)粒和NDV疫苗的共用能夠增強體液和細胞水平上的免疫反應(yīng),是一種適用于NDV疫苗接種的新型免疫佐劑。
3 結(jié)語
該研究重點從免疫防治和疾病方向綜述了TLRs、MHC、MX、IFN、NRAMP和IL 等影響家雞免疫性狀的關(guān)鍵調(diào)控基因,可以為抗病新品種的培育提供理論基礎(chǔ)。隨著養(yǎng)殖業(yè)的變革,疾病發(fā)生嚴重威脅整個行業(yè)的發(fā)展,飼養(yǎng)過程中大量濫用抗生素的現(xiàn)象將不復(fù)存在,如何減少藥物或疫苗使用量,減少病原體在宿主中的傳播,提高動物的抗病力和免疫力,是今后疾病防控的趨勢?,F(xiàn)代分子生物技術(shù)的發(fā)展與應(yīng)用可以為今后家禽免疫系統(tǒng)的結(jié)構(gòu)與功能研究、抗病與免疫基因的發(fā)掘利用、免疫信號傳導(dǎo)機制以及臨床免疫和抗病育種提供技術(shù)支撐。目前對免疫機制的研究報道更多的是關(guān)注特異性免疫,在未來的研究中,需要更加關(guān)注非特異性免疫,為疾病的防控與治療提供新的思路。
參考文獻
[1]CHAPMAN J R,HELLGREN O,HELIN A S,et al.The evolution of innate immune genes:Purifying and balancing selection on β-defensins in waterfowl[J].Mol Biol Evol,2016,33(12):3075-3087.
[2]劉爭輝,韓代書.模式識別受體介導(dǎo)的天然免疫反應(yīng)調(diào)節(jié)獲得性免疫的機理[J].中國組織化學(xué)與細胞化學(xué)雜志,2013,22(6):545-551.
[3]TAKEDA K,AKIRA S.Toll-like receptors[J].Curr Protoc Immunol,2015,109(1):1-10.
[4]REHMAN M S,REHMAN S U,YOUSAF W,et al.The potential of Toll-like receptors to modulate avian immune system:Exploring the effects of genetic variants and phytonutrients[J].Front Genet,2021,12:1-16.
[5]HIGUCHI M,MATSUO A,SHINGAI M,et al.Combinational recognition of bacterial lipoproteins and peptidoglycan by chicken Toll-like receptor 2 subfamily[J].Dev Comp Immunol,2008,32(2):147-155.
[6]ZHANG Y S,LIANG X J,BAO X F,et al.Toll-like receptor 4(TLR4)inhibitors:Current research and prospective[J].Eur J Med Chem,2022,235:1-20.
[7]KEESTRA A M,DE ZOETE M R,VAN AUBEL R A,et al.Functional characterization of chicken TLR5 reveals species-specific recognition of flagellin[J].Mol Immunol,2008,45(5):1298-1307.
[8]RUAN W K,AN J,WU Y H.Polymorphisms of chicken TLR3 and 7 in different breeds[J].PLoS One,2015,10(3):1-8.
[9]BOYD A C,PEROVAL M Y,HAMMOND J A,et al.TLR15 is unique to avian and reptilian lineages and recognizes a yeast-derived agonist[J].J Immunol,2012,189(10):4930-4938.
[10]KEESTRA A M,DE ZOETE M R,BOUWMAN L I,et al.Chicken TLR21 is an innate CpG DNA receptor distinct from mammalian TLR9[J].J Immunol,2010,185(1):460-467.
[11]FUKUI A Y,INOUE N,MATSUMOTO M,et al.Molecular cloning and functional characterization of chicken Toll-like receptors a single chicken toll covers multiple molecular patterns[J].J Biol Chem,2001,276(50):47143-47149.
[12]ALKIE T N,YITBAREK A,HODGINS D C,et al.Development of innate immunity in chicken embryos and newly hatched chicks:A disease control perspective[J].Avian Pathol,2019,48(4):288-310.
[13]TOHIDI R,IDRIS I B,PANANDAM J M,et al.The effects of polymorphisms in IL-2,IFN-γ,TGF-β2,IgL,TLR-4,MD-2,and iNOS genes on resistance to Salmonella Enteritidis in indigenous chickens[J].Avian Pathol,2012,41(6):605-612.
[14]GUPTA S K,DEB R,DEY S,et al.Toll-like receptor-based adjuvants:Enhancing the immune response to vaccines against infectious diseases of chicken[J].Expert Rev Vaccines,2014,13(7):909-925.
[15]LI P,WANG H H,ZHAO X W,et al.Allelic variation in TLR4 is linked to resistance to Salmonella Enteritidis infection in chickens[J].Poult Sci,2017,96(7):2040-2048.
[16]CHEN C L,LI J C,ZHANG W,et al.Mycoplasma gallisepticum triggers immune damage in the chicken thymus by activating the TLR-2/MyD88/NF-κB signaling pathway and NLRP3 inflammasome[J].Vet Res,2020,51(1):1-13.
[17]TIAN W,ZHAO C C,HU Q C,et al.Roles of Toll-like receptors 2 and 6 in the inflammatory response to Mycoplasma gallisepticum infection in DF-1 cells and in chicken embryos[J].Dev Comp Immunol,2016,59:39-47.
[18]ZHANG P Z,DING Z,LIU X X,et al.Enhanced replication of virulent Newcastle disease virus in chicken macrophages is due to polarized activation of cells by inhibition of TLR7[J].Front Immunol,2018,9:1-13.
[19]BARJESTEH N,BEHBOUDI S,BRISBIN J T,et al.TLR ligands induce antiviral responses in chicken macrophages[J].PLoS One,2014,9(8):1-11.
[20]FULTON J E,MCCARRON A M,LUDN A R,et al.A high-density SNP panel reveals extensive diversity,frequent recombination and multiple recombination hotspots within the chicken major histocompatibility complex B region between BG2 and CD1A1[J].Genet Sel Evol,2016,48:1-15.
[21]KIM T,HUNT H D,PARCELLS M S,et al.Two class I genes of the chicken MHC have different functions:BF1 is recognized by NK cells while BF2 is recognized by CTLs[J].Immunogenetics,2018,70(10):693-694.
[22]BANAT G R,TKALCIC S,DZIELAWA J A,et al.Association of the chicken MHC B haplotypes with resistance to avian coronavirus[J].Dev Comp Immunol,2013,39(4):430-437.
[23]JIN Y C,WANG W,YU M M,et al.Study on the contrast of the MHC-peptide interaction of B2/B21 haplotype and MHC-related virus resistance in chickens[J].Immun Inflamm Dis,2021,9(4):1670-1677.
[24]LIU W,MILLER M M,LAMONT S J.Association of MHC class I and class II gene polymorphisms with vaccine or challenge response to Salmonella enteritidis in young chicks[J].Immunogenetics,2002,54(8):582-590.
[25]HUNT H D,JADHAO S,SWAYNE D E.Major histocompatibility complex and background genes in chickens influence susceptibility to high pathogenicity avian influenza virus[J].Avian Dis,2010,54(S1):572-575.
[26]TAYLOR R L,JR.Major histocompatibility(B)complex control of responses against Rous sarcomas[J].Poult Sci,2004,83(4):638-649.
[27]SENSENEY H L,BRILES W E,ABPLANALP H,et al.Allelic complementation between MHC haplotypes B(Q)and B17 increases regression of Rous sarcomas[J].Poult Sci,2000,79(12):1736-1740.
[28]HALABI S,GHOSH M,STEVANOVIC' S,et al.The dominantly expressed class II molecule from a resistant MHC haplotype presents only a few Marek’s disease virus peptides by using an unprecedented binding motif[J].PLoS Biol,2021,19(4):1-12.
[29]THANTHRIGE-DON N,READ L R,ABDUL-CAREEM M F,et al.Marek’s disease virus influences the expression of genes associated with IFN-gamma-inducible MHC class II expression[J].Viral Immunol,2010,23(2):227-232.
[30]LIAN L,QU L J,ZHENG J X,et al.Expression profiles of genes within a subregion of chicken major histocompatibility complex B in spleen after Marek’s disease virus infection[J].Poult Sci,2010,89(10):2123-2129.
[31]MAYS J K,BACON L D,PANDIRI A R,et al.Response of white leghorn chickens of various B haplotypes to infection at hatch with subgroup J avian leukosis virus[J].Avian Dis,2005,49(2):214-219.
[32]SCHILLING M A,KATANI R,MEMARI S,et al.Transcriptional innate immune response of the developing chicken embryo to Newcastle disease virus infection[J].Front Genet,2018,9:1-9.
[33]LI F W,LI S Q,LU Y,et al.Relationships among immune traits and MHC B-LBII genetic variation in three chicken breeds[J].Chin J Biotechnol,2013,29(7):904-913.
[34]ALBER A,MORRIS K M,BRYSON K J,et al.Avian pathogenic Escherichia coli(APEC)strain-dependent immunomodulation of respiratory granulocytes and mononuclear phagocytes in CSF1R-reporter transgenic chickens[J].Front Immunol,2020,10:1-16.
[35]LI X Y,QU L J,HOU Z C,et al.Genomic structure and diversity of the chicken Mx gene[J].Poult Sci,2007,86(4):786-789.
[36]QI F R,YANG A R,AMBREEN S,et al.Birth and death of Mx genes and the presence/absence of genes regulating Mx transcription are correlated with the diversity of anti-pathogenicity in vertebrate species[J].Mol Genet Genomics,2019,294(1):121-133.
[37]MPENDA F N,KEAMBOU C T,KYALLO M,et al.Polymorphisms of the chicken Mx gene promoter and association with chicken embryos’ susceptibility to virulent Newcastle disease virus challenge[J].Biomed Res Int,2019,2019:1-7.
[38]ZHANG Y N,F(xiàn)U D Z,CHEN H,et al.Partial antiviral activities detection of chicken Mx jointing with neuraminidase gene(NA)against Newcastle disease virus[J].PLoS One,2013,8(8):1-7.
[39]HALLER O,STAEHELI P,KOCHS G.Protective role of interferon-induced Mx GTPases against influenza viruses[J].Rev Sci Tech,2009,28(1):219-231.
[40]EWALD S J,KAPCZYNSKI D R,LIVANT E J,et al.Association of Mx1 Asn631 variant alleles with reductions in morbidity,early mortality,viral shedding,and cytokine responses in chickens infected with a highly pathogenic avian influenza virus[J].Immunogenetics,2011,63(6):363-375.
[41]陶換,余燕,劉曉曉,等.IBDV感染雛雞法氏囊和脾臟中抗病毒基因Mx的表達變化[J].中國家禽,2016,38(18):14-17.
[42]SASAKI K,YONEDA A,NINOMIYA A,et al.Both antiviral activity and intracellular localization of chicken Mx protein depend on a polymorphism at amino acid position 631[J].Biochem Biophys Res Commun,2013,430(1):161-166.
[43]KO J H,TAKADA A,MITSUHASHI T,et al.Native antiviral specificity of chicken Mx protein depends on amino acid variation at position 631[J].Anim Genet,2004,35(2):119-122.
[44]GOSU V,SHIN D,SONG K D,et al.Molecular modeling and dynamic simulation of chicken Mx protein with the S631N polymorphism[J].J Biomol Struct Dyn,2022,40(2):612-621.
[45]SIRONI L,RAMELLI P,WILLIAMS J L,et al.PCR-RFLP genotyping protocol for chicken Mx gene G/A polymorphism associated with the S631N mutation[J].Genet Mol Res,2010,9(2):1104-1108.
[46]BALKISSOON D,STAINES K,MCCAULEY J,et al.Low frequency of the Mx allele for viral resistance predates recent intensive selection in domestic chickens[J].Immunogenetics,2007,59(8):687-691.
[47]BOZZI A T,GAUDET R.Molecular mechanism of nramp-family transition metal transport[J].J Mol Biol,2021,433(16):1-31.
[48]DAR M A,AHMED R,URWAT U,et al.Expression kinetics of natural resistance associated macrophage protein(NRAMP)genes in Salmonella Typhimurium-infected chicken[J].BMC Vet Res,2018,14(1):1-11.
[49]LIU W,KAISER M G,LAMONT S J.Natural resistance-associated macrophage protein 1 gene polymorphisms and response to vaccine against or challenge with Salmonella enteritidis in young chicks[J].Poult Sci,2003,82(2):259-266.
[50]HU Y,SHAN Y J,ZHU C H,et al.Upregulation of NRAMP1 mRNA confirms its role in enhanced host immunity in post-artificial infections of Salmonella enteritidis in chicks[J].Br Poult Sci,2015,56(4):408-415.
[51]胡國順,常國斌,王克華,等.雞Nramp1基因多態(tài)性與部分免疫指標相關(guān)性分析[J].中國畜牧雜志,2011,47(15):5-8.
[52]仇玲玲,欒德琴,廖和榮,等.斗雞Nramp1基因多態(tài)性與部分免疫指標相關(guān)性分析[J].中國家禽,2015,37(6):11-14.
[53]DAI M M,XIE T T,LIAO M,et al.Systematic identification of chicken type I,II and III interferon-stimulated genes[J].Vet Res,2020,51(1):1-12.
[54]ANJUM F R,ANAM S,RAHMAN S U,et al.Anti-chicken type I IFN countermeasures by major avian RNA viruses[J].Virus Res,2020,286:1-8.
[55]ZHOU J R,LIU J H,LI H M,et al.Regulatory effects of chicken TRIM25 on the replication of ALV-A and the MDA5-mediated type I interferon response[J].Vet Res,2020,51(1):1-11.
[56]SUSTA L,CORNAX I,DIEL D G,et al.Expression of interferon gamma by a highly virulent strain of Newcastle disease virus decreases its pathogenicity in chickens[J].Microb Pathog,2013,61/62:73-83.
[57]MASUDA Y,MATSUDA A,USUI T,et al.Biological effects of chicken type III interferon on expression of interferon-stimulated genes in chickens:Comparison with type I and type II interferons[J].J Vet Med Sci,2012,74(11):1381-1386.
[58]張貝.雞全基因組中IFITM/IFIT基因家族的鑒定及分析[D].秦皇島:河北科技師范學(xué)院,2021.
[59]KINT J,F(xiàn)ERNANDEZ-GUTIERREZ M,MAIER H J,et al.Activation of the chicken type I interferon response by infectious bronchitis coronavirus[J].J Virol,2015,89(2):1156-1167.
[60]HE S J,CHEN L N,HAO X L,et al.First characterization of chicken interleukin-9[J].Front Immunol,2022,13:1-13.
[61]TRUONG A D,HONG Y,HOANG C T,et al.Chicken IL-26 regulates immune responses through the JAK/STAT and NF-κB signaling pathways[J].Dev Comp Immunol,2017,73:10-20.
[62]HUO S S,ZHANG J L,F(xiàn)AN J H,et al.Co-expression of chicken IL-2 and IL-7 enhances the immunogenicity and protective efficacy of a VP2-expressing DNA vaccine against IBDV in chickens[J].Viruses,2019,11(5):1-17.
[63]崔凱玲,郝飛飛,鄭明學(xué),等.雞IL-4和IL-2重組融合基因佐劑對雞球蟲活疫苗的增效作用研究[J].黑龍江畜牧獸醫(yī),2022(9):18-22.
[64]WANG X H,YU H L,ZOU W B,et al.Study of the relationship between polymorphisms in the IL-8 gene promoter region and coccidiosis resistance index in Jinghai yellow chickens[J].Genes,2020,11(5):1-12.
[65]WANG C,LI X K,ZHANG C,et al.A eukaryotic expression plasmid carrying chicken interleukin-18 enhances the response to Newcastle disease virus vaccine[J].Clin Vaccine Immunol,2015,22(1):56-64.