• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Information-Based Elite-Guided Evolutionary Algorithm for Multi-Objective Feature Selection

    2024-01-27 06:49:28ZiqianWangShangceGaoZhenyuLeiandMasaakiOmura
    IEEE/CAA Journal of Automatica Sinica 2024年1期

    Ziqian Wang , Shangce Gao ,,,Zhenyu Lei , and Masaaki Omura

    Dear Editor,

    This letter is concerned with the evolution strategy for addressing multi-objective feature selection problems in classification.Previous methods suffer from limitations such as being trapped in local optima and lacking stability.To overcome them, we propose a novel eliteguided mechanism based on information theory.Firstly, an elite solution is generated through a dimension reduction strategy and incorporated to the initialization population.Then, a symmetrical uncertainty-based mutation operator is developed to implement local search after the crossover operator.Finally, a special crowding distance is utilized to analyze duplicates in the environmental selection.The effectiveness and superiority of the proposed method are verified on 20 datasets, including high-dimensional ones.

    Introduction: With the continuous advancements in data collection technologies, the dimensionality of datasets has significantly increased.High-dimensional data often contains irrelevant and redundant features, leading to performance degradation in classification tasks due to the “curse of dimensionality”.Consequently, effective data mining techniques are essential to address this challenge.

    Feature selection (FS) is a widely adopted data mining technique that tackles this issue by selecting a subset of relevant features.FS methods can be broadly categorized into two main types: filter and wrapper-based methods [1].Filter-based methods evaluate the importance of features using specific criteria and select top-nfeatures accordingly.Wrapper-based methods employ a learning algorithm to iteratively evaluate candidate feature subsets and directly output an optimal feature subset.Generally, wrapper-based methods outperform filter methods and provide superior performance [1], [2].However, existing approaches still face challenges, including computational complexity and being prone to local optima, due to the exponentially growing search space as the number of features increases.

    Evolutionary algorithms (EAs) have recently gained significant attention and been applied in various domains [3].EAs are particularly suitable for wrapper-based FS methods as they can obtain multiple solutions within only one population.Current state-of-the-art EAs treat FS as a multi-objective problem with two conflicting objectives:1) reducing selected features and 2) classification error rate [1].For instance, Xueet al.[4] introduced nondominated sorting into a multiobjective particle swarm optimization-based FS algorithm.More recently, Chenget al.[5] proposed a steering matrix to guide the evolution of the population in multi-objective evolutionary algorithms(MOEAs).Despite the advancements in MOEA-based FS algorithms, challenges such as complex feature interactions and irregular Pareto fronts, still persist [6].

    Motivated by the aforementioned discussions, this letter presents a novel multi-objective evolutionary algorithm (termed IEMOEA) for FS.The algorithm is based on the elite-guided solution generation strategy and the information-based mutation operator.The eliteguided solution generation strategy facilitates the learning of a feature subspace and accelerates population convergence.The main contributions of this work are as follows: 1) Introducing a novel eliteguided solution generation strategy to enhance convergence speed and solution quality.2) Incorporating symmetrical uncertainty (SU)into the mutation operator to further improve solution quality by removing redundant features or adding relevant features.3) Utilizing a specialized crowding distance measure to eliminate duplicate solutions and ensure population diversity.Experiments are conducted on 20 datasets, encompassing both low and high-dimensional scenarios,to verify the effectiveness and superiority of the proposed IEMOEA method.

    Methodology: Our proposed method is realized in Algorithm 1.It can be introduced from three aspects in details:

    1) Generating elite solutions (Line 2 in Algorithm 1): Fig.1 shows the process of generating the elite solution.Consider a problem withD=5features, the problem can be formulated as maximizing the classification accuracy of the solutionE, s.t.E=(F1,...,Fi,...,F5),whereFiindicates thei-th feature.Firstly, our proposed method calculates SU values between the features and the label.The SU value between thei-th featureFiand the label vectorCis given by

    wherep(fi,c) is the joint probability distribution function ofFiandC, andp(fi) andp(c) are the marginal probability distribution functionsofFiandC,respectively.Then,themethodemploystournamentselection toinitializeindividuals.Asshown inFig.1,two features are randomly selected, and the feature with the largerUvalue is chosen.This process is repeatedD=5 times.The corresponding positions in the individual are encoded as “1”, while the other positions are set to “0”.Then the proposed method applies a dimension reduction operator to the individual.The number of features to be re duced is set as 「R×D?, whereRrepresents the reduction rate.Tournament selection is also used to reduce features, where two features are randomly selected, and the feature with the smallerUvalue is reduced.This process is repeated 「R×D? times.Inspired by [7], a linear decrease ofRis applied to balance exploration and exploitation, given as

    TD ?t Algorithm 1 IEMOEA(N, D, , )TD ?t Input: Population size N, decision space dimensionality D, training data; termination criterion ;Output: Final population P;←1: U Calculate SU by (1);E ←EliteGeneration(TD,U)2: ;P ←Initialize(N-1)3: ;P ←P∪E 4: ;< ?t- ?te 5: while t do P′←6: Randomly select N parents;O ←Variation(P,P′)7: ;P ←Duplicationanalysis(P∪O)8: ;P ←Nondominatedsorting(P)9: ;P ←10: the first N solutions in P;11: t = t + 1;12: end

    Fig.1.Illustration of the elite solution formulation.

    2) The SU-based variation operator (Line 7 in Algorithm 1): The proposed IEMOEA adopts existing single-point crossover and SUbased mutation for binary variation.Specifically, the SU-based mutation operator is designed to flip one of the selected or non-selected variables in the individual with a probability of 0.5.Ifrand>0.5,two non-selected features are randomly chosen and the corresponding position of the feature with largerUvalue is flipped to “1”.Conversely, ifrand<0.5, two selected features are randomly chosen and the corresponding position of the feature with smallerUvalue is flipped to “0”.This mutation operator facilitates a local search mechanism and ensures the quality of the generated offsprings.

    3) The special crowding distance-based duplication analysis (Line 8 in Algorithm 1): An issue of FS is the duplicate solutions in both decision and objective space, which can lead to population diversity degradation.Therefore, as part of the environmental selection process in IEMOEA, we initially eliminate all duplicate solutions,retaining only a single unique solution for each set of duplicates.Subsequently, we employ the special crowding distance technique introduced by [8] to handle solutions that share the same objective values but differ in the decision space.The solution with the maximum special crowding distance in the decision space is preserved.Following the duplication analysis, we utilize the non-dominated sorting [9] to rank the population and retain the top-Nindividuals.

    Experiments: The implementation of all the MOEAs was performed using the open-source platform PlatEMO [10].To ensure consistency, we adopted the specific parameter settings outlined in their original papers [5], [9], [11], [12].

    During the experiments, the datasets were separated into two subsets: a training set comprising approximately 70%, and a testing set comprising approximately 30% of the samples.It is worth mentioning that, in the experiments, the SU values were calculated only based on the training data since the testing data is typically unknown in real-world applications.All the algorithms were executed within a wrapper-based approach, andK-nearest neighbors (KNN) (K= 5)was chosen as the wrappered classifier because of its efficiency.Furthermore, to address the issue of FS bias, we employed a 10-fold cross-validation strategy during the training process.

    Table 1 presents the 20 datasets utilized in our experiments,encompassing diverse fields such as life sciences, physics, video processing, image analysis, and bioinformatics.These datasets were obtained from the UCI machine learning repository [13], and theirspecific descriptions can be found there.

    Table 1.Benchmark Datasets

    In order to assess the performance of the proposed algorithm, we employ the hypervolume (HV) indicator [3], a well-established measure for MOEAs.The two objectives optimized in this letter, namely the selected features ratio and classification error rate, are already scaled to the range (0,1) in each objective direction.As a result, we set the reference point for HV as ( 1,1) to evaluate the performance of FS algorithms.A higher HV value indicates better algorithm performance.

    Table 2 presents the mean and standard deviation (std) values of the HV for all the MOEAs.The highest mean HV value is highlighted in bold.As shown in Table 2, IEMOEA achieves the best performance in 10 out of the 20 datasets.Additionally, we conducted the Wilcoxon signed-rank test to determine whether the performance difference between IEMOEA and the other algorithms is statistically significant, using a significance level of 0.05.Thep-values obtained from the test are reported at the bottom of Table 2.Notably, all thesep-values are smaller than 0.05, indicating a significant difference between the performance of IEMOEA and its competitors.

    To provide a more intuitive assessment of the performance of the proposed IEMOEA, we present the Pareto fronts obtained by all the competitors on the testing set in Fig.2.It is important to note that the dominated solutions in the final population have been removed.The results of four datasets are depicted in Fig.2, including two datasets with a relatively small number of features (< 500), namely Spect and Madelon, as well as two high-dimensional datasets (with >500 features), namely Multiplefeatures and Colon.Fig.2 clearly shows that in all the displayed datasets, IEMOEA successfully obtains solutions with lower classification error rates.Specifically, in the small-dimensional datasets, solutions generated by IEMOEA can dominate those acquired by its competitors.In the large-scale datasets, IEMOEA can find solutions with lower classification error rates compared to DAEA, SparseEA, and MOEA/PSL.Meanwhile, solutions generated by IEMOEA can dominate those acquired by SMMOEA.The visualization analysis of the Pareto fronts confirms the conclusion that IEMOEA outperforms its peers.

    Conclusion: This letter addresses the problem of multiobjective FS and presents a novel information-based elite-guide MOEA (named IEMOEA) for FS.The proposed algorithm introduces SU to generate an elite solution, which facilitates rapid convergence of the population.Furthermore, the algorithm leverages feature information in the mutation process to conduct local search and enhance the quality of solutions.Additionally, duplication analysis is implemented to refine the population and maintain population diversity.Experimen-tal results demonstrate the superior performance of IEMOEA compared to other state-of-the-art algorithms.The elite-guided search approach introduced in IEMOEA can also be applied in future research to enhance the search capabilities of other evolutionary FS methods.

    Table 2.Mean and Std HV Values Obtained by All Compared Algorithms

    Fig.2.The rank one Pareto fronts obtained by all compared algorithms on the testing set.

    Acknowledgments: This work was supported in part by the Japan Society for the Promotion of Science (JSPS) KAKENHI (JP22H 03643) and the Japan Science and Technology Agency (JST) (the establishment of university fellowships towards the creation of science technology innovation) (JPMJFS2115).

    国产久久久一区二区三区| 麻豆成人午夜福利视频| 成人18禁在线播放| 亚洲一区二区三区不卡视频| 亚洲全国av大片| 午夜福利欧美成人| av视频在线观看入口| 人人妻人人澡人人看| 夜夜躁狠狠躁天天躁| 变态另类成人亚洲欧美熟女| 久久婷婷人人爽人人干人人爱| 欧美日韩亚洲综合一区二区三区_| 一级作爱视频免费观看| 成人18禁高潮啪啪吃奶动态图| 757午夜福利合集在线观看| 日本五十路高清| 久久香蕉国产精品| 国产成人影院久久av| 欧美成人免费av一区二区三区| 精品卡一卡二卡四卡免费| 成人av一区二区三区在线看| 女生性感内裤真人,穿戴方法视频| 一区二区三区精品91| 国产久久久一区二区三区| 美女国产高潮福利片在线看| 国产真人三级小视频在线观看| 欧美性猛交╳xxx乱大交人| 免费在线观看黄色视频的| 99精品在免费线老司机午夜| 欧美亚洲日本最大视频资源| 国产午夜精品久久久久久| 禁无遮挡网站| 精品国内亚洲2022精品成人| 亚洲一区二区三区色噜噜| 18禁国产床啪视频网站| 成人手机av| 国产aⅴ精品一区二区三区波| 99国产精品99久久久久| 久久国产亚洲av麻豆专区| 黑人欧美特级aaaaaa片| 丁香六月欧美| 久久青草综合色| 成人国产综合亚洲| tocl精华| 欧美丝袜亚洲另类 | 少妇裸体淫交视频免费看高清 | 久久久水蜜桃国产精品网| 久久人妻福利社区极品人妻图片| 久久精品91无色码中文字幕| 好男人在线观看高清免费视频 | 午夜福利18| 国产91精品成人一区二区三区| 嫩草影院精品99| 男女视频在线观看网站免费 | 国产av一区在线观看免费| 欧美日韩瑟瑟在线播放| 日本 av在线| 欧美日韩亚洲综合一区二区三区_| 国产亚洲欧美98| 精品国产国语对白av| 韩国精品一区二区三区| 亚洲九九香蕉| 欧美丝袜亚洲另类 | 精品久久蜜臀av无| 美女国产高潮福利片在线看| 日韩欧美一区二区三区在线观看| 午夜福利在线观看吧| 丰满人妻熟妇乱又伦精品不卡| 亚洲色图av天堂| av欧美777| 国产成人精品久久二区二区91| 久久久久国产一级毛片高清牌| 免费在线观看视频国产中文字幕亚洲| 久久精品国产亚洲av香蕉五月| 母亲3免费完整高清在线观看| 亚洲男人的天堂狠狠| 免费无遮挡裸体视频| 18禁黄网站禁片免费观看直播| 性色av乱码一区二区三区2| 夜夜夜夜夜久久久久| 好看av亚洲va欧美ⅴa在| 国产三级在线视频| 亚洲精品中文字幕一二三四区| 老司机福利观看| 欧美不卡视频在线免费观看 | 中亚洲国语对白在线视频| 国内久久婷婷六月综合欲色啪| 婷婷精品国产亚洲av| 亚洲精品久久成人aⅴ小说| 色精品久久人妻99蜜桃| 日韩大尺度精品在线看网址| av中文乱码字幕在线| 欧美在线黄色| 黄色视频,在线免费观看| 国产国语露脸激情在线看| 亚洲av中文字字幕乱码综合 | √禁漫天堂资源中文www| 欧美精品亚洲一区二区| 国产欧美日韩一区二区三| 一本久久中文字幕| netflix在线观看网站| 久久人人精品亚洲av| 搡老妇女老女人老熟妇| 丰满人妻熟妇乱又伦精品不卡| 亚洲成人免费电影在线观看| 国产一区二区三区在线臀色熟女| 熟女少妇亚洲综合色aaa.| 一二三四在线观看免费中文在| 亚洲激情在线av| 午夜福利视频1000在线观看| 我的亚洲天堂| 国产野战对白在线观看| 午夜福利在线观看吧| 淫妇啪啪啪对白视频| 欧美日韩黄片免| 波多野结衣高清作品| 久99久视频精品免费| 亚洲av片天天在线观看| 2021天堂中文幕一二区在线观 | 成人特级黄色片久久久久久久| 亚洲熟妇中文字幕五十中出| 国产成人欧美在线观看| 黄网站色视频无遮挡免费观看| 天堂动漫精品| 性欧美人与动物交配| 亚洲国产精品合色在线| 色综合亚洲欧美另类图片| 一本一本综合久久| 在线十欧美十亚洲十日本专区| 久久精品aⅴ一区二区三区四区| 免费看十八禁软件| 色综合婷婷激情| 成人三级黄色视频| 香蕉国产在线看| 久久国产亚洲av麻豆专区| 久久人人精品亚洲av| 色播亚洲综合网| 男女那种视频在线观看| 自线自在国产av| 国产av不卡久久| 成人午夜高清在线视频 | 亚洲男人天堂网一区| 国产午夜精品久久久久久| 日韩高清综合在线| 色尼玛亚洲综合影院| 日韩国内少妇激情av| 搡老岳熟女国产| 免费人成视频x8x8入口观看| 亚洲国产中文字幕在线视频| 色婷婷久久久亚洲欧美| 97人妻精品一区二区三区麻豆 | 黄色片一级片一级黄色片| 在线播放国产精品三级| 亚洲va日本ⅴa欧美va伊人久久| 欧美+亚洲+日韩+国产| 亚洲熟妇中文字幕五十中出| av福利片在线| 高潮久久久久久久久久久不卡| 欧美精品啪啪一区二区三区| 婷婷精品国产亚洲av在线| 丰满的人妻完整版| 久久精品国产亚洲av高清一级| av片东京热男人的天堂| 久久国产亚洲av麻豆专区| 午夜视频精品福利| 日韩欧美三级三区| 色综合站精品国产| 国产精品自产拍在线观看55亚洲| 国产精品 国内视频| 最新在线观看一区二区三区| 国产在线精品亚洲第一网站| 免费无遮挡裸体视频| 巨乳人妻的诱惑在线观看| 淫秽高清视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 制服人妻中文乱码| 国语自产精品视频在线第100页| www日本黄色视频网| 精品免费久久久久久久清纯| 国产视频内射| 99久久99久久久精品蜜桃| 国内少妇人妻偷人精品xxx网站 | 国产精品乱码一区二三区的特点| 国产av在哪里看| 久久久久久大精品| 久久久精品国产亚洲av高清涩受| 两个人看的免费小视频| av中文乱码字幕在线| 亚洲精华国产精华精| 成人一区二区视频在线观看| 日韩欧美一区视频在线观看| 精品无人区乱码1区二区| 老司机在亚洲福利影院| 99精品欧美一区二区三区四区| 国内精品久久久久久久电影| 欧美三级亚洲精品| 日日干狠狠操夜夜爽| 男女那种视频在线观看| 91成人精品电影| 18禁裸乳无遮挡免费网站照片 | 国产一卡二卡三卡精品| 欧美中文日本在线观看视频| 国产成人欧美| 欧美黑人巨大hd| 可以在线观看毛片的网站| 丁香欧美五月| 99久久国产精品久久久| 在线观看www视频免费| 日韩视频一区二区在线观看| 法律面前人人平等表现在哪些方面| 真人做人爱边吃奶动态| 欧美zozozo另类| 最新在线观看一区二区三区| 精品卡一卡二卡四卡免费| 天天躁夜夜躁狠狠躁躁| 久久天堂一区二区三区四区| 婷婷六月久久综合丁香| 在线观看免费日韩欧美大片| 99精品在免费线老司机午夜| av天堂在线播放| 男男h啪啪无遮挡| 亚洲电影在线观看av| 日本精品一区二区三区蜜桃| 日本a在线网址| 老司机福利观看| 免费无遮挡裸体视频| 亚洲精品久久成人aⅴ小说| 国产亚洲欧美在线一区二区| 真人一进一出gif抽搐免费| 观看免费一级毛片| 日本黄色视频三级网站网址| 丰满的人妻完整版| 可以在线观看的亚洲视频| 日日爽夜夜爽网站| 午夜福利18| 两个人视频免费观看高清| 99久久综合精品五月天人人| 亚洲自偷自拍图片 自拍| www.自偷自拍.com| 久久久久久大精品| 免费在线观看黄色视频的| 夜夜躁狠狠躁天天躁| 女同久久另类99精品国产91| 女生性感内裤真人,穿戴方法视频| 一个人观看的视频www高清免费观看 | 精品电影一区二区在线| 国产又爽黄色视频| 久久精品国产亚洲av高清一级| 亚洲欧美精品综合久久99| 亚洲av成人一区二区三| 色在线成人网| 免费高清视频大片| 午夜福利视频1000在线观看| 精品久久久久久久久久免费视频| 婷婷精品国产亚洲av| 国产精品久久久人人做人人爽| 男女之事视频高清在线观看| 成人三级做爰电影| 国产黄片美女视频| 午夜福利欧美成人| 久久人妻福利社区极品人妻图片| 久久久久国产一级毛片高清牌| 欧美性长视频在线观看| 亚洲成人精品中文字幕电影| 亚洲av电影在线进入| 久久九九热精品免费| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品国产区一区二| 国产欧美日韩精品亚洲av| 麻豆成人午夜福利视频| 真人做人爱边吃奶动态| 亚洲成人久久性| АⅤ资源中文在线天堂| 真人一进一出gif抽搐免费| 在线国产一区二区在线| 日本成人三级电影网站| 村上凉子中文字幕在线| 久久久久国内视频| 亚洲男人的天堂狠狠| 少妇 在线观看| 美女高潮喷水抽搐中文字幕| 亚洲欧美一区二区三区黑人| 人妻久久中文字幕网| 欧美精品亚洲一区二区| 日韩欧美一区二区三区在线观看| 夜夜爽天天搞| 九色国产91popny在线| 神马国产精品三级电影在线观看 | 国产精品久久久人人做人人爽| 美女高潮喷水抽搐中文字幕| 真人一进一出gif抽搐免费| 日韩欧美国产在线观看| 久久精品91蜜桃| 午夜影院日韩av| а√天堂www在线а√下载| 国内精品久久久久久久电影| 免费无遮挡裸体视频| 91麻豆精品激情在线观看国产| 欧美色视频一区免费| 中文字幕av电影在线播放| 国产黄片美女视频| 波多野结衣高清作品| 美女 人体艺术 gogo| 50天的宝宝边吃奶边哭怎么回事| 一级黄色大片毛片| 亚洲精品国产精品久久久不卡| 日韩有码中文字幕| 日日摸夜夜添夜夜添小说| 999久久久精品免费观看国产| 国产蜜桃级精品一区二区三区| tocl精华| 国产99久久九九免费精品| 亚洲精品一区av在线观看| 听说在线观看完整版免费高清| 欧美中文综合在线视频| 一进一出抽搐gif免费好疼| 岛国视频午夜一区免费看| 亚洲国产欧美一区二区综合| 夜夜躁狠狠躁天天躁| av欧美777| 日本撒尿小便嘘嘘汇集6| 久久久久久免费高清国产稀缺| 亚洲aⅴ乱码一区二区在线播放 | 两个人看的免费小视频| 国产真人三级小视频在线观看| 中文字幕人妻熟女乱码| 国产精品一区二区精品视频观看| av在线天堂中文字幕| 我的亚洲天堂| av欧美777| 欧美黄色淫秽网站| 老司机靠b影院| 在线观看午夜福利视频| 欧美乱色亚洲激情| 国产亚洲欧美在线一区二区| 九色国产91popny在线| 男人舔女人下体高潮全视频| 国产成人一区二区三区免费视频网站| 国产视频一区二区在线看| 国产伦人伦偷精品视频| 一级毛片女人18水好多| 草草在线视频免费看| 首页视频小说图片口味搜索| 国产高清视频在线播放一区| 亚洲精品久久国产高清桃花| 日日摸夜夜添夜夜添小说| 亚洲美女黄片视频| 久久久精品欧美日韩精品| 91大片在线观看| 欧美又色又爽又黄视频| 久久精品国产亚洲av高清一级| 色av中文字幕| 一级片免费观看大全| 制服人妻中文乱码| 99久久久亚洲精品蜜臀av| 少妇裸体淫交视频免费看高清 | 欧美一级毛片孕妇| 久热爱精品视频在线9| 国产成人系列免费观看| 18美女黄网站色大片免费观看| 亚洲国产欧美网| 国产精品香港三级国产av潘金莲| 大香蕉久久成人网| av电影中文网址| 他把我摸到了高潮在线观看| 制服诱惑二区| 国产1区2区3区精品| 国产又色又爽无遮挡免费看| 真人一进一出gif抽搐免费| 久久久久国产精品人妻aⅴ院| 日韩欧美一区二区三区在线观看| 别揉我奶头~嗯~啊~动态视频| 老司机深夜福利视频在线观看| 日韩欧美三级三区| 成年女人毛片免费观看观看9| 久久久久久人人人人人| 18美女黄网站色大片免费观看| 久久国产亚洲av麻豆专区| 精品国产一区二区三区四区第35| 香蕉国产在线看| 色播在线永久视频| 亚洲成人国产一区在线观看| 亚洲第一欧美日韩一区二区三区| 国产精品综合久久久久久久免费| 国产成人精品无人区| 99精品在免费线老司机午夜| 美女大奶头视频| 国产精品 国内视频| 亚洲中文日韩欧美视频| 久久精品国产清高在天天线| 亚洲人成伊人成综合网2020| 亚洲电影在线观看av| 亚洲九九香蕉| 国产精品永久免费网站| 12—13女人毛片做爰片一| 欧美日韩乱码在线| 亚洲国产中文字幕在线视频| 每晚都被弄得嗷嗷叫到高潮| 午夜福利在线观看吧| 欧美不卡视频在线免费观看 | 国产精品九九99| 国产在线精品亚洲第一网站| www日本黄色视频网| 别揉我奶头~嗯~啊~动态视频| 国产乱人伦免费视频| 成人免费观看视频高清| 亚洲avbb在线观看| 欧美三级亚洲精品| 在线观看午夜福利视频| 国产免费男女视频| 欧美性猛交黑人性爽| 黄色丝袜av网址大全| 日韩精品免费视频一区二区三区| 精品久久蜜臀av无| 波多野结衣高清无吗| 麻豆av在线久日| 亚洲一区二区三区不卡视频| 在线免费观看的www视频| 亚洲欧美精品综合久久99| 自线自在国产av| av超薄肉色丝袜交足视频| 国产1区2区3区精品| 欧美黄色片欧美黄色片| 人妻久久中文字幕网| 12—13女人毛片做爰片一| 十八禁人妻一区二区| 亚洲专区国产一区二区| 丝袜美腿诱惑在线| 久久午夜综合久久蜜桃| 久久欧美精品欧美久久欧美| a在线观看视频网站| 超碰成人久久| 天堂动漫精品| 午夜久久久在线观看| 国内毛片毛片毛片毛片毛片| 色综合亚洲欧美另类图片| 亚洲免费av在线视频| 国产一级毛片七仙女欲春2 | 亚洲av中文字字幕乱码综合 | 最近最新中文字幕大全电影3 | 亚洲aⅴ乱码一区二区在线播放 | 激情在线观看视频在线高清| 亚洲精品国产精品久久久不卡| 国产精品永久免费网站| 男女午夜视频在线观看| 男人操女人黄网站| 白带黄色成豆腐渣| 成人亚洲精品一区在线观看| 亚洲天堂国产精品一区在线| 国产精品久久久av美女十八| 午夜老司机福利片| 身体一侧抽搐| 亚洲国产精品成人综合色| 超碰成人久久| a级毛片a级免费在线| 一级毛片女人18水好多| 亚洲中文av在线| 一本大道久久a久久精品| 大型av网站在线播放| 久久国产精品影院| 免费在线观看黄色视频的| 亚洲成人精品中文字幕电影| 国产片内射在线| 99精品欧美一区二区三区四区| 成人精品一区二区免费| 大型av网站在线播放| 日韩中文字幕欧美一区二区| 非洲黑人性xxxx精品又粗又长| 18禁黄网站禁片免费观看直播| 中文字幕最新亚洲高清| 女生性感内裤真人,穿戴方法视频| 国产伦一二天堂av在线观看| 日本 欧美在线| 老汉色∧v一级毛片| 很黄的视频免费| 巨乳人妻的诱惑在线观看| 制服人妻中文乱码| 亚洲av电影在线进入| 婷婷亚洲欧美| 国产成人精品久久二区二区91| 黄网站色视频无遮挡免费观看| 国产麻豆成人av免费视频| 亚洲美女黄片视频| 午夜久久久久精精品| 19禁男女啪啪无遮挡网站| 国产免费男女视频| 嫁个100分男人电影在线观看| 成人国产一区最新在线观看| 亚洲精品国产一区二区精华液| 日本精品一区二区三区蜜桃| 美国免费a级毛片| 午夜福利在线观看吧| 亚洲 欧美 日韩 在线 免费| 非洲黑人性xxxx精品又粗又长| 国产不卡一卡二| 50天的宝宝边吃奶边哭怎么回事| 91av网站免费观看| 国产精品亚洲一级av第二区| 99久久国产精品久久久| 国产主播在线观看一区二区| 国产精品野战在线观看| 亚洲欧美一区二区三区黑人| 国产一区二区三区视频了| 成年免费大片在线观看| 18禁国产床啪视频网站| 热re99久久国产66热| 一个人观看的视频www高清免费观看 | 欧美色视频一区免费| 久久久国产欧美日韩av| 九色国产91popny在线| 免费高清在线观看日韩| 国产精品99久久99久久久不卡| 在线观看免费日韩欧美大片| 好男人电影高清在线观看| 熟女少妇亚洲综合色aaa.| 88av欧美| 国产伦在线观看视频一区| 母亲3免费完整高清在线观看| 亚洲 欧美 日韩 在线 免费| 在线看三级毛片| 午夜福利18| 亚洲av电影不卡..在线观看| 一a级毛片在线观看| 亚洲人成伊人成综合网2020| 国产色视频综合| 亚洲电影在线观看av| 国产精华一区二区三区| 女同久久另类99精品国产91| 免费人成视频x8x8入口观看| 国产亚洲精品久久久久久毛片| tocl精华| 国产av在哪里看| 亚洲欧美精品综合久久99| 精华霜和精华液先用哪个| 亚洲欧美精品综合久久99| 18禁国产床啪视频网站| 中文字幕av电影在线播放| 免费看美女性在线毛片视频| 国产精品1区2区在线观看.| 真人一进一出gif抽搐免费| 欧美一区二区精品小视频在线| 两人在一起打扑克的视频| 欧美在线黄色| 色av中文字幕| 亚洲国产精品sss在线观看| 一卡2卡三卡四卡精品乱码亚洲| 美女午夜性视频免费| 欧洲精品卡2卡3卡4卡5卡区| 国产欧美日韩一区二区三| 久久国产精品人妻蜜桃| АⅤ资源中文在线天堂| 99国产精品99久久久久| 成人亚洲精品一区在线观看| 国产亚洲精品一区二区www| 免费观看人在逋| www日本在线高清视频| 母亲3免费完整高清在线观看| 国产精品亚洲一级av第二区| 欧美乱妇无乱码| 12—13女人毛片做爰片一| 久久这里只有精品19| 午夜影院日韩av| 欧美另类亚洲清纯唯美| 91麻豆精品激情在线观看国产| 国内精品久久久久精免费| 国产精品日韩av在线免费观看| 国产亚洲精品av在线| 免费看美女性在线毛片视频| 国产精品国产高清国产av| 日韩高清综合在线| 午夜视频精品福利| xxxwww97欧美| 中文字幕人成人乱码亚洲影| 中文字幕最新亚洲高清| 哪里可以看免费的av片| 精品卡一卡二卡四卡免费| 欧美成人一区二区免费高清观看 | 国产伦在线观看视频一区| 国产av又大| 午夜a级毛片| 一区二区三区国产精品乱码| 高清毛片免费观看视频网站| 丁香欧美五月| 国产1区2区3区精品| 日韩大码丰满熟妇| 97人妻精品一区二区三区麻豆 | 精品乱码久久久久久99久播| 国产精品乱码一区二三区的特点| 欧美日韩福利视频一区二区| 男女做爰动态图高潮gif福利片| 91九色精品人成在线观看| 制服诱惑二区| 婷婷六月久久综合丁香| 国产熟女xx| 欧美成狂野欧美在线观看| 美女午夜性视频免费| 久久久久久久久中文| 成人手机av| 国产精品香港三级国产av潘金莲| 精品国产国语对白av| 后天国语完整版免费观看| 一区二区日韩欧美中文字幕| 亚洲一区二区三区不卡视频| 一级作爱视频免费观看| 国产欧美日韩一区二区三| 日本熟妇午夜| 国产成人一区二区三区免费视频网站| 免费电影在线观看免费观看| 99国产精品一区二区三区| 国产成人av教育| 美女高潮喷水抽搐中文字幕| 欧美日韩精品网址| 无人区码免费观看不卡| 88av欧美| 亚洲欧美精品综合一区二区三区|