• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multimodal Data-Driven Reinforcement Learning for Operational Decision-Making in Industrial Processes

    2024-01-27 06:49:26ChenliangLiuYalinWangChunhuaYangandWeihuaGui
    IEEE/CAA Journal of Automatica Sinica 2024年1期

    Chenliang Liu , Yalin Wang ,,,Chunhua Yang ,,, and Weihua Gui

    Dear Editor,

    This letter proposes a multimodal data-driven reinforcement learning-based method for operational decision-making in industrial processes.Due to the frequent fluctuations of feedstock properties and operating conditions in the industrial processes, existing data-driven methods cannot effectively adjust the operational variables.In addition, multimodal data such as images, audio, and sensor data are still not fully used in industrial processes.To overcome the impact of feedstock condition fluctuations and effectively utilize operational conditions based on the multimodal data, a new method named feedstock-guided multimodal actor-critic (FGM-AC) is proposed.This letter incorporates the feedstock properties and multimodal data into the state space to guide the decision-making process based on a reinforcement learning (RL) framework to achieve a comprehensive human perception.The effectiveness of the proposed method is verified via extensive experiments conducted on actual industrial data.The results reinforce its potential to provide accurate and dependable strategies for decision-making.

    The process industry plays a crucial role in the economic growth of modern society, encompassing steel, petroleum, chemicals, and other fields [1].In the production process of the process industry, the optimal decision-making of operating variables is crucial for enhancing product quality and yield.However, the decision-making process is often influenced by the experience levels of on-site workers, which can significantly impact the achievement of overall production goals[2], [3].Moreover, due to the existence of physical and chemical reactions in the production process, it is difficult to establish complex nonlinear relationship models between operational variables and production metrics via mechanism analysis.Hence, optimizing operational variables remains a complex and daunting problem in process industries.

    With the increasing availability of industrial data, data-driven decision-making methods that generate decision values for operating variables have become increasingly prevalent in industrial processes.[4] developed a supervised monitoring strategy to adjust the operational variables of the industrial grinding process based on changes in boundary conditions.However, the multimodal data collected from industrial processes, such as images, audio, and sensor data, may be incomplete due to uncontrollable factors.Latent factor analysis is effective in extracting inherent latent features from incomplete data.For instance, [5] proposes a Kalman-filter-incorporated model for performing representation learning to incomplete temporal data.Reference [6] proposes a highly-efficient model for performing representation learning to incomplete industrial data with temporal dynamics.Reference [7] can extract essential non-linear features from incomplete temporal data with high computational efficiency.

    In recent years, with the development of RL, the application of RLbased methods to industrial decision-making has been widely studied [8], [9].Hence, a model-free RL algorithm presents a promising solution for industrial processes.RL is an innovative and efficient approach to obtaining optimal decision-making policies in industrial processes by interacting with agents and situations approaching realworld complexity.It is noteworthy that in industrial processes, the optimal strategy of the operational variables is conventionally designed by engineers based on historical data and experience,resembling an expert system grounded on the knowledge of operators.Analogous to expert systems, RL has the potential to continuously enhance operational decision-making policies based on reward data that update the performance metrics function.This attribute renders the application of RL algorithms in industrial processes more reasonable.

    The motivation of this letter is to develop an intelligent operational decision-making method that overcomes feedstock fluctuations and utilizes multimodal data in industrial processes.The main contributions of this letter are summarized as follows:

    1) The multimodal data of the industrial process is utilized to enhance the adaptability of the operational decision-making strategy by fully simulating the overall perception of the operators at the industrial site.

    2) To overcome the frequent fluctuations of feedstocks in the industrial processes, the feedstock conditions are introduced as the state space of the proposed algorithm to enhance its accuracy.

    3) The unique reward function and state representation are designed to better handle the complexity and specific characteristics of multimodal data in the industrial process, which enhance the performance of the proposed RL framework.

    Problem statement: The flotation process plays a significant role in the mineral processing of the process industry, which entails the separation of minerals from raw ores through physicochemical surface properties.The objective of the flotation process is to concentrate the valuable minerals from the raw ores by attaching the desired mineral particles to air bubbles.These air bubbles then ascend to the surface of the flotation cell and create a froth layer that contains the mineral concentrate.Then, the froth is collected and further processed.

    To achieve effective flotation in the industrial process, it is necessary to adjust the operating variables in real time based on the working condition fluctuations.These operating variables include the slurry level, aeration, flotation agent, and agitation rate.In the current industrial process, the values of these operating variables are determined by operators based on their experience, with the aim of achieving the desired concentrate yield and grade within the target range.However, due to frequent changes in feedstock and operating conditions, manual selection of setpoints by operators is prone to errors resulting in significant fluctuations in both concentrate output and concentrate grade.A potential solution to this issue involves circumventing the selection of setpoints based on manual experiential knowledge and instead utilizing alternative intelligent decision-making strategies.Effectively implementing such strategies has the potential to significantly enhance the utilization value of raw ore and the overall efficiency of the mineral processing process.

    Proposed operational decision-making method: In the industrial flotation process, the formulation of a rational program and the definition of states, rewards, and actions are fundamental to achieving an optimal global decision-making strategy.Inspired by the above analysis and RL algorithm, a new method called the FGM-AC algorithm is proposed for effective operational decision-making in the flotation process.This operational decision-making strategy aims to obtain relatively optimal decision-making values of the operational variables to ensure that the concentration and grade of flotation froth remain within the desired range.Fig.1 further provides a visual framework of its application in the flotation process, which mainly includes the operational decision-making system and the production environment of the flotation process.As shown in Fig.1, the multimodal data(green circle) derived from the industrial process and feedstock conditions (gray circle) are input into the operational decision-making system.Then, the corresponding product quality and yield (blue circle) are fed back to the system to calculate the resulting rewards.Finally, the decision values of the operational variables are obtained using the proposed method.

    Fig.1.Operational decision-making framework based on feedstock-guided multimodal actor-critic RL method.

    Therefore, based on industrial process mechanisms and prior knowledge, the state space of the RL algorithm includes operational conditions, feedstock conditions, and the target grade of flotation froth.It is denoted asIn particular, industrial cameras and microphones are used to collect flotation froth images and audio from actual industrial sites to assist in operational decision-making.

    To achieve this, the reward function of the proposed FGM-AC algorithm is defined as

    whereris a nonpositive scalar function,f1(a|c,x) represents the concentration of flotation froth,is a penalty function.

    The decision-making framework for operational variables, as presented in (2), can be transferred to (3) in the RL algorithm framework, which is given as

    It is worth noting that, unlike other sequential decision processes,the decision-making of operational variables in this context is not sequential since they are often interrelated and influenced by multiple factors.Therefore, the step sizeTis selected to be one in each episode.The iterative approach is frequently employed to refine the optimal decision-making policy, which can be characterized as a continuous process.Thus, the derivation of this policy is described as

    where π(a|s) is assumed as a conditional distribution belongs to Gaussian distribution.

    Considering the high-dimensional and continuous nature of the state and action spaces involved in the optimal operational decisionmaking problem, an actor network is employed using a neural networkimplementation denotedasπθ(a|s), where parameter θisused to approximate theGaussian distribution.The actor networkutilizes the state as input and produces the action as output.

    In addition, the critic networkRφ(a|s) with parameter φ is used to estimate the reward generated by πθ(a|s).The input of the critic network consists of the state and action.During the training process, the loss function of the critic network is defined as follows:

    wherer(s,a) represents the actual reward of the production data.Then,Rφ(s,a) can be replaced byr(s,a) when the training accuracy is satisfied.Hence, the policy is updated as

    Furthermore, integrating experience replays into the FGM-AC algorithm allows for repeated learning from experiential data with benefits such as reduced costs, fewer trials and errors, and faster learning speeds.In the experience replay method, a set of experiences consisting of the state, action, and immediate reward obtained during the interaction between the FGM-AC algorithm and the flotation production process is stored in the experience pool.By minimizing the loss function defined based on the criterion, the decisionmaking policy can be improved as

    wherePdenotes the experience replay pool.It should be noted that a batch gradient descent method is used to train the critic network.Subsequently, the loss function is reformulated as shown below:

    Subsequently, the FGM-AC algorithm is used to obtain the relatively optimal decision-making policy based on the realizations of actor and critic networks based on iteratively updating (7) and (8) in an alternating manner.Finally, the optimal decision-making values of the operational variables are obtained from the actor network,denoted as

    wherea? represents the optimal decision-making values of the operational variables.

    Experiments and analysis: The proposed operational decisionmaking method based on FGM-AC is applied to an actual industrial flotation process.All experimental data sets are collected from the largest potassium chloride flotation plant of a mineral processing enterprise.A total of 223 data sets were collected, including the feed ore conditions, operational conditions, operational variables, and performance metrics.A detailed description of these variables is given in Table 1.The first 180 data sets were used for training, while the remaining 43 data sets were used for validation.

    Table 1.Discription of Data Sets in the Industrial Flotation Process

    In the RL framework of the proposed FGM-AC algorithm, the state vectoris composedofthefeedstockconditionsx,operational conditionsc, and targetflotation frothgrade.Theactionvectoris obtained from the proposed operational decision-making method based on the FGM-AC algorithm.The production goal of the industrial floatation process is to maximize the flotation froth concentration while meeting the flotation froth grade specifications.Hence, the reward function is designed as

    Comparative experiments are designed to assess the effectiveness of the proposed method.Manual operations collected at industrial sites were used as a baseline for comparison.In addition, operational decision frameworks based on the deep Q-network (DQN) [10] and the standard actor critic (AC) [11] are used as additional comparisons.For unbiased and impartial experimentation, all actor networks use three-layer neural networks comprising 64 hidden-layer neurons and are trained using a learning rate of 0.01.

    The experimental results of the flotation froth performance metrics under four comparison methods are presented in Table 2 and Fig.2.Table 2 gives the minimum, maximum, and average values (in parentheses) of the performance metrics.Fig.2 intuitively depicts the trajectories of two performance metrics.It can be seen from Table 2 that the proficiency of on-site operators lies primarily in regulating the froth grade, while their control of froth concentration has no significant advantages.However, other methods based on the RL framework, including DQN, AC, and FGM-AC, have significantly improved froth concentration, which indirectly guarantees an increase in yield.Specifically, the proposed FGM-AC-based operational decision-making method increases the froth concentration by 8.51% and the froth grade by 1.43% compared to manual operation.However, improving froth concentration while maintaining froth grade in actual industrial processes is usually difficult.Hence, it also demonstrates its effectiveness in optimizing industrial processes.

    Table 2.Comparision Results of Four Methods

    Fig.2.Comparision results of froth concentrate and grade.

    Moreover, the trajectories of two operational variables are shown in Fig.3.It is evident that the mixed mother liquor flow is set higher in the three operational decision-making methods based on the RL framework.This is done by increasing the mixed mother liquor flow rate to boost the concentration of flotation froth, indirectly leading to an increase in froth production, which is consistent with the knowledge and experience of experts.Furthermore, the flotation pulp flow is maintained relatively low compared to manual operation to prevent the loss of flotation froth.

    Conclusion: This letter proposes a multimodal data-driven RLbased decision-making method for operational variables in industrial processes, which aims to mitigate the effect of feedstock conditions and exploit underutilized multimodal data.Specifically, a new FGMAC algorithm is proposed to convert the operational variable decision-making problem into an RL problem.Compared to the existing algorithms, the proposed FGM-AC algorithm makes full use of the multimodal data of the industrial sites and has a more comprehensive perception ability.Finally, the experimental results using actual data of the industrial flotation process demonstrate the favorable potential for guiding the production of industrial processes.The future work will focus on enhancing the security of online RL algorithms in industrial applications and extending our work to other industrial processes where multimodal data are available.

    Fig.3.Optimal operational variables of foud methods.

    Acknowledgment: This work was supported by the National Key Research and Development Program of China (2020YFB1713800),the National Natural Science Foundation of China (92267205), the Hunan Provincial Innovation Foundation for Postgraduate (CX2022 0267) and the Fundamental Research Funds for the Central Universities of Central South University (2022ZZTS0181).

    一进一出抽搐动态| 亚洲精品成人久久久久久| 国产午夜福利久久久久久| 精品不卡国产一区二区三区| 精品久久久久久久人妻蜜臀av| 日日摸夜夜添夜夜添小说| 亚洲午夜理论影院| 啦啦啦韩国在线观看视频| 极品教师在线视频| 女的被弄到高潮叫床怎么办 | 春色校园在线视频观看| 亚洲av熟女| 午夜免费激情av| 精品人妻熟女av久视频| 欧美色欧美亚洲另类二区| 麻豆精品久久久久久蜜桃| 欧美另类亚洲清纯唯美| 午夜激情福利司机影院| 亚洲av电影不卡..在线观看| 亚洲av成人精品一区久久| 真人做人爱边吃奶动态| 伦精品一区二区三区| 亚洲av二区三区四区| 亚洲电影在线观看av| 日本五十路高清| 亚洲美女视频黄频| 日韩欧美免费精品| 国产人妻一区二区三区在| 老司机午夜福利在线观看视频| 免费一级毛片在线播放高清视频| 国产免费一级a男人的天堂| 亚洲一级一片aⅴ在线观看| 亚洲精品影视一区二区三区av| 校园春色视频在线观看| 亚洲va日本ⅴa欧美va伊人久久| 免费看a级黄色片| 丰满乱子伦码专区| 午夜精品久久久久久毛片777| 十八禁国产超污无遮挡网站| 色哟哟哟哟哟哟| 亚洲18禁久久av| 俺也久久电影网| 国产在视频线在精品| 国产白丝娇喘喷水9色精品| 一级a爱片免费观看的视频| 国产精品自产拍在线观看55亚洲| 日韩 亚洲 欧美在线| 人妻丰满熟妇av一区二区三区| 熟女电影av网| 精品午夜福利在线看| 男插女下体视频免费在线播放| 国产精品永久免费网站| 麻豆成人av在线观看| 99热精品在线国产| 两性午夜刺激爽爽歪歪视频在线观看| 最新中文字幕久久久久| 欧美成人一区二区免费高清观看| 十八禁国产超污无遮挡网站| 国产乱人视频| 美女xxoo啪啪120秒动态图| 非洲黑人性xxxx精品又粗又长| a级一级毛片免费在线观看| 国产女主播在线喷水免费视频网站 | 亚洲av电影不卡..在线观看| 九九在线视频观看精品| 国产精品,欧美在线| 成人无遮挡网站| 日本在线视频免费播放| 亚洲一区二区三区色噜噜| 久久久久久久久久黄片| 18禁黄网站禁片午夜丰满| 成人欧美大片| 免费看a级黄色片| 亚洲av一区综合| 啦啦啦啦在线视频资源| 成年版毛片免费区| 欧美黑人欧美精品刺激| 热99re8久久精品国产| 真人做人爱边吃奶动态| 一级a爱片免费观看的视频| 两个人视频免费观看高清| 极品教师在线视频| 小说图片视频综合网站| 变态另类丝袜制服| 一级黄片播放器| 在线播放无遮挡| 人人妻,人人澡人人爽秒播| 国产精品爽爽va在线观看网站| 国产中年淑女户外野战色| 亚洲av中文字字幕乱码综合| 中文亚洲av片在线观看爽| 亚洲欧美日韩卡通动漫| 嫁个100分男人电影在线观看| 在线看三级毛片| 啪啪无遮挡十八禁网站| 国产成人av教育| 亚洲人成网站在线播| 欧美一级a爱片免费观看看| 伦精品一区二区三区| 国产真实伦视频高清在线观看 | 春色校园在线视频观看| 欧美成人免费av一区二区三区| 97热精品久久久久久| 国产v大片淫在线免费观看| 18+在线观看网站| 国产一级毛片七仙女欲春2| 三级国产精品欧美在线观看| www日本黄色视频网| 久久久久久久久大av| 国内毛片毛片毛片毛片毛片| 日本一二三区视频观看| 欧美3d第一页| 窝窝影院91人妻| 女同久久另类99精品国产91| 亚洲乱码一区二区免费版| 久久中文看片网| 69人妻影院| 国产精品美女特级片免费视频播放器| 老女人水多毛片| 欧美人与善性xxx| 午夜福利高清视频| 久久精品国产自在天天线| 97超视频在线观看视频| 床上黄色一级片| 亚洲性夜色夜夜综合| 狠狠狠狠99中文字幕| 午夜福利在线观看吧| 久99久视频精品免费| 国产精品久久电影中文字幕| a级一级毛片免费在线观看| 伊人久久精品亚洲午夜| 国产精品1区2区在线观看.| 午夜影院日韩av| 精品久久国产蜜桃| 97热精品久久久久久| 成年女人毛片免费观看观看9| 少妇的逼水好多| 午夜福利在线观看免费完整高清在 | 亚洲av免费在线观看| 深夜精品福利| 久久亚洲真实| 最近在线观看免费完整版| 全区人妻精品视频| 久久精品人妻少妇| 99久久中文字幕三级久久日本| 免费观看人在逋| 国产真实乱freesex| 亚洲人成网站高清观看| 精品福利观看| 亚洲成人精品中文字幕电影| 九色成人免费人妻av| a在线观看视频网站| 91麻豆av在线| 欧美日本视频| 日韩人妻高清精品专区| 国产精品人妻久久久影院| 久久天躁狠狠躁夜夜2o2o| 99久国产av精品| 国产黄片美女视频| 亚洲av美国av| 久久草成人影院| av天堂中文字幕网| 一级毛片久久久久久久久女| 99热这里只有精品一区| 悠悠久久av| 男女之事视频高清在线观看| 国产 一区 欧美 日韩| 国产高潮美女av| 极品教师在线免费播放| av在线老鸭窝| 91av网一区二区| 97热精品久久久久久| 日日摸夜夜添夜夜添小说| 五月伊人婷婷丁香| 给我免费播放毛片高清在线观看| 熟妇人妻久久中文字幕3abv| 国产精品一区二区三区四区久久| 夜夜夜夜夜久久久久| 成年版毛片免费区| 国产精品精品国产色婷婷| 精品99又大又爽又粗少妇毛片 | 乱系列少妇在线播放| 国产亚洲精品av在线| 99久久精品热视频| 成人鲁丝片一二三区免费| 国产精品1区2区在线观看.| 亚洲精品粉嫩美女一区| 国产在视频线在精品| 久久欧美精品欧美久久欧美| 免费观看的影片在线观看| 波多野结衣巨乳人妻| 婷婷色综合大香蕉| 国产美女午夜福利| 在线观看免费视频日本深夜| 日韩欧美免费精品| 国内精品久久久久精免费| av在线观看视频网站免费| 欧美成人一区二区免费高清观看| 国产精品亚洲美女久久久| 国产私拍福利视频在线观看| 干丝袜人妻中文字幕| 欧美日韩综合久久久久久 | 精品午夜福利视频在线观看一区| 一进一出抽搐gif免费好疼| 精品免费久久久久久久清纯| 99久久精品一区二区三区| www日本黄色视频网| 日韩高清综合在线| 国产亚洲av嫩草精品影院| 亚洲乱码一区二区免费版| 欧美日韩亚洲国产一区二区在线观看| 久久久久久久精品吃奶| 99热这里只有是精品在线观看| 国产成人a区在线观看| 亚洲av二区三区四区| 色综合亚洲欧美另类图片| 色播亚洲综合网| 亚洲美女搞黄在线观看 | 免费一级毛片在线播放高清视频| 欧美一区二区精品小视频在线| 在线免费观看的www视频| 俺也久久电影网| 性欧美人与动物交配| 免费看光身美女| 美女大奶头视频| 亚洲七黄色美女视频| 级片在线观看| 99久久久亚洲精品蜜臀av| 国产91精品成人一区二区三区| 日韩 亚洲 欧美在线| 免费无遮挡裸体视频| 精品久久久久久久久av| 尤物成人国产欧美一区二区三区| 99国产极品粉嫩在线观看| 中国美女看黄片| 午夜免费男女啪啪视频观看 | 色精品久久人妻99蜜桃| 国产伦在线观看视频一区| 国产精品国产三级国产av玫瑰| aaaaa片日本免费| 婷婷亚洲欧美| 亚洲最大成人av| 又爽又黄a免费视频| 村上凉子中文字幕在线| 别揉我奶头~嗯~啊~动态视频| 国产白丝娇喘喷水9色精品| 国产精品爽爽va在线观看网站| 亚洲天堂国产精品一区在线| avwww免费| 18禁黄网站禁片午夜丰满| 在线a可以看的网站| 日韩欧美三级三区| 蜜桃久久精品国产亚洲av| 91午夜精品亚洲一区二区三区 | 日韩精品青青久久久久久| 一区二区三区免费毛片| 91在线观看av| a级毛片免费高清观看在线播放| 直男gayav资源| 日韩精品青青久久久久久| 天美传媒精品一区二区| 直男gayav资源| 波野结衣二区三区在线| 久久亚洲精品不卡| 欧美成人a在线观看| 日韩欧美在线二视频| 国产乱人伦免费视频| 久久婷婷人人爽人人干人人爱| videossex国产| 国产 一区 欧美 日韩| 国产高清视频在线播放一区| 极品教师在线免费播放| 欧美极品一区二区三区四区| 精品不卡国产一区二区三区| 久久精品影院6| 欧美色欧美亚洲另类二区| 欧美日韩瑟瑟在线播放| 亚洲美女视频黄频| 男插女下体视频免费在线播放| 国产av麻豆久久久久久久| 毛片一级片免费看久久久久 | 日韩中字成人| 国产美女午夜福利| 国产高清视频在线播放一区| 少妇猛男粗大的猛烈进出视频 | 免费人成视频x8x8入口观看| 在线观看舔阴道视频| 国产精品一区二区三区四区久久| 老师上课跳d突然被开到最大视频| 日韩一本色道免费dvd| 国产精品久久久久久av不卡| 国产在线精品亚洲第一网站| 中文亚洲av片在线观看爽| 十八禁网站免费在线| 国产亚洲精品久久久com| 欧美高清性xxxxhd video| 在线a可以看的网站| 99热只有精品国产| 狂野欧美白嫩少妇大欣赏| 亚洲无线观看免费| 一区福利在线观看| 美女cb高潮喷水在线观看| 国产av麻豆久久久久久久| 国产精品无大码| 一边摸一边抽搐一进一小说| 中文字幕久久专区| 人人妻,人人澡人人爽秒播| 69av精品久久久久久| 天堂网av新在线| 久久久午夜欧美精品| 免费人成视频x8x8入口观看| 国产 一区 欧美 日韩| 男人舔奶头视频| 99久久无色码亚洲精品果冻| 可以在线观看毛片的网站| 亚洲国产精品sss在线观看| 亚洲精品影视一区二区三区av| 国产精品野战在线观看| 男女下面进入的视频免费午夜| 麻豆国产av国片精品| 国产伦在线观看视频一区| 午夜福利欧美成人| 久久亚洲真实| 大又大粗又爽又黄少妇毛片口| 亚洲自拍偷在线| 亚洲精品影视一区二区三区av| 99精品在免费线老司机午夜| 亚洲精品日韩av片在线观看| 最后的刺客免费高清国语| 波多野结衣巨乳人妻| 亚洲美女视频黄频| 午夜激情欧美在线| 看十八女毛片水多多多| 国产av不卡久久| 国产v大片淫在线免费观看| 国产亚洲精品久久久久久毛片| 女生性感内裤真人,穿戴方法视频| 性欧美人与动物交配| 国产极品精品免费视频能看的| 国内毛片毛片毛片毛片毛片| 乱码一卡2卡4卡精品| 男女做爰动态图高潮gif福利片| 免费在线观看成人毛片| 最好的美女福利视频网| 国产单亲对白刺激| 国产精品福利在线免费观看| 在线看三级毛片| 日韩精品青青久久久久久| 亚洲成人久久爱视频| 身体一侧抽搐| 欧美色视频一区免费| 999久久久精品免费观看国产| 成人无遮挡网站| 亚洲专区国产一区二区| 97热精品久久久久久| 亚洲精品一卡2卡三卡4卡5卡| 免费人成视频x8x8入口观看| .国产精品久久| 免费人成视频x8x8入口观看| av福利片在线观看| 桃红色精品国产亚洲av| 色哟哟哟哟哟哟| 日本欧美国产在线视频| 国产高清视频在线播放一区| 无人区码免费观看不卡| 自拍偷自拍亚洲精品老妇| 麻豆精品久久久久久蜜桃| 日日啪夜夜撸| 国产单亲对白刺激| 欧美bdsm另类| 在线播放国产精品三级| 婷婷六月久久综合丁香| 日本在线视频免费播放| 亚洲一级一片aⅴ在线观看| 观看免费一级毛片| 久久精品影院6| 日日夜夜操网爽| 长腿黑丝高跟| 免费观看精品视频网站| 欧美性猛交黑人性爽| 国产激情偷乱视频一区二区| 亚洲狠狠婷婷综合久久图片| 欧美日韩国产亚洲二区| 天美传媒精品一区二区| 国产白丝娇喘喷水9色精品| 性插视频无遮挡在线免费观看| 婷婷亚洲欧美| 日韩高清综合在线| 麻豆久久精品国产亚洲av| 国产精品嫩草影院av在线观看 | 亚洲av一区综合| 一个人看视频在线观看www免费| 深爱激情五月婷婷| 国产午夜精品论理片| 免费观看人在逋| 亚洲va日本ⅴa欧美va伊人久久| 岛国在线免费视频观看| 一个人看的www免费观看视频| 啪啪无遮挡十八禁网站| 中文亚洲av片在线观看爽| 99久久精品国产国产毛片| 欧美日韩综合久久久久久 | 九九爱精品视频在线观看| 日本黄大片高清| 最近中文字幕高清免费大全6 | 亚洲专区中文字幕在线| 亚洲精品久久国产高清桃花| 国产伦一二天堂av在线观看| 美女高潮喷水抽搐中文字幕| 久久草成人影院| 大型黄色视频在线免费观看| 久久午夜福利片| 国产成人一区二区在线| 国产一区二区亚洲精品在线观看| 一本精品99久久精品77| 18禁黄网站禁片免费观看直播| 欧美xxxx性猛交bbbb| 麻豆成人av在线观看| 日日干狠狠操夜夜爽| 亚洲国产日韩欧美精品在线观看| 亚洲av成人av| 最近最新中文字幕大全电影3| 国产精品福利在线免费观看| 亚洲av免费高清在线观看| 久久久久免费精品人妻一区二区| 久久人人爽人人爽人人片va| 别揉我奶头 嗯啊视频| 成人国产一区最新在线观看| 亚洲四区av| 欧美不卡视频在线免费观看| 久久久久久久久大av| 特大巨黑吊av在线直播| 久久精品人妻少妇| 欧美激情在线99| 在线观看舔阴道视频| 麻豆国产97在线/欧美| 国产精品一区二区免费欧美| 久久精品久久久久久噜噜老黄 | 天堂av国产一区二区熟女人妻| 五月玫瑰六月丁香| 黄色丝袜av网址大全| 欧美中文日本在线观看视频| 中文字幕av成人在线电影| 精品欧美国产一区二区三| 成年版毛片免费区| 男人舔奶头视频| 久久久久国内视频| 亚洲成人久久性| 免费在线观看成人毛片| 一a级毛片在线观看| 久久精品国产鲁丝片午夜精品 | 久久久久免费精品人妻一区二区| 69av精品久久久久久| 国产亚洲精品久久久久久毛片| 麻豆成人午夜福利视频| av在线观看视频网站免费| 人妻久久中文字幕网| 男女做爰动态图高潮gif福利片| 国产精品一区二区免费欧美| 日韩强制内射视频| 老熟妇乱子伦视频在线观看| 禁无遮挡网站| 日本五十路高清| 中文字幕免费在线视频6| 亚洲综合色惰| 麻豆一二三区av精品| 免费观看人在逋| av福利片在线观看| 久99久视频精品免费| 日韩欧美精品v在线| 日本在线视频免费播放| 亚洲内射少妇av| 亚洲,欧美,日韩| 男女视频在线观看网站免费| 99久久久亚洲精品蜜臀av| 桃色一区二区三区在线观看| 热99在线观看视频| 人妻丰满熟妇av一区二区三区| 亚洲性夜色夜夜综合| 亚洲色图av天堂| 免费观看的影片在线观看| 97碰自拍视频| 亚洲美女搞黄在线观看 | 国产欧美日韩一区二区精品| 亚洲成人精品中文字幕电影| 亚洲天堂国产精品一区在线| 露出奶头的视频| 亚洲最大成人中文| 久久久久九九精品影院| 午夜福利在线在线| 国产精品永久免费网站| 久久精品综合一区二区三区| 婷婷亚洲欧美| av女优亚洲男人天堂| 精品人妻1区二区| 日本三级黄在线观看| 亚洲内射少妇av| 日韩国内少妇激情av| 欧美xxxx黑人xx丫x性爽| 1000部很黄的大片| 91麻豆av在线| 国产亚洲91精品色在线| 亚洲无线观看免费| 俺也久久电影网| 神马国产精品三级电影在线观看| 校园春色视频在线观看| 变态另类丝袜制服| 亚洲国产精品合色在线| 久9热在线精品视频| 久久人人精品亚洲av| 亚洲不卡免费看| 国产精品三级大全| 欧美不卡视频在线免费观看| 别揉我奶头~嗯~啊~动态视频| 日本色播在线视频| 国内精品久久久久精免费| 制服丝袜大香蕉在线| 小说图片视频综合网站| 18禁黄网站禁片午夜丰满| 在线观看一区二区三区| av专区在线播放| 丝袜美腿在线中文| 久久久久久九九精品二区国产| 国产精品伦人一区二区| 97超视频在线观看视频| 特级一级黄色大片| 久久九九热精品免费| 无遮挡黄片免费观看| 男女那种视频在线观看| 国产精品精品国产色婷婷| 在线观看免费视频日本深夜| 国产视频内射| 在线免费观看的www视频| av在线亚洲专区| 桃红色精品国产亚洲av| 国产精品无大码| 亚洲av成人精品一区久久| 在线观看美女被高潮喷水网站| 日本黄色视频三级网站网址| 性欧美人与动物交配| 深夜精品福利| 天天一区二区日本电影三级| 精品一区二区三区视频在线| 97人妻精品一区二区三区麻豆| 精品久久久噜噜| 少妇裸体淫交视频免费看高清| 在线天堂最新版资源| 麻豆av噜噜一区二区三区| 我的女老师完整版在线观看| 亚洲,欧美,日韩| 午夜精品在线福利| 午夜福利欧美成人| 亚洲av中文字字幕乱码综合| 久久天躁狠狠躁夜夜2o2o| 亚洲精品在线观看二区| 久久国产精品人妻蜜桃| 精品免费久久久久久久清纯| 国产女主播在线喷水免费视频网站 | 国产高清有码在线观看视频| 国产精品综合久久久久久久免费| 色av中文字幕| 亚洲av日韩精品久久久久久密| av天堂中文字幕网| 桃色一区二区三区在线观看| 亚洲自偷自拍三级| 亚洲国产精品合色在线| 国产精品美女特级片免费视频播放器| 国产伦精品一区二区三区视频9| 国产精品人妻久久久久久| 18禁裸乳无遮挡免费网站照片| 国产av在哪里看| 亚洲av成人精品一区久久| 欧美成人性av电影在线观看| 老熟妇仑乱视频hdxx| 日本在线视频免费播放| av在线天堂中文字幕| 日本黄色视频三级网站网址| 极品教师在线视频| 国产精品日韩av在线免费观看| 亚洲经典国产精华液单| 亚洲成a人片在线一区二区| 亚洲自偷自拍三级| 色综合色国产| 久久精品国产亚洲网站| 欧美黑人欧美精品刺激| 婷婷亚洲欧美| 久久精品国产亚洲网站| 精品午夜福利在线看| 老熟妇乱子伦视频在线观看| 韩国av在线不卡| 国产成年人精品一区二区| 免费看光身美女| 亚洲成人久久爱视频| 久久久久久久久大av| 日韩国内少妇激情av| 一进一出抽搐动态| 99久久中文字幕三级久久日本| 伊人久久精品亚洲午夜| bbb黄色大片| 丰满人妻一区二区三区视频av| 老司机深夜福利视频在线观看| 真人一进一出gif抽搐免费| 热99在线观看视频| 国产午夜精品论理片| 亚洲国产色片| 久久久久久伊人网av| 伊人久久精品亚洲午夜| 国产成人av教育| 亚洲精品色激情综合| 伦精品一区二区三区| 久99久视频精品免费| 我的女老师完整版在线观看| 成人高潮视频无遮挡免费网站| 午夜激情欧美在线| 亚洲18禁久久av|