• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis and Design of Time-Delay Impulsive Systems Subject to Actuator Saturation

    2024-01-27 06:48:44ChenhongZhuXiupingHanandXiaodiLi
    IEEE/CAA Journal of Automatica Sinica 2024年1期

    Chenhong Zhu ,,, Xiuping Han ,,, and Xiaodi Li ,,

    Abstract—This paper investigates the exponential stability and performance analysis of nonlinear time-delay impulsive systems subject to actuator saturation.When continuous dynamics is unstable, under some conditions, it is shown that the system can be stabilized by a class of saturated delayed-impulses regardless of the length of input delays.Conversely, when the system is originally stable, it is shown that under some conditions, the system is robust with respect to sufficient small delayed-impulses.Moreover, the design problem of the controller with the goal of obtaining a maximized estimate of the domain of attraction is formulated via a convex optimization problem.Three examples are provided to demonstrate the validity of the main results.

    I.INTRODUCTION

    ALL actuators have limited capabilities in real control systems since practical control can only deliver limited magnitudes and rates of signals due to physical constraints.As is known to all, input saturation may cause performance deterioration and even instability [1].When input saturation is encountered, it makes sense to explore effective strategies to alleviate undesirable effects.Over the past decades many useful methods have been developed in this field.Recently, two types of methods to deal with the saturation function are widely applicable.In the first, polytopic differential inclusion is utilized to describe saturation nonlinearity [2], [3].The second main approach uses global/regional sector conditions which places saturation nonlinearity into a linear sector [4],[5].Stability analysis of nonlinear systems with input saturation has been extensively studied over the past years [6]–[9].

    Impulsive systems have been extensively investigated as they provide effective mathematical models to deal with plants with discontinuous input [10]-[13].For example,impulsive phenomenon is ubiquitous in biology [14], mechanics [15] and neural networks [16].In general, there are two main kinds of impulsive effects: impulsive control and impulsive disturbance.More specifically, the first kind of impulsive effects corresponds to the case where impulses are used to control the continuous dynamics, while the second one concerned with the case where the behaviour of the system is subject to impulsive disturbance.Over the past decades, a large amount of results concerning different impulsive effects can be found in [17]-[19].In the process of transmission and sampling of the information, time delays are always inevitable[20]–[22].For instance, in the application of neural networks,time delays in dynamical nodes expresses response time and coupling delays refer to communication delays; in a financing institution, the decision of an investor is often influenced by both current transaction information and past transaction information of other investors, as shown in [23]-[26].On the other hand, saturated impulse is ubiquitous in practical applications, such as impulsive synchronization of neural networks in which signal transmission is limited due to the inherent physical constraints and instantaneous acceleration of mechanical systems in which performance is constrained by digital implementation.However, the relevant theoretical results related to impulsive saturation has been relatively less developed [27]-[29] on account of the complex coupling effects between impulses dynamics and input saturation.Recently,existence of a solution for impulsive differential equations under saturation was studied in [27].Reference [28] developed a linear differential inclusion method for exponential stability of nonlinear impulsive system with input saturation.Impulsive control of a time-delay system under input saturation was investigated in [29].However, both continuous dynamics and discrete dynamics were required to be stable/stabilized in [29].In addition, input delay was excluded in afore mentioned works.More recently, delayed-impulses control for discrete systems with input saturation was addressed in [30], where two classes of impulses, i.e., stabilizing impulses and destabilizing impulses, were studied, respectively.Nevertheless, the estimation of the stability region was excluded in [30], which is essential to the research of saturated systems.Moreover, some limitations on impulse intervals and delays were imposed, which brings more conservativeness.Therefore, the existing literature on the problems of stability and performance analysis for nonlinear systems with delayed impulses and input saturation were not effectively solved.

    Motivated by the above discussion, we shall investigate the exponential stability of time-delay impulsive systems involving input saturation.With the help of Razumikhin-type technique, a relatively maximized estimate of the stability region is obtained by means of an optimization algorithm.The novelty and distinctiveness of the proposed results is that we remove the restriction on the length of input delays, i.e., the length of input delays has no implicit relationship with impulse intervals.Moreover we fully considered the relationship between impulsive actions, impulse intervals and stability region.

    The remainder of the paper is organized as follows.Section II introduces the model of impulsive systems under delayed impulses and input saturation.Main results including the problems of exponential stability/stabilization and estimation of the domain of attraction are investigated in Section III.In Section IV, three numerical simulations are proposed to demonstrate the applicability of our results.Section V summarizes this paper.

    II.PRELIMINARIES

    Consider the following nonlinear impulsive system with saturated delayed impulses:

    Consequently, s at(Kx) can be expressed as

    use.

    In this paper, our interests lie in stability and stabilization analysis, and the estimation of S.Specifically speaking, our objective is to establish exponential stability/stabilization criteria by Lyapunov function method and obtain a maximized estimate of S of system (1) involving saturated delayedimpulses.For this purpose, let us now employ state feedbacku(t)=Kx(t), whereK∈Rm×nis the gain matrix to be designed.

    III.MAIN RESULTS

    A. Stability and Stabilization Analysis of Nonlinear Systems Involving Delayed Impulses

    and

    then system (1) is LUES over the class Fmax(β).Moreover,M(P,?) is included inS.

    Proof: It follows from μ1+μ2<μ that there exist positive constants λ ,?,ξ andh∈(0,1-μ) such that μ1eλξ+μ2≤μ and:

    By the above analysis, according to Λ(t+θ)≤Λ(t)/μ,LML<δPand (5), we then get that

    Remark 1: The idea of the proof in Theorem 1 is based on the Razumikhin technique [34].In fact, one may find from the proof of Theorem 1 thatD+Λ(t)≤σΛ(t)(σ>0), when Λ(t+θ)≤?/μ≤Λ(t)/μ, θ ∈[-r,0].Note that σ>0 means that when the behavior of the system diverges, we stabilize the system through impulsive control.Recently, exponential stability/stabilization conditions for saturated discrete-time systems were derived in [30].However, delayed impulses, based on the saturated structure, were not essentially taken into consideration during the process of stability analysis.Moreover, it requires that the size of input delays should be less than the lower bound of the impulse intervals.In addition, we remove the restrictions imposed on the input delays and impulse intervals.

    and we have following corollary.

    Corollary 1: Given constant scalar?and matricesH,K∈Rm×n,L=diag(lj)∈Rn×n, if there existn×nmatrixP>0,n×ndiagonal matrixM>0 and positive constants γ,β,δ andμ<1, such that (3), E (P,?/μ)?L(H),LML<δP, and

    Remark 3: In general, the research on impulsive effects can be mainly divided into two categories: unstable continuous dynamics with stabilizing impulses (i.e., impulsive control)and stable continuous dynamics with destabilizing impulses(i.e., impulsive disturbance).From the perspective of impulsive control, Theorem 1 investigated the exponential stabilization problem of system (1).Note that a constraint on the upper bound of the impulsive interval length is imposed, i.e.,tk∈Fmax(β).It indicates that to guarantee the stabilization of the system, the interval length of contiguous impulse instants cannot be overlong.In addition, in the case of impulsive disturbance, Theorem 2 investigated exponential stability problem of system (1).To maintain the stability property of the system, a constraint on the lower bound of the impulsive intervals is imposed, i.e.,tk∈Fmin(β), which reveals that impulse sequences should not happen so frequently to destroy the stability of the system.

    Especially, in the absence of input delays, i.e., ξk=0, and considering a special case whereC=I, (1b) can then be replaced by

    As a special case, many applications involving impulses can be modelled by (23), such as multi-agent systems [35], network systems [36] and coupled dynamical systems [37].In what follows, we apply Theorem 2 to investigate the stability property of system (1) with impulse effects (23).

    Corollary 2: Given a constant scalar?and matricesH,K∈Rm×n,L=diag(lj)∈Rn×n, if there existn×nmatrixP>0,n×ndiagonal matrixM>0 and positive constantsγ,β,δ,μwith μ >1, such that (15), E (P,μ?)?L(H),LML<δP, and

    then system (1a) with impulse (23) is LUES over the class Fmin(β).

    B. Controller Design and Estimation of the Domain of Attraction

    In this section, we shall introduce an optimization approach to enlarge the estimation of the domain of attraction S by designing control gainKand choosing appropriate impulse sequences.

    whereg(μ)=μ if μ >1 andg(μ)=1/μ if μ ∈(0,1).

    Note that v) is bilinear since it contains two unknown decision variablesPandH, i.e., that is, it is a bilinear matrix inequality (BMI) problem.This fact makes it difficult to solve the optimization problem (24).To solve this problem, linear matrix inequality (LMI) algorithms are developed by performing a classical linearizing change of variables, which corresponds to the introduction of some auxiliary variables defined as follows.

    Let η=?/α2,Γ=KW,Z=HW,W=P-1,G=M-1, andei=then we rewrite (24) as follows:

    2) Given μ1,μ2, solve (25) for η,W,Z,Γ,Gas well as the maximal upper bound of the impulsive intervalβ.

    Remark 5: Recently, [29] studied locally asymptotic stability of time-delay impulsive systems with input saturation.Reference [38] presented some results concerning stabilization of nonlinear time-delay system subject to input saturation via Lyapunov-Krasovskii functional technique.However, the influence of impulsive actions upon the stability region was essentially neglected in their works.Moreover, the implicit connection among impulse action, system structure and the estimate of the stability region, which is crucial to saturation impulsive control, was not specified in their results.

    IV.EXAMPLES

    In this section, numerical simulations are given to show the validity of the proposed results.

    Example 1: Consider the following nonlinear time-delay system:

    where τ (t)∈[0,0.1], ξk∈[0,0.4],k∈Z+, and

    It is worth noting that in the absence of impulses, the continuous dynamics of system (26) is diverging (see Fig.1(a)).In this case, we shall stabilize system (26) with appropriate control gainKand estimate the maximal domain of attraction.Choose reference set Ξ=co{?1,-?1}, where ?1=(-0.8,0.8)T, and parameters γ=1.1,δ=0.5,μ=0.49,μ1=0.25 andμ2=0.2.Then by using the LMI Toolbox in Matlab, some feasible solutions for can be derived from the optimization problem (25).We have the admissible upper bound of β ≤0.2016, the optimum value α?=6.9881 and corresponding matrices

    By Theorem 1, for any bounded impulse input delayξ, system (26) is LUES within E (P?,1) over the class Fmax(0.2016).

    In simulations, let impulse interval β =0.2.Fig.1(b) shows the simulation result of system (26) with initial value φ(θ)=(2.4,0.8)T,(-2.7,1.6)T,(-0.7,-1.8)T,θ ∈[-0.4,0],respectively.It depicts that, under saturated impulsive control,the state trajectories starting from the initial state setE(P?,1)(the inner ellipsoid) may enter the permissive state set E(P?,1/u)?L(H) (the outer ellipsoid) keeping inside of it and finally converge to the origin.

    Fig.1.(a) State responses of system (26) in the absence of stabilizing impulses; (b) State responses of system (26) with saturated stabilizing impulses.

    Under same conditions, consider another case ofβ=0.23>0.2016 , we shall apply (25) to find the upper bound of μ1andμ2.One can verify that the maximum of μ1,μ2,μ is 0.1740,0.1859and 0.3786, respectively.By Theorem 1, for anyboundedimpulseinputdelayξ, system(26)isLUES with inE(P?′,1)overtheclassFmax(0.23) withcontrol gainK?′=(0.2616 0.1680), where

    Example 2: Consider another nonlinear system with destabilizing impulses

    where ξ ,τ ≥0 and

    Choose parameters δ=0.5, γ=1.1, μ=1.8, μ1=0.32, μ2=

    In simulations, let ξ=1, ?=0.1 and impulse interval β=0.9466, where the simulation of (27) with initial value φ(θ)=(3,3.5),θ ∈[0,1]is displayed in Fig.2.When the continuous dynamics of system (27) is stable (blue curve), it shows that the stability property can be still maintained with certain saturated delayed-impulses disturbance (red curve).

    Fig.2.State trajectory of system (27) under bounded delayed impulsive perturbation.

    Example 3: Consider a two-neuron network as follows:

    where τ =1 and

    It was shown in [39] that system (28) admits chaotic behavior withf(x(t))=(tanh(x1(t)),tanh(x2(t)))Tand initial condition φ=(0.4,0.6)T, see Fig.3(a).Reference [40] pointed out that the chaotic time-delay neural network (28) realizes synchronization under certain stabilizing impulses.In the case that the states are subjected to uncertain input delays, a novel impulsive control strategy was established to guarantee the synchronization of system (28).

    Consider the slave system

    Fig.3.(a) Chaotic phenomenon of system (28) with initial condition φ=(0.4,0.6)T; (b) State trajectory of error system (31) with initial condition φ=(2,1)Tunder saturated impulsive control.

    wherek∈Z+,ξ=0.2 andC,Dare two known parameter matrices given by

    Define synchronization error as U(·):=ν(·)-x(·).Then we have the following error system:

    wherek∈Z+,u(·)=KU(·).In fact, in view of impulsive saturation, system (30) can be modified as

    Choose parameters δ=0.1,γ=1,μ=0.8,μ1=0.3,μ2=0.4 and reference set Ξ=co{?1,-?1}, where ?1=(0.2, -0.2)T.By solving the optimization problem (25), we have the feasible solution η?=0.6944, β ≤βmax=0.364, and gain matrixK=[0.6489 0.5990].By Theorem 1 system (28) achieves exponential synchronization under saturated impulsive control over the class Fmax(0.364).In simulations, take the impulse time sequence {tk}∈Fmax(0.364) as follows:tk=0.36k-0.12,k∈Z+.State trajectoryof error system(31) with initial condition φ =(2,1)Tisdepicted in Fig.3(b).

    V.CONCLUSION

    In this paper, LUES of nonlinear systems with saturated delayed impulses have been considered.Our results show that under actuator saturation, the time-delay systems processing destabilizing continuous dynamics become stable by choosing appropriate impulsive time sequences.On the other hand,a nonlinear system subject to input saturation has robust stability with respect to sufficiently small impulsive disturbance.ThenLMI-based methods have been established for enlarging the estimation of the stability region as well as for control design in a convex optimization problem.Finally, the proposed control method was validated by simulation results.In the future, we will try to extend the obtained results to impulsive sequences satisfying average-type dwell time conditions or those with eventually uniformly bounded impulsive frequencies.

    亚洲av中文字字幕乱码综合 | 99国产综合亚洲精品| 欧美乱妇无乱码| 色尼玛亚洲综合影院| 91九色精品人成在线观看| 一进一出抽搐gif免费好疼| 亚洲成人国产一区在线观看| 1024视频免费在线观看| 精品久久久久久久久久久久久 | 天堂√8在线中文| 日韩大码丰满熟妇| 欧美大码av| 成年版毛片免费区| 国产精品久久久人人做人人爽| 免费观看人在逋| 国产熟女午夜一区二区三区| 久久 成人 亚洲| 欧美亚洲日本最大视频资源| 亚洲男人天堂网一区| 视频在线观看一区二区三区| 两个人看的免费小视频| 亚洲成人久久性| 亚洲第一青青草原| 这个男人来自地球电影免费观看| 亚洲人成网站高清观看| 999久久久精品免费观看国产| 国产欧美日韩一区二区三| 人成视频在线观看免费观看| 高清在线国产一区| 在线观看www视频免费| 精品国产美女av久久久久小说| 99久久无色码亚洲精品果冻| 国产高清videossex| 欧美日韩瑟瑟在线播放| 男女做爰动态图高潮gif福利片| 亚洲av熟女| 亚洲第一欧美日韩一区二区三区| 老熟妇乱子伦视频在线观看| 精品国产美女av久久久久小说| 午夜福利在线观看吧| 欧美中文综合在线视频| 欧美成人午夜精品| 国产欧美日韩精品亚洲av| 午夜精品在线福利| 国产1区2区3区精品| 日韩欧美 国产精品| 十八禁网站免费在线| 成人手机av| 观看免费一级毛片| 欧美一区二区精品小视频在线| 日韩三级视频一区二区三区| 日韩一卡2卡3卡4卡2021年| 国产成人精品久久二区二区免费| 亚洲成人精品中文字幕电影| 日本免费a在线| 性欧美人与动物交配| 香蕉久久夜色| 欧美av亚洲av综合av国产av| 亚洲黑人精品在线| 亚洲第一电影网av| 欧美日韩黄片免| 波多野结衣高清作品| 两性夫妻黄色片| 国产精品一区二区免费欧美| 丝袜在线中文字幕| www.999成人在线观看| tocl精华| 欧美乱码精品一区二区三区| 国产不卡一卡二| 亚洲黑人精品在线| 91老司机精品| 久久久久亚洲av毛片大全| 精品久久久久久久毛片微露脸| 99热6这里只有精品| 国产亚洲精品综合一区在线观看 | 听说在线观看完整版免费高清| 国产视频内射| 成年版毛片免费区| 黄片小视频在线播放| 给我免费播放毛片高清在线观看| 久久久久久久久中文| 午夜福利在线在线| 日韩欧美免费精品| 国内久久婷婷六月综合欲色啪| 变态另类成人亚洲欧美熟女| 亚洲av成人av| 首页视频小说图片口味搜索| 国产精品一区二区精品视频观看| 天堂动漫精品| 桃色一区二区三区在线观看| 国产精品98久久久久久宅男小说| 欧美黄色片欧美黄色片| 老司机午夜十八禁免费视频| 白带黄色成豆腐渣| 十八禁网站免费在线| 可以在线观看的亚洲视频| 男男h啪啪无遮挡| 亚洲真实伦在线观看| 久久中文字幕一级| 欧美成人免费av一区二区三区| 精品福利观看| 国产午夜精品久久久久久| 午夜老司机福利片| 757午夜福利合集在线观看| 日韩精品免费视频一区二区三区| 91国产中文字幕| 啦啦啦观看免费观看视频高清| 国内少妇人妻偷人精品xxx网站 | 亚洲av电影在线进入| 两人在一起打扑克的视频| 欧美性长视频在线观看| 亚洲av美国av| 国产视频内射| 熟女电影av网| 成在线人永久免费视频| 国内久久婷婷六月综合欲色啪| 亚洲电影在线观看av| 欧美激情极品国产一区二区三区| 久久久久国产一级毛片高清牌| 国产乱人伦免费视频| 1024香蕉在线观看| 亚洲久久久国产精品| 亚洲色图 男人天堂 中文字幕| 日日夜夜操网爽| 午夜免费成人在线视频| 麻豆av在线久日| 国产成人av激情在线播放| 精品电影一区二区在线| cao死你这个sao货| 日日摸夜夜添夜夜添小说| 国产三级在线视频| 欧美在线一区亚洲| 中文在线观看免费www的网站 | 女生性感内裤真人,穿戴方法视频| 精品熟女少妇八av免费久了| 观看免费一级毛片| 久久青草综合色| 无人区码免费观看不卡| 国产激情久久老熟女| 中文字幕精品免费在线观看视频| 人人妻,人人澡人人爽秒播| 久久香蕉国产精品| 1024手机看黄色片| 啦啦啦观看免费观看视频高清| 老熟妇乱子伦视频在线观看| 波多野结衣av一区二区av| 欧美日韩中文字幕国产精品一区二区三区| 午夜精品久久久久久毛片777| 亚洲人成网站高清观看| 亚洲国产精品合色在线| 国产亚洲精品久久久久久毛片| 不卡一级毛片| 国内揄拍国产精品人妻在线 | 亚洲五月天丁香| 欧美另类亚洲清纯唯美| 色老头精品视频在线观看| 国产成人系列免费观看| 国产精品九九99| 丝袜美腿诱惑在线| 日日干狠狠操夜夜爽| 一级作爱视频免费观看| svipshipincom国产片| 无限看片的www在线观看| 自线自在国产av| 免费高清视频大片| 日韩高清综合在线| 成熟少妇高潮喷水视频| av电影中文网址| 亚洲专区中文字幕在线| 亚洲,欧美精品.| 亚洲国产精品成人综合色| 可以免费在线观看a视频的电影网站| 一级毛片高清免费大全| av欧美777| 后天国语完整版免费观看| 亚洲一区二区三区不卡视频| 亚洲精品美女久久av网站| 在线av久久热| ponron亚洲| 精品免费久久久久久久清纯| 两个人看的免费小视频| 99re在线观看精品视频| 别揉我奶头~嗯~啊~动态视频| 搞女人的毛片| 亚洲精品国产精品久久久不卡| 久久久久国产一级毛片高清牌| 欧美三级亚洲精品| 国产伦人伦偷精品视频| 国产精品野战在线观看| 亚洲片人在线观看| 两人在一起打扑克的视频| 变态另类成人亚洲欧美熟女| 少妇裸体淫交视频免费看高清 | 成人精品一区二区免费| 亚洲第一青青草原| 欧美黄色淫秽网站| 精品国产超薄肉色丝袜足j| 亚洲九九香蕉| 窝窝影院91人妻| 97人妻精品一区二区三区麻豆 | 欧美精品亚洲一区二区| 俄罗斯特黄特色一大片| 99精品在免费线老司机午夜| 午夜福利欧美成人| 欧美日韩福利视频一区二区| 又黄又爽又免费观看的视频| 女性生殖器流出的白浆| 久久久久久久久免费视频了| 国内揄拍国产精品人妻在线 | 欧美三级亚洲精品| 人成视频在线观看免费观看| 香蕉久久夜色| 国产精品九九99| www.精华液| 18禁观看日本| 成人手机av| 两性午夜刺激爽爽歪歪视频在线观看 | 男人舔女人下体高潮全视频| 免费在线观看成人毛片| 欧美日韩黄片免| av视频在线观看入口| 免费观看精品视频网站| 午夜免费观看网址| 亚洲av电影不卡..在线观看| 国产av在哪里看| 18禁裸乳无遮挡免费网站照片 | av有码第一页| 精品第一国产精品| 日韩精品免费视频一区二区三区| 国产区一区二久久| 大型黄色视频在线免费观看| 久久九九热精品免费| 天天一区二区日本电影三级| 天天添夜夜摸| 脱女人内裤的视频| 国产精品免费一区二区三区在线| 老司机福利观看| 欧美+亚洲+日韩+国产| 这个男人来自地球电影免费观看| 婷婷亚洲欧美| 亚洲无线在线观看| 精品国产乱子伦一区二区三区| 国产真人三级小视频在线观看| 欧美日韩一级在线毛片| 亚洲精品在线美女| 18禁美女被吸乳视频| 免费在线观看日本一区| 久久久久久久久久黄片| 色尼玛亚洲综合影院| 最好的美女福利视频网| 热99re8久久精品国产| 日本成人三级电影网站| 啪啪无遮挡十八禁网站| 搞女人的毛片| 极品教师在线免费播放| 亚洲精品av麻豆狂野| 免费av毛片视频| 欧美黄色淫秽网站| 精品人妻1区二区| 久久午夜亚洲精品久久| 精品不卡国产一区二区三区| 亚洲黑人精品在线| 女性被躁到高潮视频| 国产精品爽爽va在线观看网站 | 啦啦啦免费观看视频1| 一进一出抽搐动态| 国产日本99.免费观看| 精品少妇一区二区三区视频日本电影| 久久精品国产亚洲av高清一级| 日日爽夜夜爽网站| 男女床上黄色一级片免费看| 午夜成年电影在线免费观看| 日韩 欧美 亚洲 中文字幕| 久久这里只有精品19| 欧美日韩黄片免| 中亚洲国语对白在线视频| 国产伦一二天堂av在线观看| 成人亚洲精品一区在线观看| 国内精品久久久久精免费| 亚洲精品久久成人aⅴ小说| 久久久久久亚洲精品国产蜜桃av| 男人舔奶头视频| 久久午夜亚洲精品久久| 成人特级黄色片久久久久久久| 国产成人精品久久二区二区91| 亚洲午夜理论影院| a级毛片a级免费在线| 夜夜躁狠狠躁天天躁| 久久亚洲精品不卡| 老司机福利观看| 国产三级在线视频| 亚洲成a人片在线一区二区| 老司机靠b影院| 在线观看午夜福利视频| 一级黄色大片毛片| 精品久久久久久久末码| 国语自产精品视频在线第100页| 黄频高清免费视频| 无限看片的www在线观看| 久久久国产精品麻豆| 怎么达到女性高潮| 久久精品影院6| 中文在线观看免费www的网站 | 中亚洲国语对白在线视频| 日韩国内少妇激情av| 亚洲av电影在线进入| 脱女人内裤的视频| 啦啦啦 在线观看视频| 黑人欧美特级aaaaaa片| 亚洲av美国av| 黄色a级毛片大全视频| 欧美午夜高清在线| 制服人妻中文乱码| 日韩欧美三级三区| 久久人妻av系列| 国产精品久久久人人做人人爽| 特大巨黑吊av在线直播 | 国产片内射在线| 美女午夜性视频免费| 欧美黄色淫秽网站| 在线视频色国产色| 91麻豆av在线| 精品国产一区二区三区四区第35| 午夜福利成人在线免费观看| 男人舔女人下体高潮全视频| 亚洲国产中文字幕在线视频| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲人成网站高清观看| 男女床上黄色一级片免费看| 怎么达到女性高潮| 国产午夜精品久久久久久| 国内精品久久久久精免费| 欧美激情 高清一区二区三区| 国产av一区在线观看免费| avwww免费| 久久久久久亚洲精品国产蜜桃av| 亚洲自拍偷在线| 在线看三级毛片| 亚洲av成人不卡在线观看播放网| 国产国语露脸激情在线看| 悠悠久久av| tocl精华| 国内少妇人妻偷人精品xxx网站 | 一本一本综合久久| 精品国产超薄肉色丝袜足j| 俺也久久电影网| 又紧又爽又黄一区二区| 男人的好看免费观看在线视频 | 88av欧美| 人妻丰满熟妇av一区二区三区| 岛国视频午夜一区免费看| 观看免费一级毛片| 亚洲第一青青草原| 久久国产精品人妻蜜桃| 男女床上黄色一级片免费看| 99精品在免费线老司机午夜| videosex国产| 国产熟女xx| 黑丝袜美女国产一区| 亚洲午夜理论影院| 国产黄色小视频在线观看| 超碰成人久久| 免费搜索国产男女视频| 变态另类成人亚洲欧美熟女| 在线观看免费日韩欧美大片| 亚洲精品国产区一区二| 国产精品美女特级片免费视频播放器 | 黄片播放在线免费| 老汉色av国产亚洲站长工具| 中文字幕av电影在线播放| 美女高潮到喷水免费观看| 亚洲精品av麻豆狂野| 美女高潮到喷水免费观看| 久久 成人 亚洲| 色综合站精品国产| av电影中文网址| 制服丝袜大香蕉在线| 日韩国内少妇激情av| а√天堂www在线а√下载| 国产精品乱码一区二三区的特点| 久久精品国产亚洲av高清一级| 欧美国产精品va在线观看不卡| 亚洲七黄色美女视频| 在线十欧美十亚洲十日本专区| 久久精品国产亚洲av高清一级| 亚洲一区中文字幕在线| 亚洲精品久久国产高清桃花| 国产一区二区三区视频了| 好男人在线观看高清免费视频 | 久久久久国产一级毛片高清牌| 18禁黄网站禁片免费观看直播| 特大巨黑吊av在线直播 | 啦啦啦韩国在线观看视频| 欧美激情极品国产一区二区三区| 黑人操中国人逼视频| av在线天堂中文字幕| 好看av亚洲va欧美ⅴa在| 香蕉丝袜av| 欧美性长视频在线观看| 色精品久久人妻99蜜桃| 久久精品91蜜桃| 国产av又大| 老熟妇仑乱视频hdxx| 国产成人av教育| 午夜福利在线在线| 精品日产1卡2卡| 两个人免费观看高清视频| 中文字幕最新亚洲高清| 一二三四社区在线视频社区8| 窝窝影院91人妻| 国产精品爽爽va在线观看网站 | 美女高潮到喷水免费观看| 亚洲av片天天在线观看| 51午夜福利影视在线观看| 激情在线观看视频在线高清| 高清毛片免费观看视频网站| 99久久久亚洲精品蜜臀av| 美女 人体艺术 gogo| 人人妻人人澡欧美一区二区| 成人三级做爰电影| 欧美午夜高清在线| 日日夜夜操网爽| 久久久精品欧美日韩精品| 欧美绝顶高潮抽搐喷水| 午夜福利在线观看吧| 动漫黄色视频在线观看| 亚洲人成电影免费在线| 色在线成人网| 久久伊人香网站| 精品乱码久久久久久99久播| 亚洲av中文字字幕乱码综合 | 欧美日韩精品网址| 高清毛片免费观看视频网站| 亚洲精品一卡2卡三卡4卡5卡| 日韩欧美免费精品| 国产精品一区二区精品视频观看| www.www免费av| 成人国产综合亚洲| 国产高清有码在线观看视频 | 成人国产一区最新在线观看| 精品久久蜜臀av无| 国产欧美日韩一区二区三| 高潮久久久久久久久久久不卡| 视频区欧美日本亚洲| 又黄又粗又硬又大视频| 久久天躁狠狠躁夜夜2o2o| 不卡一级毛片| 欧美色欧美亚洲另类二区| 中文字幕人成人乱码亚洲影| 久久热在线av| 免费高清在线观看日韩| 老司机在亚洲福利影院| 男人操女人黄网站| 色综合婷婷激情| 亚洲人成77777在线视频| 欧美性长视频在线观看| 黄片大片在线免费观看| 欧美+亚洲+日韩+国产| 精品久久蜜臀av无| 亚洲,欧美精品.| 99国产精品99久久久久| 日本a在线网址| 国产视频一区二区在线看| 麻豆成人午夜福利视频| 久久国产乱子伦精品免费另类| 国产精品久久电影中文字幕| 日本免费一区二区三区高清不卡| 精品熟女少妇八av免费久了| 成人三级黄色视频| 最近最新中文字幕大全电影3 | 婷婷丁香在线五月| 免费在线观看完整版高清| 精品高清国产在线一区| 人成视频在线观看免费观看| 黄色 视频免费看| 国产亚洲欧美98| 一区二区日韩欧美中文字幕| 脱女人内裤的视频| 51午夜福利影视在线观看| 国产视频一区二区在线看| 亚洲成人久久爱视频| 国产又爽黄色视频| 夜夜躁狠狠躁天天躁| 国产精品精品国产色婷婷| 欧美精品亚洲一区二区| 日韩有码中文字幕| av在线播放免费不卡| 亚洲欧美日韩高清在线视频| 免费观看人在逋| 在线观看免费视频日本深夜| 无人区码免费观看不卡| 亚洲精品久久成人aⅴ小说| 一级毛片女人18水好多| 18禁美女被吸乳视频| 一区二区三区激情视频| 国产视频内射| 国产私拍福利视频在线观看| 国产亚洲精品av在线| a级毛片在线看网站| 国产精品综合久久久久久久免费| 亚洲第一欧美日韩一区二区三区| 国产成年人精品一区二区| 91在线观看av| 在线观看午夜福利视频| 婷婷精品国产亚洲av在线| www.精华液| 欧美激情极品国产一区二区三区| 日韩精品中文字幕看吧| 99在线视频只有这里精品首页| 欧美av亚洲av综合av国产av| 黄片播放在线免费| 午夜亚洲福利在线播放| 欧美日韩黄片免| 欧美中文日本在线观看视频| 欧美黄色片欧美黄色片| 国产成+人综合+亚洲专区| 日韩高清综合在线| 男女午夜视频在线观看| 久久国产精品人妻蜜桃| 中文字幕另类日韩欧美亚洲嫩草| 亚洲三区欧美一区| 亚洲免费av在线视频| 国产精品,欧美在线| 国产亚洲精品av在线| 日韩高清综合在线| 午夜影院日韩av| 天堂影院成人在线观看| 淫秽高清视频在线观看| 精品不卡国产一区二区三区| av片东京热男人的天堂| 国产精品,欧美在线| 国产亚洲精品一区二区www| 又大又爽又粗| 91成人精品电影| 国产精品一区二区免费欧美| 男女之事视频高清在线观看| 麻豆久久精品国产亚洲av| 精品久久蜜臀av无| 亚洲熟妇熟女久久| 白带黄色成豆腐渣| 午夜激情福利司机影院| 亚洲激情在线av| 女人爽到高潮嗷嗷叫在线视频| 嫁个100分男人电影在线观看| 亚洲真实伦在线观看| 观看免费一级毛片| 男女之事视频高清在线观看| 每晚都被弄得嗷嗷叫到高潮| 午夜福利成人在线免费观看| 国产午夜精品久久久久久| 亚洲色图av天堂| 午夜老司机福利片| 国产91精品成人一区二区三区| av电影中文网址| 午夜精品在线福利| 男人舔女人下体高潮全视频| 中文字幕高清在线视频| 18美女黄网站色大片免费观看| 日本五十路高清| 观看免费一级毛片| а√天堂www在线а√下载| 国产高清视频在线播放一区| 欧洲精品卡2卡3卡4卡5卡区| 天天添夜夜摸| 国产一级毛片七仙女欲春2 | 国产av不卡久久| 手机成人av网站| 99久久国产精品久久久| 国产欧美日韩一区二区三| 一本综合久久免费| 99在线视频只有这里精品首页| av欧美777| 精品卡一卡二卡四卡免费| 嫁个100分男人电影在线观看| 亚洲国产毛片av蜜桃av| 99精品在免费线老司机午夜| 午夜福利在线观看吧| 午夜福利18| 啦啦啦韩国在线观看视频| 国产精品 国内视频| 最好的美女福利视频网| 啦啦啦观看免费观看视频高清| 亚洲黑人精品在线| 精品人妻1区二区| 黄色a级毛片大全视频| 亚洲国产精品成人综合色| 国产精品影院久久| 日本一本二区三区精品| 69av精品久久久久久| 国产精品影院久久| 黄色a级毛片大全视频| 啪啪无遮挡十八禁网站| 2021天堂中文幕一二区在线观 | 黄频高清免费视频| 亚洲专区中文字幕在线| 天堂影院成人在线观看| 亚洲av第一区精品v没综合| 好男人电影高清在线观看| 久久人妻av系列| 99国产精品一区二区蜜桃av| 99国产极品粉嫩在线观看| 欧美一级a爱片免费观看看 | www.熟女人妻精品国产| 国产亚洲精品久久久久5区| 午夜视频精品福利| 91大片在线观看| 亚洲av熟女| 亚洲真实伦在线观看| 精品国内亚洲2022精品成人| 精品久久久久久久末码| 成人三级黄色视频| 看黄色毛片网站| 久久九九热精品免费| 草草在线视频免费看| 中文字幕精品免费在线观看视频|