• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adaptive Optimal Discrete-Time Output-Feedback Using an Internal Model Principle and Adaptive Dynamic Programming

    2024-01-27 06:47:44ZhongyangWangYouqingWangandZdzisawKowalczuk
    IEEE/CAA Journal of Automatica Sinica 2024年1期

    Zhongyang Wang , Youqing Wang ,,, and Zdzis?aw Kowalczuk ,,

    Abstract—In order to address the output feedback issue for linear discrete-time systems, this work suggests a brand-new adaptive dynamic programming (ADP) technique based on the internal model principle (IMP).The proposed method, termed as IMP-ADP, does not require complete state feedback-merely the measurement of input and output data.More specifically, based on the IMP, the output control problem can first be converted into a stabilization problem.We then design an observer to reproduce the full state of the system by measuring the inputs and outputs.Moreover, this technique includes both a policy iteration algorithm and a value iteration algorithm to determine the optimal feedback gain without using a dynamic system model.It is important that with this concept one does not need to solve the regulator equation.Finally, this control method was tested on an inverter system of grid-connected LCLs to demonstrate that the proposed method provides the desired performance in terms of both tracking and disturbance rejection.

    I.INTRODUCTION

    A significant concern in control theory and implementation is output regulation.The goal of the output regulation problem is to develop a feedback controller that can monitor a set of reference inputs, reject a set of disturbances, and maintain the uniform final boundedness of the closed-loop system’s overall signals [1].Generally, a systematic and accurate mathematical model is required to solve the solutions of output regulation problem [1], [2].The study of output regulation problems has become a challenging research area in the realm of control because of the unpredictability, complexity,and diversity of the controlled object system [3], [4].

    To solve the control challenge of uncertain systems, some data-driven and adaptive control methods have been proposed.In [5], a PID-like adaptive fuzzy controller was proposed to enhance the functionality of the closed-loop system.In [6],adaptive sliding mode control was applied to the power system.In [7], the authors suggested data-driven iterative learning control.Traditional adaptive control techniques offer the desired stability of a closed-loop system while requiring no precise knowledge of the system, but they cannot ensure the closed-loop system’s best performance.In addition, learningbased methods are also valuable approaches to the control problem.For example, the authors of [8] developed a learning-based method for stable servo control using a complex learning system used to control microrobots.

    The dynamic programming principle is a basic tool for analyzing optimal control problems.Dynamic programming mainly solves the Hamilton-Jacobi-Bellman (HJB) equation[9].However, the HJB equation is generally challenging to solve numerically.The linear quadratic regulator (LQR) problem and the dynamic programming problem can both be equivalent for linear systems [10], as can the HJB equation and the algebraic Riccati equation (ARE).Still, the ARE is a nonlinear equation and a correct system model is needed to solve it.Currently, policy iteration (PI) and value iteration(VI) are the two implementation strategies available for addressing the ARE.The PI process includes policy evaluation and enhancement that are repeatedly iterated until the policy converges.The VI process includes optimal value function determination and policy improvement.The difference between the two algorithms is that the PI algorithm must be evaluated for stability, and the VI algorithm does not rely on the initial stable controller during learning.However, an accurate dynamic model is required to solve LQR.

    Adaptive dynamic programming (ADP) is considered as a useful technique for solving optimal control without a datadriven dynamic model [11]–[17].ADP is a new approximate optimization technique in optimal control that expands reinforcement learning, power systems, and turbofan engines [11],[18]–[20].

    Two categories of approaches-the feedforward-feedback(FF-FB) and internal model principle (IMP) are used to address the output regulation problem.With the feedbackfeedforward principle, the regulator equation must be solved for optimal feedforward gain, and the controller parameters are readjusted when the reference signal changes.In [21], the output regulation theory and ADP technology are combined in a novel way to solve the problem of adaptive optimal output regulation and achieve interference suppression and progressive tracking.Recently, an extension of this approach in [21]has been with great interest in the continuous-time (CT)[22]–[24] and discrete-time (DT) systems [25]–[29].

    The output regulation mentioned in the literature above is based on full state feedback.In most practical situations, it is very difficult or even impossible to measure the complete state of the system and usually requires a large number of sensors.This makes it more expensive to implement state feedback technology compared to output feedback (due to larger hardware) [30].Based on measurement feedback, the best output feedback for linear discrete systems has been proposed in[29].However, this method requires adjusting the controller when the reference signal changes.Therefore, the study of output feedback is of practical significance.

    Here, a brand-new ADP technique is provided to address the output feedback issue of linear DT systems with external disturbances.The output control problem is transformed into the problem of stabilizing an enhanced system according to the IMP [31].Then, an optimal model-free controller IMPADP based on the PI and VI algorithm is developed.Keep in mind that the planned output feedback control does not require the system’s whole state information.The current learning algorithm’s convergence to its ideal value is then tested.

    To the authors’ best knowledge, the main contributions of this paper are as follows:

    1) In [31], the authors proposed an adaptive optimal control method based on IMP for controlling multi-agent systems.However, this method requires access to all system state information.

    2) In [27], the authors proposed an adaptive optimal output feedback for linear discrete systems, which guarantees trajectory tracking.Although their method uses inputs and outputs to design the controller, it is necessary to solve the regulator equation here to obtain the feedforward gain.In addition,when the reference signal or external disturbance changes, the feedforward gain must be recalculated to keep the system stable.

    3) In [29], the authors proposed an adaptive optimal control with output feedback for linear discrete systems.Unlike optimal tracking control [27], their method directly determines the control gain without the need to solve the controller equation.However, when the reference input or external disturbance changes, the robustness of the system deteriorates due to the use of more delayed data.

    4) In [28], the authors proposed an optimal control with fixed point tracking for linear discrete systems.Their method can track more general signals, rather than being limited to tracking fixed points, such as sine or cosine signals with varying amplitudes.

    At the end of this introduction, the contribution of this study can also be briefly summarized as follows.First, the current driver can be successfully implemented using only input and output.Second, our method avoids solving the regulator equation.Third, this method does not require adjustment of the regulator in the event of a change in the reference input or external disturbances.

    The remaining sections of this study are structured as follows.Section II discusses the linear optimal output feedback problem, the IMP, and LQR.Model-free LQR by measurement feedback using the PI and VI algorithms is discussed in Section III to determine the best controller for an unknown dynamic model.In Section IV, the simulation results are provided to show that the suggested strategy works.Section V presents conclusions and further research.

    Definition 1[21]:Consider a symmetric matrix,Q∈Rm×m,an asymmetric matrix,X∈Rn×m, arbitrary matrices,A∈Rn×m,B∈Rm×q, andC∈Rq×r, a vector,z(t)∈Rn, as well as the following vectors defined as:

    II.OUTPUT FEEDBACK PROBLEM FOR LINEAR DT SYSTEMS

    A. Problem Description

    Consider the next linear DT system

    The exo-system signalv(k) and reference trajectoryyd(k)can be expressed as

    It can be directly shown that under the controller (3)

    Also, it is clear that if a system is stable, its inputs and states will exhibit the same dynamics as an external signal.

    B. Internal Model Principle

    The characteristic equation ofSis

    Hence, one has

    We define combined variables

    Then, as a result

    Define γ(k) = [e(k-q),e(k-q+ 1),...,e(k- 1)]T∈Rq.Then, we have

    Hence

    where

    Integrating (8) and (10), a new linear DT system can be obtained

    The ideal feedback controller is obtained in accordance with Problem 1 by transforming the optimal output regulation problem into the optimal stabilization problem based on (11).

    Problem 1:

    whereQ=QT≥0,R=RT>0, andobservable.

    The ideal controller can be stated as follows using linear optimal control:

    C. Linear Quadratic Regulator

    Problem 1 corresponds to the LQR problem, which is the only answer to the following algebraic Riccati equation(ARE), according to linear optimum control theory:

    wherePT=P≥0.

    Equation (14) is a nonlinear equation, difficult to solve directly.A PI algorithm (see Algorithm 1) and VI algorithm(see Algorithm 2) can be used to iteratively solve the LQR problem if the system matrix is known.

    Algorithm 2 Model-based LQR using VI algorithm P0=PT0 >0 j=0 τ>0 Step 1: Choose the initial value matrix , let and.Step 2: Find the value matrix by P j+1 Pj+1= ˉAT P j ˉA+ ˉCT QˉC- ˉAT PjˉB(R+ ˉBT P jˉB)-1ˉBT P j ˉA.(17)Step 3: Repeat with until for.ˉK j j ←j+1 ||P j-Pj-1||<τ j ≥1 Step 4: Find the control matrix byˉKj=(R+ ˉBT PjˉB)-1ˉBT Pj ˉA.(18)

    III.DESIGN OF ADAPTIVE OPTIMAL CONTROLLER BASED ON ADP

    Algorithms 1 and 2 require knowledge of the system matricesAˉ andBˉ.Here, we developed an adaptive optimal controller for an unidentified dynamic model based on data.

    A. State Reconstruction

    In this subsection, information from measurement inputs and outputs is used to reconstruct the full state.The authors[34] designed an input and output observer to reconstruct the full state of linear CT systems.In this study, we apply their method to reconstruct the full state of linear DT systems.

    Theorem 1: Consider the state as

    are constructed as

    where

    The aforementioned equation can be expanded as follows:

    B. Adaptive Optimal Control via Output-Feedback Using PI Algorithm

    Taking anarbitrary initial control strategyu′(k) and applying it to system (11)

    withuˉ′(k)=u′(k)+a1u′(k-1)+···+aqu′(k-q), we have

    By (36), (40) can be rewritten as follows:

    where Pj=MT PjM , and the matrix Kj+1results from

    Given a positive integerk0and a sufficiently large positive integers, data is collected online:ψ(k0)toψ(k0+s), anduˉ′(k0)touˉ′(k0+s).The following matrix linear equation form is represented by (41):

    where

    The model-free LQR via output-feedback using the PI algorithm is shown as Algorithm 3.

    Algorithm 3 Model-free LQR via output-feedback using the PI algorithm Step 1: Given a stable initial control gain , , and.Step 2: Collect the online data: Ψ and Φ.Pj ˉBTj PˉBj MT(ˉA- ˉBˉK j)T PjˉB K j+1 Step 3: Solve , , and by (43) and K0 j ←0 τ>0 by Kj+1=(R+ ˉBT PjˉB)-1×(ˉBT Pj(ˉA- ˉBˉK j)M+ ˉBT P jˉBK j).(44)Step 4: Repeat with until for.K j ←j+1 ||P j-P j-1||<τ j ≥1 Step 5: Find the control matrix by K?=Kj.(45)

    C. Adaptive Optimal Control via Output-Feedback Using VI Algorithm

    The PI algorithm requires an initial stability test.This subsection uses the VI algorithm to design the controller.Under an initial controlu′(k), we have

    By (36), (46) can be rewritten as follows:

    The matrices Pj+1and Kjcan be formed as

    where

    The model-free LQR via output-feedback using the VI algorithm is shown as Algorithm 4.

    Algorithm 4 Model-free LQR via output-feedback using the VI algorithm P0=PT0 >0 j,q ←0 τ>0 Step 1: Choose , , and.Step 2: Collect online data Γ and.MT(ˉAT Pj ˉA+ ˉCT QˉC)M ˉBT P jˉB MT ˉAT PjˉB Pj+1?Step 3: Solve , , and by (49)and by Pj+1=MT(ˉAT P j ˉA+ ˉCT QˉC)M-MT ˉAT PjˉB(R+ ˉBT PjˉB)-1ˉBT Pj ˉAM.(50)Step 4: Repeat with until for.j ←j+1 ||P j-P j-1||<τ j ≥1 Step 5: Find the control matrix by K j+1 Kj+1=(R+ ˉBT Pj+1ˉB)-1ˉBT Pj+1 ˉAM.(51)

    Remark 2: The condition so that (43) and (49) have unique solutions is that the matrix Ψ and Γ column are full, i.e.,

    The ADP control block diagram based on output-feedback is shown in Fig.1.

    Fig.1.ADP control block diagram based on output-feedback.

    D. Stability and Convergence Analysis of ADP Algorithm

    IV.SIMULATION ANALYSIS

    We use an LCL grid-connected inverter system as an example to demonstrate how well the suggested approach works for the linear optimal output feedback problem.The structure of the LCL grid-connected inverter is shown in Fig.2.

    Fig.2.Topology diagram of the LCL grid-connected inverter.

    In thisexample, the system sampling time is set toT=10-4sec.The system’s DT form can be written as [29]

    The internal model matrices of the external matrixSare given as

    The system matrices by the IMP are

    The optimal control gain obtained by solving the LQR problem directly is characterized by

    The approximate optimal control gain obtained by the PI algorithm is represented as

    The approximate optimal control gain obtained by the VI algorithm is given by

    In order to verify the effectiveness and show the superiority of the proposed IMP-ADP algorithm, a comparative simulation analysis was carried out using also other methods:Method 1 [31], Method 2 (FF-FB) [21], Method 3 [27],Method 4 [29], with our approach (IMP-ADP) as Method 5.

    Fig.3.Convergence of the optimal control matrix {||Kj-K?||} and value matrix { ||P j-P?||} using the PI algorithm.

    Fig.4.Convergence of the optimal control matrix {||Kj-K?||} and value matrix { ||P j-P?||} using the VI algorithm.

    Fig.5.Comparative simulation results for system output and reference trajectory related to different control Methods 1-5.

    The reference trajectoriesyd(k) and the outputy(k) are shown in Fig.5.For the IMP-ADP method, the designed signalu(k) properly controls the outputy(k) in order to asymptotically track the reference trajectoryyd(k), which changes from 10sin(100πt+π/6) to 3 0sin(100πt+π/6) int=0.04 s.Despite changing the amplitude of the mains voltage from 150 V to 220 V int=0.08 s, the output of they(k) circuit can still quickly follow the intended trajectoryyd(k) without adjusting the regulator.In this way, the proposed algorithm was verified in terms of effectiveness.

    Considering Method 1, Method 5 represents a state feedback based on the IMP.The results indicate that the designed regulator with output feedback can be equivalent to a regulator with state feedback.

    Let’s consider Methods 2 and 3, which involve solving the regulator equation.When the reference input or grid voltage changes, the system output cannot match the reference input without adjusting the controller accordingly.This is a limitation of the two methods.

    Comparing Methods 5 and 4, it can be seen that although Method 4 can also track the reference signal, Method 5 (IMPADP) has better resistance to changes in the reference signal or grid voltage.

    V.CONCLUSIONS

    In this study, we looked at the issue of input and output information measurement-based linear optimal output feedback using the IMP concept and ADP.To mitigate the impact of multi-observer operation on the system’s dynamic performance, this study used the technique of output feedback.In addition, we took into account the PI and VI algorithms to discover the best controller without utilizing any system model data.The simulated example demonstrated the suggested algorithm’s effectiveness under widely held assumptions.Future research will focus on non-linear systems’ ideal output feedback.

    国产精品,欧美在线| 狠狠狠狠99中文字幕| 午夜激情av网站| 欧美一级毛片孕妇| 91成年电影在线观看| 日本免费一区二区三区高清不卡| 日本三级黄在线观看| 69av精品久久久久久| 99国产综合亚洲精品| 亚洲精品中文字幕在线视频| 最近最新中文字幕大全电影3 | www.999成人在线观看| 国产视频一区二区在线看| svipshipincom国产片| 亚洲七黄色美女视频| 天天躁狠狠躁夜夜躁狠狠躁| 中文资源天堂在线| xxxwww97欧美| 国产黄a三级三级三级人| 91字幕亚洲| 亚洲中文字幕一区二区三区有码在线看 | 成人午夜高清在线视频 | 国产黄色小视频在线观看| 天天躁夜夜躁狠狠躁躁| 丁香六月欧美| 国产真实乱freesex| 精品乱码久久久久久99久播| 色婷婷久久久亚洲欧美| 在线看三级毛片| 女性生殖器流出的白浆| 侵犯人妻中文字幕一二三四区| 欧美丝袜亚洲另类 | 国产午夜精品久久久久久| 亚洲专区字幕在线| 一进一出抽搐动态| 搡老妇女老女人老熟妇| 2021天堂中文幕一二区在线观 | 男女午夜视频在线观看| 日日夜夜操网爽| 久久九九热精品免费| 国产私拍福利视频在线观看| 欧美日韩瑟瑟在线播放| 狂野欧美激情性xxxx| 国产亚洲精品久久久久5区| 99国产极品粉嫩在线观看| 精品久久久久久久人妻蜜臀av| 欧美色视频一区免费| 美女高潮喷水抽搐中文字幕| 一级黄色大片毛片| 亚洲人成网站高清观看| 欧美成狂野欧美在线观看| 免费高清视频大片| 免费在线观看影片大全网站| 黄色毛片三级朝国网站| 久久精品国产99精品国产亚洲性色| 搡老妇女老女人老熟妇| 久久久久久久久久黄片| 日韩免费av在线播放| 91在线观看av| 中出人妻视频一区二区| 久久久久久久精品吃奶| 欧美午夜高清在线| 亚洲一区二区三区色噜噜| 身体一侧抽搐| 亚洲 欧美 日韩 在线 免费| 亚洲av片天天在线观看| 精品熟女少妇八av免费久了| 免费人成视频x8x8入口观看| 亚洲国产精品sss在线观看| 亚洲最大成人中文| 精品无人区乱码1区二区| 国产av在哪里看| 一本综合久久免费| 色尼玛亚洲综合影院| 制服诱惑二区| 香蕉丝袜av| 久久天堂一区二区三区四区| 丝袜在线中文字幕| 亚洲国产日韩欧美精品在线观看 | 在线观看免费午夜福利视频| 草草在线视频免费看| 无遮挡黄片免费观看| 黄色成人免费大全| 国产99久久九九免费精品| 桃色一区二区三区在线观看| 欧美日韩乱码在线| 久久天堂一区二区三区四区| 他把我摸到了高潮在线观看| 不卡一级毛片| 亚洲中文日韩欧美视频| 国产区一区二久久| 国产精品久久久久久人妻精品电影| 欧美午夜高清在线| 成人av一区二区三区在线看| 男男h啪啪无遮挡| 午夜精品久久久久久毛片777| 免费看美女性在线毛片视频| 久久精品国产亚洲av香蕉五月| 日本免费一区二区三区高清不卡| 久久久久国产精品人妻aⅴ院| 欧美久久黑人一区二区| 日韩一卡2卡3卡4卡2021年| 免费搜索国产男女视频| 国产一区二区在线av高清观看| 亚洲国产精品999在线| 中文亚洲av片在线观看爽| 色综合婷婷激情| 亚洲第一电影网av| 一进一出抽搐动态| 麻豆av在线久日| 欧美性猛交黑人性爽| 久久精品国产亚洲av香蕉五月| 自线自在国产av| 欧美精品亚洲一区二区| 国产1区2区3区精品| √禁漫天堂资源中文www| 国产精品美女特级片免费视频播放器 | 亚洲五月婷婷丁香| 精品国产乱码久久久久久男人| 久久精品国产清高在天天线| 午夜免费成人在线视频| 久久国产精品影院| 久久精品亚洲精品国产色婷小说| 久久久久久久久免费视频了| 91麻豆av在线| 国产国语露脸激情在线看| 99久久无色码亚洲精品果冻| 国产一区二区在线av高清观看| 两个人免费观看高清视频| 自线自在国产av| 侵犯人妻中文字幕一二三四区| 热re99久久国产66热| 国产精品美女特级片免费视频播放器 | 国产精品久久久久久精品电影 | 亚洲色图 男人天堂 中文字幕| 亚洲一码二码三码区别大吗| 91成年电影在线观看| 美女高潮喷水抽搐中文字幕| 美女午夜性视频免费| 日本免费一区二区三区高清不卡| 黑人巨大精品欧美一区二区mp4| 欧美日本视频| 99精品在免费线老司机午夜| 国内久久婷婷六月综合欲色啪| 国内精品久久久久久久电影| 欧美国产日韩亚洲一区| 老司机福利观看| 亚洲成国产人片在线观看| 午夜福利成人在线免费观看| 特大巨黑吊av在线直播 | 美女国产高潮福利片在线看| 免费一级毛片在线播放高清视频| 91大片在线观看| 美女扒开内裤让男人捅视频| 精品一区二区三区四区五区乱码| 国产av又大| 一边摸一边抽搐一进一小说| 亚洲av熟女| 久久人妻福利社区极品人妻图片| 美女高潮到喷水免费观看| 香蕉av资源在线| avwww免费| 国产精品久久久av美女十八| 嫩草影视91久久| 不卡一级毛片| 两个人看的免费小视频| 亚洲avbb在线观看| 精品久久蜜臀av无| 两人在一起打扑克的视频| 国产国语露脸激情在线看| 最近在线观看免费完整版| 视频在线观看一区二区三区| 亚洲七黄色美女视频| 最近在线观看免费完整版| 可以在线观看毛片的网站| 国产高清视频在线播放一区| 中文字幕人妻丝袜一区二区| 免费观看人在逋| 国内精品久久久久久久电影| 人人妻人人看人人澡| 亚洲成人久久性| 亚洲男人天堂网一区| www.www免费av| 国产亚洲欧美精品永久| 看黄色毛片网站| av天堂在线播放| 99在线人妻在线中文字幕| 日韩大码丰满熟妇| 国内久久婷婷六月综合欲色啪| 日本成人三级电影网站| av欧美777| 日韩视频一区二区在线观看| 久9热在线精品视频| 国产成人啪精品午夜网站| 亚洲午夜理论影院| 不卡一级毛片| 国产91精品成人一区二区三区| 亚洲五月天丁香| 国产精品精品国产色婷婷| 亚洲一码二码三码区别大吗| 嫁个100分男人电影在线观看| 久久午夜亚洲精品久久| 国产成人av激情在线播放| 亚洲精品中文字幕在线视频| 视频区欧美日本亚洲| 亚洲成人久久爱视频| 国产激情偷乱视频一区二区| 久久久久久人人人人人| 1024香蕉在线观看| 麻豆av在线久日| 首页视频小说图片口味搜索| 国产精品一区二区免费欧美| 老熟妇乱子伦视频在线观看| 亚洲全国av大片| 亚洲人成77777在线视频| xxxwww97欧美| 欧美乱码精品一区二区三区| 男女午夜视频在线观看| 精品免费久久久久久久清纯| 色尼玛亚洲综合影院| 婷婷精品国产亚洲av| 18禁国产床啪视频网站| 亚洲精品国产精品久久久不卡| 亚洲国产欧洲综合997久久, | 久久性视频一级片| 俺也久久电影网| 视频在线观看一区二区三区| 老鸭窝网址在线观看| 亚洲国产欧美一区二区综合| 两个人看的免费小视频| 免费在线观看影片大全网站| 日本精品一区二区三区蜜桃| 欧美日韩一级在线毛片| 日日夜夜操网爽| 麻豆久久精品国产亚洲av| 宅男免费午夜| 精品久久久久久久末码| 欧美日韩亚洲国产一区二区在线观看| 手机成人av网站| 99国产极品粉嫩在线观看| 国产午夜精品久久久久久| 日本 欧美在线| 国产精品永久免费网站| 久热爱精品视频在线9| 欧美在线黄色| 中文字幕人妻丝袜一区二区| 亚洲精品美女久久久久99蜜臀| 久久亚洲真实| 99热6这里只有精品| 九色国产91popny在线| 天天一区二区日本电影三级| 欧美一区二区精品小视频在线| 国内揄拍国产精品人妻在线 | 俺也久久电影网| 精品久久蜜臀av无| 人人妻人人看人人澡| 国产视频一区二区在线看| 亚洲真实伦在线观看| 久久天堂一区二区三区四区| 99riav亚洲国产免费| 夜夜躁狠狠躁天天躁| 精品国产亚洲在线| 日本 av在线| 亚洲av日韩精品久久久久久密| 亚洲色图 男人天堂 中文字幕| www.熟女人妻精品国产| 成年版毛片免费区| 天天躁狠狠躁夜夜躁狠狠躁| 在线免费观看的www视频| 精品国产乱码久久久久久男人| 欧美丝袜亚洲另类 | 黑人欧美特级aaaaaa片| 亚洲精品一卡2卡三卡4卡5卡| av中文乱码字幕在线| 国产成人精品久久二区二区91| 欧美一级毛片孕妇| 精品少妇一区二区三区视频日本电影| 欧美午夜高清在线| 嫁个100分男人电影在线观看| 男女那种视频在线观看| 少妇熟女aⅴ在线视频| 美女免费视频网站| 日本黄色视频三级网站网址| 好男人电影高清在线观看| 亚洲国产欧洲综合997久久, | 欧美激情久久久久久爽电影| 国产av一区二区精品久久| 日韩高清综合在线| 免费在线观看日本一区| 亚洲一区中文字幕在线| 亚洲国产精品999在线| 欧美激情 高清一区二区三区| 中国美女看黄片| 性欧美人与动物交配| 亚洲欧美精品综合一区二区三区| 少妇被粗大的猛进出69影院| 欧美成人性av电影在线观看| 99热这里只有精品一区 | 午夜福利欧美成人| 大型av网站在线播放| 成人国语在线视频| 国产精品亚洲美女久久久| 亚洲精品一区av在线观看| 男女视频在线观看网站免费 | 亚洲欧美精品综合久久99| 成人永久免费在线观看视频| 免费看a级黄色片| 国产精华一区二区三区| 在线观看免费视频日本深夜| 亚洲五月天丁香| 老司机深夜福利视频在线观看| 亚洲熟妇中文字幕五十中出| 久9热在线精品视频| 精品一区二区三区av网在线观看| 一级黄色大片毛片| 国产精品久久久av美女十八| 亚洲av第一区精品v没综合| 国内久久婷婷六月综合欲色啪| 中文资源天堂在线| 午夜影院日韩av| 精品国产乱码久久久久久男人| 国产97色在线日韩免费| 婷婷亚洲欧美| 国产欧美日韩一区二区三| 欧美色视频一区免费| 熟妇人妻久久中文字幕3abv| 国产免费av片在线观看野外av| 女警被强在线播放| 手机成人av网站| 亚洲精品美女久久av网站| 亚洲成国产人片在线观看| 国产精品亚洲一级av第二区| 在线天堂中文资源库| 亚洲一区高清亚洲精品| av免费在线观看网站| 女生性感内裤真人,穿戴方法视频| 精品午夜福利视频在线观看一区| 精品国产亚洲在线| 久久中文看片网| 啦啦啦免费观看视频1| 黄片大片在线免费观看| 麻豆一二三区av精品| av欧美777| 国产亚洲av嫩草精品影院| 一本综合久久免费| 美女高潮喷水抽搐中文字幕| 国产国语露脸激情在线看| 一级a爱视频在线免费观看| www.999成人在线观看| 成人国语在线视频| 一进一出抽搐gif免费好疼| 午夜福利在线观看吧| 在线观看舔阴道视频| 久热这里只有精品99| 香蕉国产在线看| 久久久久精品国产欧美久久久| ponron亚洲| 亚洲熟妇中文字幕五十中出| 性欧美人与动物交配| 亚洲国产高清在线一区二区三 | 99久久无色码亚洲精品果冻| 窝窝影院91人妻| 男女下面进入的视频免费午夜 | 一级毛片高清免费大全| 久热这里只有精品99| 午夜老司机福利片| 国产精品99久久99久久久不卡| 亚洲av日韩精品久久久久久密| 欧美中文综合在线视频| 亚洲 国产 在线| 一个人观看的视频www高清免费观看 | 国产男靠女视频免费网站| 人人妻人人澡人人看| 嫩草影视91久久| 午夜老司机福利片| 亚洲美女黄片视频| 少妇的丰满在线观看| 亚洲自拍偷在线| www国产在线视频色| 丁香欧美五月| √禁漫天堂资源中文www| 一区二区日韩欧美中文字幕| 制服人妻中文乱码| АⅤ资源中文在线天堂| 看黄色毛片网站| 久久久精品欧美日韩精品| 国产熟女xx| 琪琪午夜伦伦电影理论片6080| 两人在一起打扑克的视频| 女警被强在线播放| 国产亚洲av嫩草精品影院| 中文字幕高清在线视频| 婷婷精品国产亚洲av在线| 国产一区二区三区在线臀色熟女| 美女扒开内裤让男人捅视频| 成人亚洲精品av一区二区| xxxwww97欧美| 国产伦在线观看视频一区| 日本 av在线| 日韩高清综合在线| 韩国av一区二区三区四区| 视频区欧美日本亚洲| 淫妇啪啪啪对白视频| 少妇被粗大的猛进出69影院| 久久久久国产一级毛片高清牌| 久久久国产欧美日韩av| 麻豆国产av国片精品| 成人特级黄色片久久久久久久| 国产成人精品久久二区二区91| 中文字幕av电影在线播放| 午夜福利在线在线| 日韩大码丰满熟妇| 一本大道久久a久久精品| 久久精品aⅴ一区二区三区四区| 中文字幕人妻熟女乱码| 老熟妇乱子伦视频在线观看| 亚洲,欧美精品.| 91麻豆av在线| 国产男靠女视频免费网站| 男人操女人黄网站| 亚洲精品在线美女| 国产精品久久久久久人妻精品电影| 好看av亚洲va欧美ⅴa在| 久久久久久国产a免费观看| 亚洲人成网站高清观看| 欧美性长视频在线观看| 国产黄a三级三级三级人| 精品久久久久久久久久免费视频| 一进一出好大好爽视频| 国产久久久一区二区三区| 美女免费视频网站| 成人国语在线视频| 波多野结衣高清无吗| 无人区码免费观看不卡| 午夜视频精品福利| 视频在线观看一区二区三区| 手机成人av网站| 亚洲七黄色美女视频| 久久久久精品国产欧美久久久| 精华霜和精华液先用哪个| 男女之事视频高清在线观看| 美女扒开内裤让男人捅视频| 国产精品久久久久久亚洲av鲁大| e午夜精品久久久久久久| 亚洲 国产 在线| 免费在线观看亚洲国产| 自线自在国产av| 国产成人av教育| 老汉色∧v一级毛片| 免费在线观看黄色视频的| 每晚都被弄得嗷嗷叫到高潮| 在线看三级毛片| 男女午夜视频在线观看| 成熟少妇高潮喷水视频| 黄色女人牲交| 夜夜躁狠狠躁天天躁| 深夜精品福利| 日本一本二区三区精品| 色综合站精品国产| 老司机深夜福利视频在线观看| 国内毛片毛片毛片毛片毛片| 精品福利观看| 成人手机av| 999久久久国产精品视频| 99久久精品国产亚洲精品| 一级a爱片免费观看的视频| 国产激情久久老熟女| 国产私拍福利视频在线观看| 国产精品电影一区二区三区| 俄罗斯特黄特色一大片| 757午夜福利合集在线观看| 一个人观看的视频www高清免费观看 | 久久亚洲精品不卡| 亚洲人成网站高清观看| 视频区欧美日本亚洲| 美国免费a级毛片| 亚洲一码二码三码区别大吗| 亚洲中文字幕日韩| 国产成人av教育| www日本黄色视频网| 黄色丝袜av网址大全| 国产成年人精品一区二区| 麻豆一二三区av精品| 久久人妻福利社区极品人妻图片| 欧美日韩精品网址| 后天国语完整版免费观看| 男人舔奶头视频| 免费看日本二区| 亚洲片人在线观看| 50天的宝宝边吃奶边哭怎么回事| 丝袜美腿诱惑在线| 一级a爱视频在线免费观看| 亚洲色图 男人天堂 中文字幕| 男人舔奶头视频| 美女扒开内裤让男人捅视频| АⅤ资源中文在线天堂| 女人爽到高潮嗷嗷叫在线视频| 69av精品久久久久久| 亚洲 欧美 日韩 在线 免费| 非洲黑人性xxxx精品又粗又长| 97人妻精品一区二区三区麻豆 | 午夜福利18| 亚洲国产精品久久男人天堂| 啦啦啦 在线观看视频| 国产伦在线观看视频一区| 国产精品 国内视频| 久久婷婷成人综合色麻豆| 亚洲成a人片在线一区二区| 亚洲片人在线观看| 丁香六月欧美| 亚洲七黄色美女视频| 午夜两性在线视频| 成年免费大片在线观看| 91麻豆精品激情在线观看国产| 一级毛片精品| 一个人观看的视频www高清免费观看 | x7x7x7水蜜桃| 日本 av在线| 窝窝影院91人妻| 男女之事视频高清在线观看| 久久久久久免费高清国产稀缺| x7x7x7水蜜桃| 国产精品久久久久久精品电影 | 国产精品精品国产色婷婷| 国产精品1区2区在线观看.| 别揉我奶头~嗯~啊~动态视频| 波多野结衣av一区二区av| 午夜久久久久精精品| 视频区欧美日本亚洲| 国产精品99久久99久久久不卡| 久久香蕉激情| 啦啦啦免费观看视频1| 国产精品一区二区免费欧美| 俄罗斯特黄特色一大片| 日本黄色视频三级网站网址| 99久久精品国产亚洲精品| 香蕉av资源在线| 久久久久久久久中文| 国产精品久久视频播放| 波多野结衣高清无吗| 法律面前人人平等表现在哪些方面| 天堂√8在线中文| 超碰成人久久| 亚洲成av人片免费观看| 亚洲自拍偷在线| 91老司机精品| 日本免费a在线| 不卡一级毛片| 精品久久蜜臀av无| 亚洲精品美女久久久久99蜜臀| 一本大道久久a久久精品| 又大又爽又粗| 精品人妻1区二区| 一本精品99久久精品77| 嫩草影院精品99| 精品少妇一区二区三区视频日本电影| 99久久国产精品久久久| 色综合亚洲欧美另类图片| 成人精品一区二区免费| 国产精品 国内视频| 神马国产精品三级电影在线观看 | 国产亚洲精品久久久久久毛片| 很黄的视频免费| 18禁国产床啪视频网站| 91九色精品人成在线观看| 日韩高清综合在线| 久久久国产欧美日韩av| 久久久久久久久久黄片| 99久久综合精品五月天人人| 国内少妇人妻偷人精品xxx网站 | 黄色成人免费大全| 男女视频在线观看网站免费 | 婷婷亚洲欧美| 国产成人精品久久二区二区91| 女性被躁到高潮视频| 亚洲一码二码三码区别大吗| 老司机在亚洲福利影院| 国产精品 国内视频| 日本成人三级电影网站| 日韩高清综合在线| 欧美日韩黄片免| 麻豆国产av国片精品| 日本免费一区二区三区高清不卡| 亚洲成人久久爱视频| 成人国产一区最新在线观看| 精品无人区乱码1区二区| 国产野战对白在线观看| 成年女人毛片免费观看观看9| 一a级毛片在线观看| 日本三级黄在线观看| 一a级毛片在线观看| 丁香六月欧美| 日韩大码丰满熟妇| 亚洲成人精品中文字幕电影| 50天的宝宝边吃奶边哭怎么回事| 免费人成视频x8x8入口观看| 好男人电影高清在线观看| 国产aⅴ精品一区二区三区波| 叶爱在线成人免费视频播放| 999久久久精品免费观看国产| 特大巨黑吊av在线直播 | 色婷婷久久久亚洲欧美| 欧美日韩福利视频一区二区| 久久婷婷人人爽人人干人人爱| 一本综合久久免费| 男人操女人黄网站| av欧美777| 亚洲av片天天在线观看| 十八禁人妻一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲 欧美一区二区三区| 一级片免费观看大全| 免费看a级黄色片| 国产单亲对白刺激| 熟女电影av网|