• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Distributed Nash Equilibrium Seeking Strategies Under Quantized Communication

    2024-01-27 06:47:22MaojiaoYeQingLongHanLeiDingShengyuanXuandGuobiaoJia
    IEEE/CAA Journal of Automatica Sinica 2024年1期

    Maojiao Ye,,, Qing-Long Han,,, Lei Ding,,,Shengyuan Xu, and Guobiao Jia

    Abstract—This paper is concerned with distributed Nash equilibrium seeking strategies under quantized communication.In the proposed seeking strategy, a projection operator is synthesized with a gradient search method to achieve the optimization of players’ objective functions while restricting their actions within required non-empty, convex and compact domains.In addition, a leader-following consensus protocol, in which quantized information flows are utilized, is employed for information sharing among players.More specifically, logarithmic quantizers and uniform quantizers are investigated under both undirected and connected communication graphs and strongly connected digraphs, respectively.Through Lyapunov stability analysis, it is shown that players’ actions can be steered to a neighborhood of the Nash equilibrium with logarithmic and uniform quantizers, and the quantified convergence error depends on the parameter of the quantizer for both undirected and directed cases.A numerical example is given to verify the theoretical results.

    I.INTRODUCTION

    FRUITFUL results on distributed control and optimization of networked systems have been reported in the past two decades, see, e.g., [1]–[7], and the references therein.In particular, distributed Nash equilibrium seeking, which deals with partial information games in networked systems,becomes a new thriving research topic in recent years.For instance, based on the framework originated in [8], several consensus-based distributed Nash equilibrium seeking strategies were proposed to accommodate games in systems with fully distributed communication structures [9] and disturbances [10].Besides, gossip-based algorithms were provided to achieve distributed Nash equilibrium seeking [11], [12].Saddle point dynamics were investigated for a class of twonetwork zero-sum games [13].Besides, some attention has also been paid to dealing with the constraints, players’ dynamics, and communication costs, see, e.g., [14], [15].

    It is worth mentioning that, as partial information games are taken into account, players need to broadcast some of their local information with others via a communication network.Hence, communication resources play a key role for distributed Nash equilibrium seeking strategies, and communication constraints are important factors to be considered for the design of seeking algorithms.As digital communication channels and digital sensors have limited bandwidth and only receive quantized values, it is necessary to quantize the data before transmission and storage, especially for finite rate links.In addition, to transmit information via digital channels,continuous signals should be coded by using analog-to-digital coders, resulting in non-negligible truncation errors between the continuous signal and its corresponding converted digital signal [16].Inspired by the facts above, some efforts have been made to achieve coordinated control of multi-agent systems with quantized data transmission [17]–[25].For instance,time-varying communication topologies with quantizers were addressed for the distributed iterative averaging problem [18].In [19], quantization effects on the performance of synchronized motion schemes were considered for a team of secondorder mobile agents.Constraints on communication data rates were considered for discrete-time average consensus problems [20].Dithered quantization was adopted to achieve average consensus in bandwidth constrained networks [21].Moreover, leader-following consensus of linear multi-agent systems under quantized, sampled data and Markovian switching communication networks was addressed [22].Based on layered structures, quantized communication was taken into account for distributed computing tasks of unmanned aerial vehicles [23].Bipartite consensus under quantization was investigated in [24], [25].The fault-tolerant consensus control problem for multi-agent systems with quantized data was addressed [26], [27], where data confidentiality was taken into account.Besides, the distributed convex optimization problem with quantized information was also investigated [28].

    In addition, quantization effects were considered for discrete-time gradient-based Nash equilibrium seeking algorithms, where the notion of entropy power was adopted to quantify the lower bound on the asymptotic decaying rate of the mean-square error [29].However, it is required that players can communicate with each other via a complete graph,i.e., any two players in the game can communicate and transmit information directly with each other.Obviously, this requirement of complete/centralized communication is highly idealized, and thus can be hardly satisfied in practical implementation, especially for large-scale games.To the best of the authors’ knowledge, however, there have been few results in the literature regarding the effects of quantization on distributed Nash equilibrium seeking algorithms by relaxing this requirement.Therefore, it is of importance and essence to develop distributed Nash equilibrium seeking strategies under data quantization, which motivates the present study.

    Based on the observations above, distributed Nash equilibrium seeking under quantization effects is investigated.Compared with existing works [8], [29], the main contributions of this paper are summarized as follows:

    1) Distributed Nash equilibrium seeking strategies under quantized communication are established, where both logarithmic and uniform quantizations are taken into account,respectively.Moreover, a projection operator is incorporated into the gradient-based algorithm to deal with action constraints;

    2) Based on theoretical analysis, some criteria are derived to ensure that the proposed strategies can converge to a neighborhood of the Nash equilibrium by suitably choosing control gains, where the effects of both logarithmic and uniform quantizations can be characterized explicitly;

    3) The proposed distributed quanized Nash equilibrium seeking strategies can accommodate both undirected and directed topology graphs, beneficial for practical implementation.

    We structure the rest of this paper as follows.Section II provides the notations and preliminaries.The considered problem is formulated in Section III.Main findings of this manuscript are presented in Section IV.Moreover, numerical studies on the performance of the proposed algorithms are illustrated in Section V.Lastly, Section VI draws conclusions for this paper.

    II.NOTATIONS AND PRELIMINARIES

    A. Quantizers

    B. Algebraic Graph Theory

    C. Nonsmooth Analysis

    The following preliminaries on nonsmooth analysis are adopted from [31].

    Definition 1(Page 14,[31]): Consider

    III.PROBLEM FORMULATION

    forxi∈Xi, where x-i=[x1,x2,...,xi-1,xi+1,...,xN]T.

    Assumption 1: For eachi∈V,fi(x) is a C2function.

    Assumption 2: Forx,z ∈RN,

    wheremis a positive constant.Moreover, P(x) is globally Lipschitz with constantl.

    IV.MAIN RESULTS

    In this section, distributed Nash equilibrium seeking algorithms with logarithmic quantizers and uniform quantizers will be investigated under both undirected and directed communication graphs, respectively.

    With quantization effects, the distributed Nash equilibrium seeking algorithm can be designed as

    Remark 1: In practical implementation, the parameters of quantizers for players might be different due to the specific requirements of communication channels.It should be pointed out that the analysis method used in this paper can completely accommodate heterogeneous quantizer parameters for players.

    Remark 2: Compared with [8], [9], this paper considers that players’ actions are subject to non-empty, convex and compact setsXifori∈V.To accommodate the constraints, a projection operator is employed in the seeking strategy.In addition, the quantization effects of communication channels are considered.

    AsXiis non-empty, compact and convex, the projection operator has non-expansive property, i.e.,||PXi(γ1)-PXi(γ2)||≤||γ1-γ2||, for all γ1,γ1∈R.Moreover, following Lemma 1 in[33], the subsequent result can be obtained

    Lemma 3: Given any x(0)∈X, x(t) generated by (5) is always feasible, i.e.,x(t)∈X,?t≥0.

    As quantization brings non-continuity into the right-hand side of (5), the solution of (5) is considered in the Filippov sense.Hence, forxi(0)∈Xi,i,j∈V, (5) is replaced by

    Since the right-hand side of (6) is locally essentially bounded (i.e., bounded on a bounded neighborhood of every point, excluding sets of measure zero), the existence of a local Filippov solution is guaranteed by Lemma 2.In the following,convergence of (6) under undirected and directed communication topologies is shown, successively.

    A. Distributed Nash Equilibrium Seeking Under Undirected Graphs With Quantization Effects

    In this section, convergence analysis for games under the following communication condition is considered.

    Assumption 3: Graph G is undirected and connected.

    Theorem 1: Under Assumptions 1-3 and logarithmic quantizers,

    Theorem 2: Under Assumptions 1-3 and uniform quantizers,

    Remark 4: From Theorem 2, it is observed that the ultimate bound depends on game information, uniform quantizer parameter Φ, control gainκand graph information.Note that the error introduced by logarithmic quantizers is state-dependent, while the error introduced by uniform quantizers is constant.As a result, it can be clearly seen from Theorems 1 and 2 that the ultimate bound under logarithmic quantizers is dependent on the Nash equilibrium point x?, but the ultimate bound under uniform quantizers is uncorrelated with the Nash equilibrium point x?.Moreover, when ||x?|| is small, logarithmic quantizers might result in small convergence errors.

    Remark 5: WhenXi=R, the algorithm (5) is reduced to

    Withδbeing any positive constant, similar results can be obtained for logarithmic and uniform quantizers, respectively,by following the proofs of Theorems 1 and 2.That is, no restriction is enforced on the choices ofδin (9) when action constraintsXifori∈V are not considered.More specifically,ifXi=R , it is only required that -(x-x?)T[δ?i fi(x)]vec≤-ω||x-x?||2for some positive constantω, which is ensured by Assumption 2 with any positive constantδ.

    Remark 6: When the quantization effects are not considered,the algorithm (5) is reduced to

    Remark 7: When quantized communication is adopted, it inevitably introduces the quantized errors in the leader-following consensus algorithm (6), implying that distributed Nash equilibrium seeking strategies can achieve only bounded convergence but not asymptotic convergence (see Theorems 1 and 2).

    In this section, stability of the equilibrium under undirected and connected communication topologies is investigated.With undirected communication networks, the seeking strategy might take advantages from symmetric information flows among players.In the following, stability properties under directed communication graphs are explored, which would result in asymmetry for the information flows among players.

    B. Distributed Nash Equilibrium Seeking Under Directed Graphs

    In this section, the problem is considered under directed communication topologies.

    Remark 8: Comparing Theorems 1 and 2 with Theorems 3 and 4, respectively, one sees that under directed communication graphs, the ultimate convergence bounds depend on,which is resulted from asymmetric information exchange among players.

    Remark 9: In [29], it is assumed that each player can exchange quantized data with any other players, that is the communication graph among players is complete or alternatively there is a central node that can bidirectionally communicate with all players.Under complete communication graphs/With a central node, gradient search method was considered in [29].Different from [29], this paper only requires that the communication graph is connected but not necessarily complete.As players are not able to directly exchange data with other players, gradient method in [29] cannot be utilized as it contains data not available for the players.Hence, (5) further employs a quantized consensus module for action estimation among players.By such a design, the proposed method relaxes the requirement on the communication topologies in[29] and is more suitable for applications of distributed systems.

    V.SIMULATION STUDIES

    In this section, a connectivity control problem for six omnidirectional mobile vehicles in a 2-dimensional space is considered [34].The positions of vehicles, denoted asxi=[xi1,xi2]T,are their actions.Each vehicle aims to make a tradeoff between its own local objective and global task of getting/keeping close to some of other vehicles, see, e.g., [34].Vehicles’ objective functions are given as

    A. Distributed Nash Equilibrium Seeking With Quantization Effects Under Undirected Graphs

    Fig.1.The communication graph for vehicles.

    Fig.2.The vehicles’ position trajectories under (5), logarithmic quantizers and undirected G.

    Fig.3.The vehicles’ position trajectories under (5), uniform quantizers and undirected G.

    Fig.4.The trajectories of ||x(t)-x?|| generated under (5) with logarithmic quantizers (ζ =0.85,0.88,0.9,0.95) and undirected G.

    B. Distributed Nash Equilibrium Seeking With Quantization Effects Under Directed Graphs

    Fig.5.The trajectories of ||x(t)-x?|| under (5) with uniform quantizers(Φ=0.01,0.08,0.16,0.32) and undirected G.

    Suppose that the players can communicate via a directed circle plotted in Fig.1(b).Wheng0=5, ζ=0.95, δ=0.1,κ=100 (Φ=0.01,δ=0.1,κ=100) and the communication channel is subject to logarithmic quantizers (uniform quantizers), vehicles’ positions generated by the proposed method are given in Fig.6 (Fig.7).From Figs.6 and 7, it can be seen that vehicles’ positions would converge to a small neighborhood of the Nash equilibrium thus verifying the theoretical results.

    Fig.6.The vehicles’ position trajectories under (5), logarithmic quantizers and directed G.

    Fig.7.The vehicles’ position trajectories under (5), uniform quantizers and directed G.

    VI.CONCLUSIONS

    This paper considers distributed Nash equilibrium seeking with quantization effects.Logarithmic quantizers and uniform quantizers are considered under both undirected communication topologies and strongly connected digraphs, respectively.It is shown that with both the logarithmic quantizers and uniform quantizers, the proposed seeking strategy can drive players’ actions to a small region around the Nash equilibrium,whose bound is proportional to the quantizer parameter.Future work will concentrate on the data privacy issue of distributed Nash equilibrium seeking algorithms like [26], [27].

    APPENDIX

    A. Proof of Theorem 1

    Define

    Then, we have

    By Assumption 2, we obtain

    inwhich | ?i fi(x)-?i fi(z)|2≥0 for eachi∈V.Hence,

    and

    based on the non-expansive property of the projection operator.Therefore, we have

    B. Proof of Theorem 2

    Using the functionVin the proof of Theorem 1, we have

    With uniform quantizers,

    Thus, the conclusion can be obtained.

    C. Proof of Theorem 3

    Define the Lyapunov candidate function as

    Then, following the proof of Theorem 1, we have

    Note that

    whereql(yij)-yij=?ijyi j, and

    Then, we obtain

    Summarizing the above equations, we have

    the conclusion can be derived.

    D. Proof of Theorem 4

    By defining the sameVas that in the proof of Theorem 3,we obtain (19) and (20).Noticing thatwe have

    Hence, we obtain

    To this end, the conclusion can be easily derived.■

    在线观看舔阴道视频| 波多野结衣高清无吗| 99热只有精品国产| 在线观看午夜福利视频| 日本在线视频免费播放| 国产精品亚洲一级av第二区| 久久这里只有精品中国| 69人妻影院| 国产视频内射| 好看av亚洲va欧美ⅴa在| 国产三级中文精品| 九色成人免费人妻av| 嫁个100分男人电影在线观看| 国产视频内射| 天天一区二区日本电影三级| 午夜福利欧美成人| 亚洲国产精品成人综合色| 最新在线观看一区二区三区| 成人鲁丝片一二三区免费| 18禁黄网站禁片午夜丰满| 日日摸夜夜添夜夜添av毛片 | 亚洲专区国产一区二区| 日韩欧美国产一区二区入口| 国产亚洲精品久久久久久毛片| a级毛片免费高清观看在线播放| 2021天堂中文幕一二区在线观| 国产真实伦视频高清在线观看 | 美女 人体艺术 gogo| 亚洲黑人精品在线| 如何舔出高潮| 国产精品亚洲美女久久久| 久久国产精品影院| 九九久久精品国产亚洲av麻豆| 久久精品综合一区二区三区| 欧美乱妇无乱码| 色综合欧美亚洲国产小说| a级一级毛片免费在线观看| 变态另类成人亚洲欧美熟女| 国内揄拍国产精品人妻在线| 在线观看美女被高潮喷水网站 | 伦理电影大哥的女人| 成年女人看的毛片在线观看| 久久久久久久久大av| 俄罗斯特黄特色一大片| 99热这里只有是精品在线观看 | 性色av乱码一区二区三区2| 别揉我奶头~嗯~啊~动态视频| 国产成人啪精品午夜网站| 欧美+日韩+精品| 久久热精品热| 久久久久久国产a免费观看| 日韩高清综合在线| 国产综合懂色| 国产精品一区二区性色av| 一a级毛片在线观看| 极品教师在线免费播放| 国产成人aa在线观看| 精品一区二区三区av网在线观看| 麻豆久久精品国产亚洲av| 国产高清激情床上av| 99国产综合亚洲精品| 精品熟女少妇八av免费久了| 真人做人爱边吃奶动态| 91午夜精品亚洲一区二区三区 | 一级作爱视频免费观看| 国产激情偷乱视频一区二区| 中文字幕av成人在线电影| 国产成年人精品一区二区| 久久天躁狠狠躁夜夜2o2o| 色av中文字幕| 少妇高潮的动态图| 亚洲美女视频黄频| 一边摸一边抽搐一进一小说| 观看免费一级毛片| 在线天堂最新版资源| 男女做爰动态图高潮gif福利片| 天美传媒精品一区二区| 成熟少妇高潮喷水视频| 又黄又爽又免费观看的视频| 国产精品av视频在线免费观看| 51午夜福利影视在线观看| 亚洲成a人片在线一区二区| 久久久久久久久中文| 精品人妻偷拍中文字幕| 亚洲国产欧美人成| 首页视频小说图片口味搜索| 99久久九九国产精品国产免费| www日本黄色视频网| 日日干狠狠操夜夜爽| 女人被狂操c到高潮| 好看av亚洲va欧美ⅴa在| 欧美+亚洲+日韩+国产| 女生性感内裤真人,穿戴方法视频| 国产淫片久久久久久久久 | 免费av毛片视频| 性插视频无遮挡在线免费观看| 精品99又大又爽又粗少妇毛片 | 色噜噜av男人的天堂激情| 搡老妇女老女人老熟妇| 日本三级黄在线观看| 国产精品国产高清国产av| 久久精品国产自在天天线| av视频在线观看入口| 如何舔出高潮| 国产精品久久久久久久电影| 亚洲精品粉嫩美女一区| 热99re8久久精品国产| 国产伦精品一区二区三区四那| 久久热精品热| 狠狠狠狠99中文字幕| 亚洲欧美精品综合久久99| 国产毛片a区久久久久| 午夜a级毛片| 天天躁日日操中文字幕| 亚洲天堂国产精品一区在线| 成人av一区二区三区在线看| 每晚都被弄得嗷嗷叫到高潮| 亚洲成人免费电影在线观看| 精品久久久久久成人av| 亚洲成a人片在线一区二区| 内地一区二区视频在线| 日韩欧美国产在线观看| 亚洲国产日韩欧美精品在线观看| 日本黄大片高清| 久久99热这里只有精品18| 一个人免费在线观看电影| 日韩欧美精品免费久久 | 国产精品亚洲美女久久久| 国产精品乱码一区二三区的特点| 久久久久久久久久成人| 国产精品美女特级片免费视频播放器| 亚洲美女视频黄频| 欧美bdsm另类| 亚洲精品在线美女| 欧美高清成人免费视频www| 在线国产一区二区在线| 淫妇啪啪啪对白视频| 麻豆成人午夜福利视频| 床上黄色一级片| 深夜精品福利| 午夜a级毛片| 国产一区二区在线观看日韩| 搡老岳熟女国产| 少妇丰满av| 久久国产精品影院| 日本五十路高清| 国产一区二区在线av高清观看| 日韩欧美精品免费久久 | 日韩中文字幕欧美一区二区| 波野结衣二区三区在线| 亚洲成人久久性| 国内少妇人妻偷人精品xxx网站| 亚洲经典国产精华液单 | 99热这里只有是精品在线观看 | av中文乱码字幕在线| av在线观看视频网站免费| 丁香欧美五月| 五月玫瑰六月丁香| 69人妻影院| 日韩 亚洲 欧美在线| 国产v大片淫在线免费观看| 怎么达到女性高潮| 特级一级黄色大片| 三级男女做爰猛烈吃奶摸视频| 日本五十路高清| 亚洲激情在线av| 国产精品久久久久久人妻精品电影| 午夜激情欧美在线| 丁香六月欧美| 亚洲精品在线美女| 国产精品av视频在线免费观看| 狠狠狠狠99中文字幕| 又爽又黄无遮挡网站| 国产精华一区二区三区| 高清在线国产一区| 内射极品少妇av片p| 色在线成人网| 淫秽高清视频在线观看| 日韩亚洲欧美综合| 男人的好看免费观看在线视频| 久久久色成人| 首页视频小说图片口味搜索| 国产色爽女视频免费观看| 91狼人影院| 此物有八面人人有两片| 亚洲精品粉嫩美女一区| 欧美xxxx黑人xx丫x性爽| 在线免费观看不下载黄p国产 | 欧美最黄视频在线播放免费| 在线天堂最新版资源| av中文乱码字幕在线| 国产三级黄色录像| 国产一区二区三区在线臀色熟女| 欧美xxxx黑人xx丫x性爽| 国产中年淑女户外野战色| 色综合欧美亚洲国产小说| 在线国产一区二区在线| 中文字幕高清在线视频| 九九在线视频观看精品| 久久久久久久久大av| 国产精品久久视频播放| 日韩有码中文字幕| av女优亚洲男人天堂| 久久久久精品国产欧美久久久| 又黄又爽又免费观看的视频| 国产精品一区二区三区四区免费观看 | 老熟妇仑乱视频hdxx| 99久久九九国产精品国产免费| 三级国产精品欧美在线观看| 亚洲国产精品sss在线观看| 欧美黑人欧美精品刺激| 制服丝袜大香蕉在线| 男插女下体视频免费在线播放| 免费在线观看亚洲国产| 色尼玛亚洲综合影院| 99精品在免费线老司机午夜| 18+在线观看网站| av天堂中文字幕网| 久久欧美精品欧美久久欧美| 他把我摸到了高潮在线观看| 国产精品女同一区二区软件 | 国产主播在线观看一区二区| 精品乱码久久久久久99久播| 午夜福利免费观看在线| 亚洲黑人精品在线| 精品无人区乱码1区二区| 男女那种视频在线观看| 欧美激情国产日韩精品一区| 动漫黄色视频在线观看| 人人妻人人澡欧美一区二区| www.999成人在线观看| 俄罗斯特黄特色一大片| 久久午夜亚洲精品久久| 国产日本99.免费观看| 久久久精品欧美日韩精品| 老司机福利观看| 身体一侧抽搐| 欧美xxxx黑人xx丫x性爽| 18+在线观看网站| 国产精品久久久久久精品电影| x7x7x7水蜜桃| 精品一区二区三区视频在线观看免费| 夜夜爽天天搞| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲无线在线观看| 色尼玛亚洲综合影院| 欧美又色又爽又黄视频| 国产精品嫩草影院av在线观看 | 亚洲av二区三区四区| 亚洲av电影在线进入| 国产综合懂色| 亚洲美女视频黄频| 中出人妻视频一区二区| 嫩草影视91久久| 久久天躁狠狠躁夜夜2o2o| 免费一级毛片在线播放高清视频| 亚洲av美国av| 别揉我奶头 嗯啊视频| 国产精品久久久久久亚洲av鲁大| 男人和女人高潮做爰伦理| 伊人久久精品亚洲午夜| 最近视频中文字幕2019在线8| 老女人水多毛片| 欧美日本亚洲视频在线播放| 欧美日韩福利视频一区二区| 亚洲 欧美 日韩 在线 免费| 欧美xxxx黑人xx丫x性爽| 国产午夜精品论理片| 亚洲熟妇中文字幕五十中出| 男女那种视频在线观看| www.色视频.com| 欧美黄色淫秽网站| 午夜免费成人在线视频| 亚洲人与动物交配视频| 日韩欧美 国产精品| 一边摸一边抽搐一进一小说| 激情在线观看视频在线高清| 亚洲av一区综合| 窝窝影院91人妻| 黄色女人牲交| 最新在线观看一区二区三区| 99久久久亚洲精品蜜臀av| 午夜老司机福利剧场| 伊人久久精品亚洲午夜| a级毛片a级免费在线| 国产又黄又爽又无遮挡在线| 在线观看一区二区三区| 老司机午夜十八禁免费视频| 1000部很黄的大片| 成人无遮挡网站| 国产探花极品一区二区| 国产一区二区激情短视频| 久久国产精品人妻蜜桃| 国产一区二区在线观看日韩| 在线看三级毛片| 成人av一区二区三区在线看| 免费搜索国产男女视频| 中文资源天堂在线| 99在线人妻在线中文字幕| 尤物成人国产欧美一区二区三区| 国产男靠女视频免费网站| 国产欧美日韩一区二区精品| 在线观看免费视频日本深夜| 日本a在线网址| 免费av观看视频| 99在线人妻在线中文字幕| 乱码一卡2卡4卡精品| 五月伊人婷婷丁香| 成年免费大片在线观看| 欧美一区二区精品小视频在线| 美女cb高潮喷水在线观看| 国产精品98久久久久久宅男小说| 亚洲av第一区精品v没综合| 国产精品人妻久久久久久| 国产黄a三级三级三级人| 又黄又爽又刺激的免费视频.| 午夜a级毛片| 国产精品伦人一区二区| 神马国产精品三级电影在线观看| 久久久国产成人免费| 亚洲 欧美 日韩 在线 免费| 最近最新免费中文字幕在线| 成人高潮视频无遮挡免费网站| 99国产综合亚洲精品| 看黄色毛片网站| 波多野结衣高清作品| 国产综合懂色| 久久精品国产自在天天线| 桃红色精品国产亚洲av| 在线播放国产精品三级| 欧美成狂野欧美在线观看| 亚洲精品456在线播放app | 免费人成在线观看视频色| 亚洲avbb在线观看| 欧美日韩瑟瑟在线播放| 丁香欧美五月| 男女视频在线观看网站免费| 中文字幕人妻熟人妻熟丝袜美| 久久国产乱子免费精品| 色视频www国产| 国产精品久久久久久亚洲av鲁大| 一级作爱视频免费观看| 亚洲一区二区三区色噜噜| 禁无遮挡网站| 老熟妇乱子伦视频在线观看| 国产高清有码在线观看视频| 搞女人的毛片| 欧美一区二区亚洲| 韩国av一区二区三区四区| a级毛片免费高清观看在线播放| av专区在线播放| 精品午夜福利在线看| 国产综合懂色| 国产私拍福利视频在线观看| av黄色大香蕉| 香蕉av资源在线| 又爽又黄a免费视频| 色综合亚洲欧美另类图片| 别揉我奶头 嗯啊视频| 精品国产三级普通话版| 精品日产1卡2卡| 精品人妻视频免费看| 久久久国产成人精品二区| 亚洲乱码一区二区免费版| 一级黄片播放器| 亚洲精品在线观看二区| 免费在线观看亚洲国产| 波多野结衣高清无吗| 少妇人妻精品综合一区二区 | 午夜免费激情av| 一个人看的www免费观看视频| 91久久精品国产一区二区成人| 久久久久国产精品人妻aⅴ院| 一区二区三区四区激情视频 | 在现免费观看毛片| 日本黄大片高清| 男人和女人高潮做爰伦理| 精品一区二区三区人妻视频| 成年人黄色毛片网站| 精品一区二区三区人妻视频| 久9热在线精品视频| 悠悠久久av| 精品熟女少妇八av免费久了| 久久久久久九九精品二区国产| 日韩有码中文字幕| 97碰自拍视频| 亚洲欧美激情综合另类| 欧美日本亚洲视频在线播放| 国产精品亚洲av一区麻豆| 欧美日本亚洲视频在线播放| 成人鲁丝片一二三区免费| 日韩成人在线观看一区二区三区| 老司机午夜福利在线观看视频| 精品久久久久久久久亚洲 | 人妻制服诱惑在线中文字幕| 91在线精品国自产拍蜜月| 欧美激情久久久久久爽电影| 国产精品久久久久久人妻精品电影| 亚洲av二区三区四区| 欧美成人一区二区免费高清观看| 在线天堂最新版资源| 欧美成狂野欧美在线观看| 两个人的视频大全免费| 怎么达到女性高潮| 久久久久久久久久黄片| 人妻丰满熟妇av一区二区三区| 国产成年人精品一区二区| 中文在线观看免费www的网站| 高清日韩中文字幕在线| 亚洲美女搞黄在线观看 | 在线a可以看的网站| 精品久久国产蜜桃| 99热这里只有精品一区| 亚洲中文字幕一区二区三区有码在线看| 亚洲无线在线观看| 脱女人内裤的视频| 欧美黄色片欧美黄色片| 亚洲第一电影网av| 自拍偷自拍亚洲精品老妇| 十八禁人妻一区二区| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲av日韩精品久久久久久密| 九色国产91popny在线| 2021天堂中文幕一二区在线观| 国产成人影院久久av| 在线国产一区二区在线| 香蕉av资源在线| 久久草成人影院| 欧美一区二区精品小视频在线| 在线观看午夜福利视频| 看片在线看免费视频| 在线免费观看的www视频| 欧美日韩亚洲国产一区二区在线观看| av在线观看视频网站免费| 欧美色视频一区免费| 高清在线国产一区| 丝袜美腿在线中文| 99热6这里只有精品| 午夜福利在线观看免费完整高清在 | 国产伦精品一区二区三区视频9| 日本撒尿小便嘘嘘汇集6| 1000部很黄的大片| 嫁个100分男人电影在线观看| 少妇高潮的动态图| 免费看美女性在线毛片视频| 天堂av国产一区二区熟女人妻| 亚洲18禁久久av| 尤物成人国产欧美一区二区三区| 少妇被粗大猛烈的视频| 国产成人欧美在线观看| 亚洲av成人不卡在线观看播放网| 欧美乱妇无乱码| 三级男女做爰猛烈吃奶摸视频| 一本久久中文字幕| 此物有八面人人有两片| 校园春色视频在线观看| 97超视频在线观看视频| 国产精品人妻久久久久久| 91在线精品国自产拍蜜月| 在线观看免费视频日本深夜| 日韩 亚洲 欧美在线| 国产真实伦视频高清在线观看 | 日本成人三级电影网站| 国产精品美女特级片免费视频播放器| 丁香欧美五月| 九色国产91popny在线| 色综合站精品国产| 国产精品一区二区三区四区免费观看 | 精品国产三级普通话版| 啦啦啦观看免费观看视频高清| 国产一区二区三区在线臀色熟女| 精品福利观看| 国产淫片久久久久久久久 | 精品人妻熟女av久视频| 美女免费视频网站| 男女那种视频在线观看| 我要看日韩黄色一级片| 白带黄色成豆腐渣| 好男人在线观看高清免费视频| 免费看a级黄色片| 精品久久久久久成人av| 国产国拍精品亚洲av在线观看| 国产熟女xx| 老鸭窝网址在线观看| 1000部很黄的大片| 亚洲第一欧美日韩一区二区三区| 国产精品久久久久久精品电影| 美女被艹到高潮喷水动态| 日本免费a在线| 女同久久另类99精品国产91| 在线免费观看不下载黄p国产 | 亚洲黑人精品在线| 每晚都被弄得嗷嗷叫到高潮| 成年女人毛片免费观看观看9| 久久精品国产清高在天天线| 在线国产一区二区在线| 日本 欧美在线| 一区二区三区高清视频在线| 婷婷丁香在线五月| 久久人人爽人人爽人人片va | 色综合站精品国产| 看十八女毛片水多多多| 简卡轻食公司| 男女下面进入的视频免费午夜| 国产色婷婷99| а√天堂www在线а√下载| 久久精品91蜜桃| 两人在一起打扑克的视频| 搡女人真爽免费视频火全软件 | 能在线免费观看的黄片| 少妇被粗大猛烈的视频| 啦啦啦韩国在线观看视频| 一夜夜www| 成年女人看的毛片在线观看| 国产日本99.免费观看| 久久久成人免费电影| av专区在线播放| 久久久久久久精品吃奶| 国产精品综合久久久久久久免费| 免费看日本二区| 99热只有精品国产| 久久久久久久久久成人| 成年人黄色毛片网站| 日韩成人在线观看一区二区三区| 99热这里只有是精品50| 搡老妇女老女人老熟妇| 国内精品美女久久久久久| 免费看日本二区| 国产精品一区二区三区四区久久| 一本综合久久免费| 禁无遮挡网站| 亚洲国产精品999在线| 亚洲在线观看片| 精品免费久久久久久久清纯| 三级国产精品欧美在线观看| 精品日产1卡2卡| 国产黄a三级三级三级人| 欧美精品啪啪一区二区三区| 午夜精品久久久久久毛片777| 午夜福利欧美成人| 99久久精品一区二区三区| 日韩欧美免费精品| 伊人久久精品亚洲午夜| 亚洲国产精品成人综合色| 三级男女做爰猛烈吃奶摸视频| 亚洲最大成人手机在线| 91字幕亚洲| 美女高潮的动态| 男人舔女人下体高潮全视频| 99久久精品一区二区三区| 性插视频无遮挡在线免费观看| 97碰自拍视频| 国产大屁股一区二区在线视频| 99国产综合亚洲精品| 动漫黄色视频在线观看| 国产v大片淫在线免费观看| 久久人人爽人人爽人人片va | 欧美性感艳星| 成人特级黄色片久久久久久久| 首页视频小说图片口味搜索| 欧美精品国产亚洲| 99久久九九国产精品国产免费| 国产精品美女特级片免费视频播放器| 久久婷婷人人爽人人干人人爱| 9191精品国产免费久久| 免费观看的影片在线观看| 丁香欧美五月| 国产伦精品一区二区三区四那| 色精品久久人妻99蜜桃| av在线观看视频网站免费| 久久久久久久亚洲中文字幕 | 亚洲一区二区三区色噜噜| 人妻久久中文字幕网| 变态另类丝袜制服| 亚洲精品一卡2卡三卡4卡5卡| 免费在线观看成人毛片| 亚洲av美国av| 少妇高潮的动态图| 国内精品久久久久久久电影| 亚洲av美国av| 婷婷亚洲欧美| 亚洲熟妇中文字幕五十中出| 757午夜福利合集在线观看| 男插女下体视频免费在线播放| 丁香欧美五月| 麻豆一二三区av精品| www.www免费av| 精品久久久久久,| 啦啦啦韩国在线观看视频| 亚洲五月天丁香| 亚洲乱码一区二区免费版| 免费观看精品视频网站| 亚洲精华国产精华精| av在线观看视频网站免费| 午夜精品一区二区三区免费看| 欧美在线一区亚洲| 日本五十路高清| 高潮久久久久久久久久久不卡| 一个人观看的视频www高清免费观看| 99国产极品粉嫩在线观看| 精品一区二区三区av网在线观看| 69av精品久久久久久| 国产av在哪里看| 中文字幕久久专区| 中亚洲国语对白在线视频| 国产午夜精品久久久久久一区二区三区 | 九九热线精品视视频播放| 午夜两性在线视频| 午夜福利成人在线免费观看| 中文字幕熟女人妻在线| 精品一区二区三区人妻视频| 亚洲国产精品久久男人天堂| 听说在线观看完整版免费高清| 国产极品精品免费视频能看的| 精品99又大又爽又粗少妇毛片 |