• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Efficient Local Radial Basis Function Method for Image Segmentation Based on the Chan-Vese Model

    2024-01-20 13:03:14ShupengQiuChujinLinandWeiZhao

    Shupeng Qiu,Chujin Lin and Wei Zhao

    School of Mathematics and Statistics,Guangdong University of Technology,Guangzhou,510520,China

    ABSTRACT In this paper,we consider the Chan-Vese(C-V)model for image segmentation and obtain its numerical solution accurately and efficiently.For this purpose,we present a local radial basis function method based on a Gaussian kernel(GA-LRBF)for spatial discretization.Compared to the standard radial basis function method,this approach consumes less CPU time and maintains good stability because it uses only a small subset of points in the whole computational domain.Additionally,since the Gaussian function has the property of dimensional separation,the GA-LRBF method is suitable for dealing with isotropic images.Finally,a numerical scheme that couples GA-LRBF with the fourth-order Runge-Kutta method is applied to the C-V model,and a comparison of some numerical results demonstrates that this scheme achieves much more reliable image segmentation.

    KEYWORDS Image segmentation;Chan-Vese model;local radial basis function method;Gaussian kernel;Runge-Kutta method

    1 Introduction

    Image segmentation is a challenging and complicated task in the field of image processing and has a wide range of applications in computer vision,such as medical image analysis,autonomous driving,remote sensing,security and protection monitoring[1-3].The major task of image segmentation is to divide a prescribed image into several nonoverlapping and disjoint regions according to characteristics such as color,gray level(intensity)and geometric shape.With the increasing demand for segmentation techniques,many methods have been proposed,including threshold-based methods,region-based methods,edge-based methods,PDE-based methods and emerging methods based on deep neural networks.Among these representative classes of methods,the latter two correspond to mainstream algorithms.Nevertheless,although deep learning methods such as fully convolutional networks perform well in terms of accuracy[4],they are not fully interpretable and require considerable time for neural network training.An image itself can be regarded as a discrete two-dimensional matrix,which can be modeled using continuous mathematical models based on partial differential equations(PDEs).Over the decades,PDE-based models have shown excellent applicability and efficiency due to their high mathematical significance.Among PDE-based models,active contour models are some of the most popular,including the parametric active contour model and the level set method.A parametric active contour model (Snakes) was first proposed by Kass et al.[5];however,in this model,the curves cannot enter deep areas of the image,and the initial curves must already be close to the edges of the image contours.To handle this limitation,the level set method was presented for flexibly handling topological changes in images [6-9].In this method,a contour curve is embedded into a higher-dimensional function,representing that the level sets of different topological structures in the evolutionary process all correspond to the same level.Therefore,such a level set function can automatically control topological changes.The Chan-Vese (C-V) model is a typical level set model using a variational principle [10],as an improved variant of the Mumford-Shah (M-S) model [11],in which the complex functional is simplified by assuming that the gray levels within homogeneous regions of an image are constant.Many works have proven that the C-V model can effectively improve the topological adaptation ability in curve evolution;therefore,it is a powerful tool for image segmentation and has attracted increasing attention from researchers[12-14].

    Once the desired model has been derived,numerical simulation plays an important role in understanding the dynamic evolutionary process of active contours.At present,the finite differential method(FDM)has been widely applied to numerically solve the PDEs originating from the level set method in most cases;this method achieves reasonably satisfactory accuracy [11] but is computationally expensive.In addition,various traditional techniques and algorithms have been used to optimize the accuracy and results of image segmentation.Nonetheless,limited by the efficiency and data processing ability of these algorithms,many challenges still arise in practical applications.In recent years,the radial basis function (RBF) method has attracted much attention because of its simple format and high accuracy [15-19],and it has gradually developed into a significant numerical method in the scientific computing domain [20-23].However,for large-scale problems such as image processing,the RBF method incurs excessive computational costs due to the generation of a dense matrix[23-26],and the large condition number of this matrix can also causes calculation instability[27,28].To conquer this shortcoming,local RBF(LRBF)methods based on positive and conditionally positive global kernels have been developed,such as[29],which consider only the contributions from several neighboring points in the near field while ignoring the influence of distant points.The corresponding sparse interpolation matrix apparently reduces the condition number of the matrix,saves storage space and enhances computational efficiency.Other newly developed local methods,such as[30-32],can also be applied to achieve these benefits.

    In this paper,based on a Gaussian (GA) kernel,a new LRBF scheme is developed for solving the C-V model accurately and efficiently.Specifically,since a high-dimensional exponential function can be separated along each dimension,the GA-RBF interpolation can be expressed in the form of a tensor product of multiple one-dimensional interpolations.This approach eliminates the isotropic property of radial basis functions;thus,it is suitable for treating inhomogeneous image problems,and afterward,a local scheme is obtained accordingly.

    The remainder of this paper is organized as follows:Section 2 provides a brief review of the C-V segmentation model.Section 3 gives more details of the proposed LRBF method based on a Gaussian kernel and presents a fully discrete system obtained by combining the proposed method with the fourth-order Runge-Kutta method.Several numerical experiments are presented in Section 4 to verify the performance of the proposed method,including its accuracy,efficiency and stability.Finally,some conclusions and plans for further research are reported in Section 5.

    2 Mathematical Model

    In this section,we give a brief review of the C-V model,which is an active contour model for twophase segmentation based on the Mumford-Shah model.LetΩbe a bounded domain of R2,with the boundary?Ω.LetIbe a given image,and letC(s)be a parameterized closed curve.Classical snakes and active contour models are designed to minimize the following energy functional:

    whereL(C) is the length ofC;out(C) andin(C) represent the regions outside and inside ofC,respectively;c1andc2are two constants that denote the average intensities inside and outside ofC,respectively;andμ,λ1,andλ2are fixed nonnegative parameters.The first term controls the smoothness of the contour,while the latter two terms attract the contour toward objects in the image.

    In problems of curve evolution,the level set method and,in particular,the ‘motion by mean curvature’approach of Osher et al.[6]have been used extensively.The curveCis implicitly represented via a Lipschitz functionφ,i.e.,C={(x,y)|φ(x,y)=0},and the evolution of the curve is given by the zero-level curve at timetof the functionφ(x,y,t),as shown in Fig.1.

    Figure 1:The level set function graph(left)and the zero-level curve graph(right)

    With the introduction of the Heaviside functionHand the Dirac measureδ0,defined,respectively,as

    the terms in the energy functional have the following forms:

    Thus,the energyE(c1,c2,φ)can be written as

    By keepingφfixed and minimizing the energyE(c1,c2,φ)with respect to the constantsc1andc2,it is easy to express these constants as functions ofφ,as follows:

    For the corresponding“degenerate”cases,there are no constraints on the values ofc1andc2.Then,c1andc2are in fact given by[10]

    By the calculus of variations,the Gateaux derivative of the functionalEcan be written as

    Therefore,the functionφthat minimizes this functional satisfies the Euler-Lagrange equation=0.The steepest descent process for minimization of the functionalEcorresponds to the following gradient flow:

    3 Numerical Method

    3.1 The Global Radial Basis Function(GRBF)Method

    In this section,we introduce the RBF method for the interpolation of scattered data.For a set ofNdistinct centers{x1,x2,...,xN}inΩ?Rn,an approximation(x)of a functionf(x)can be written in the form of a linear combination of radial basis functions(RBFs)as follows:

    whereΦ(·)represents an RBF.Commonly used types of RBFs are listed in Table 1,in whichr=‖·‖is the Euclidean distance andc>0 is the shape parameter.The coefficientsαjare obtained from the interpolation conditions at xi:

    Table 1: Three common RBFs

    Therefore,the following linear system of algebraic equations must be solved:

    where A=[Φ(‖xi-xj‖)],i,j=1,2,...,N,α=[α1,α2,...,αN]T,and f=[f(x1),f(x2),...,f(xN)]T.After solving this system,the approximation off(x)and itsk-th order derivative can be obtained at any point inΩas

    Because it always generates a dense interpolation matrix A,the standard RBF method is a global method that consumes more CPU time for larger-scale problems and can lead to unstable results because of ill-conditioned numbers.To handle these difficulties,we introduce the concept of local interpolation into the GRBF method.That is,for each evaluation point,we consider contributions only from its neighbors in the near field and ignore the effects from the far field.Because a sparse interpolation matrix is generated,this approach consumes less computing time.

    3.2 Local Radial Basis Function Method Based on a GA Kernel(GA-LRBF)

    For simplicity,we describe the method in two dimensions.?u(x,y) can be represented as an expansion of Gaussian radial basis functions:

    whereΦjk(x,y)=exp(-c2((x-xj)2+(y-yk)2)).Since exponential functions have the property of separation,Eq.(15)can be written as

    From the interpolation conditions on the data points(xm,yn)(m=1,2,...,Nx;n=1,2,...,Ny),we obtain the coefficient vector,and the approximation can be written as

    whereΨj(x)andΨk(y)satisfy the interpolation conditions,i.e.,

    To improve the stability of RBF interpolation,a localized approach was recently developed.The distinctive feature of this method is that only a few neighboring points are needed.Because it generates a sparse interpolation matrix,it consumes less computing time.Specifically,for points (xs,yl) (s=1,2,...,Nx;l=1,2,...,Ny),the local interpolation has the following form:

    whereMsandMlare the numbers of closest points forxsandyl,respectively.SinceMs<<NxandMl<<Ny,all localMs×Mlmatrices can be extended to anNx×Nyglobal matrix by filling in zeros,and the obtained matrix is sparse.In particular,ifMs=Ml=3,the LRBF method becomes an FDM-type scheme,as shown in Fig.2,while ifMs=NxandMl=Ny,the LRBF method degenerates to the standard GRBF method.Compared with the GRBF method,this scheme consumes less CPU time because it yields a sparse interpolation matrix,and it maintains good stability because it uses only a small subset of points in the whole computational domain.Additionally,since the Gaussian kernel adopted as the RBF has the natural property of dimensional separation,the GA-LRBF method requires the storage of only a one-dimensional interpolation matrix and thus occupies less memory for numerical computation.Consequently,this method is suitable for dealing with isotropic images and efficient at manipulating massive-scale image information.However,different from[31,32],our proposed GA-LRBF method is essentially similar to the GRBF method but formally similar to the FDM;hence,the spatial derivative magnitude ofφis highly unlikely to be zero,meaning that this scheme can be freely applied.

    Figure 2:The GA-LRBF scheme with 3 neighboring points in each direction has a form similar to that of the FDM scheme.(a)3 neighboring points in each direction.(b)The sparsity of the corresponding interpolation matrix

    To implement the GA-LRBF method for solving the C-V model,it is necessary to compute the differential operator

    After the GA-LRBF method is applied to the C-V model,it can be expressed as a time-dependent semidiscrete nonlinear system

    In this section,we consider the fourth-order Runge-Kutta scheme (RK4) for the C-V model.Lettingtn=nΔt(n=0,1,...,N) be uniform points in the time interval [0,T] with a time step ofΔt=T/N,we have

    whereR(·)represents the right-hand side of the semidiscrete system.

    4 Numerical Experiments

    In this section,we report the numerical results obtained from the implementation of the proposed methods in Section 3.For this purpose,we present the following remarks:

    · In this paper,all cases are calculated using a time step ofΔt=0.1 and a GA kernel with a shape parameter value ofc=1.How to choose the optimal shape parameter when using the meshless collocation method with the RBF approach is an open problem[27,28].Given that this is not the focus of our research,we have performed a simple numerical test using the GA-LRBF and GRBF methods with different shape parameter values.The numerical results indicate that the accuracy and efficiency of segmentation using the GA-LRBF method are relatively insensitive to the shape parameter value,but the same is not true for the GRBF method.Therefore,for better comparison in the numerical experiments,an appropriate shape parameter ofc=1 is consistently selected.· In practice,we use the regularized Heaviside functionHε(φ)in Eq.(8),defined as

    and the corresponding regularized Dirac functionδε(φ)in Eq.(10)is given by

    The parameterε=1 is selected in the following numerical experiments:

    · To verify the influence of the initial contour on the subsequent evolution,we consider two types of initial level set functions.One is a circle contour,which is defined asφ0=r-whereciandcjdenote the half height and width,respectively,of the image andr=1/3ci.The other is a constant contour,which is defined asφ0=2 for the entire domain.

    · To judge the effectiveness of image segmentation,we consider two classical evaluation indices defined as[33,34]

    where “DICE”measures the spatial overlap between two target regionsAandBand “VOE”describes the error ratio of segmentation.For successful image segmentation,the values of“DICE”and“VOE”should tend toward 1 and 0,respectively.

    Example 4.1.ThefirsttermoftheC-Vmodel,μ?·(?φ/|?φ|),describesthesmoothnessofthe levelsetfunction.Totestitsinfluenceonevolution,wesolvetheC-Vmodelwithvariousvaluesofthe parameterμbyusingtheGA-LRBFmethodcombinedwithRK4.Theinitialcontouristakentobea circle.

    Fig.3 displays the segmentation results for a 256 × 256 pixel image based on the C-V model withμ=100,100,10,1,0.1 and 0.It can be observed that smaller parameter values lead to better results;in particular,whenμis zero,there is almost no influence on evolution.The results are listed for comparison in Table 2.Moreover,during iteration,the divergence term imposes a heavy calculation burden.The same analysis is performed in the Appendix using the GRBF method,and we come to a similar conclusion.Consequently,to balance efficiency and accuracy,the parameterμis taken to be 0 in the following numerical examples.

    Figure 3:Evolution results for the initial image obtained using the GA-LRBF method combined with RK4 with different μ values

    Table 2: Numerical results of using the GA-LRBF method combined RK4 with different μ values

    Example 4.2.ThisexperimentisdesignedtotesttheperformanceoftheLRBFmethod.Forthis purpose,weapplytheLRBF,GRBFandFDMschemestodiscretizethespatialvariablesoftheC-V modelandtheRK4schemefortemporaldiscretization.Bothcircularandconstantinitialcontoursare considered.

    Fig.4 shows the results of the three numerical methods for a 238×200 pixel image with parameters ofμ=0 andλ1=λ2=1.For a constant initial contourφ0=a(ais a constant),sinceμ=0,we note thata=1 should be avoided because it would cause the right-hand term in Eq.(10) to be 0,leading to stationary evolution.As shown in these figures,for a circular initial contour,the numerical results of all three methods converge to the image boundaries,whereas for a constant initial contourφ0=2,the FDM does not work,but the two RBF methods maintain good results.More results of these three methods are listed for comparison in Table 3.We conclude that the initial contour has a dramatic influence on the numerical results of the FDM but has little effect on the results of the two RBF methods.Thus,the RBF methods are effective computing tools for image segmentation;in particular,the LRBF method consumes less CPU time than the GRBF method.It is worth noting that the presented scheme is robust to and independent of the initialization,even without manual initialization;consequently,there is no need for complex and expensive reinitialization of the level set function to maintain numerical stability,which may be necessary in the traditional method[11].

    Figure 4: Evolution results of three numerical methods with (a-c) a circular initial contour and(d-f)a constant initial contour φ0=2

    Table 3: Numerical results of these methods for two different initial contours

    Example 4.3.ThisexperimentisdesignedtotesttheperformanceofRK4.WeapplytheGA-LRBF methodtodiscretizethespatialvariablesoftheC-Vmodel,andthecommonlyusedforwardEulerscheme isintroducedfornumericalcomparison.Twodifferentinitialcontours(circularandconstant)areused.

    We select three initial images as shown in Fig.5.Table 4 lists numerical results of LRBF combined with RK4 and Forward Euler schemes for the edge segmentation problem.As expected,the convergence rate of the RK4 scheme is also much faster than that of the forward Euler scheme.Additionally,for clarity,Figs.6 and 7 display the contour evolution on these three images.As we can see that,for the edge segmentation problem(Fig.5a),the forward Euler method with a constant initial contour is less effective than this method with a circular initial contour.In particular,for images with holes(Figs.5b and 5c),the forward Euler method cannot effectively separate the image from the background regardless of whether a constant or circular initial contour is used.However,RK4 is minimally affected by the above problems.

    Figure 5:Three initial images,with pixel of(a)256×256,(b)256×256,and(c)160×160

    Table 4:Numerical results obtained by the RK4 scheme and the forward Euler scheme for temporal discretization

    Figure 6:Evolution results obtained by RK4(first row)and the forward Euler scheme(second row)with a circular initial contour

    Figure 7:Evolution results obtained by RK4(first row)and the forward Euler scheme(second row)with a constant initial contour φ0=2

    5 Conclusion

    In this paper,we presented a novel numerical method to solve the C-V model arising in image segmentation,in which the GA-LRBF and RK4 schemes were used for spatial and temporal variables,respectively.The LRBF method achieved improved efficiency and stability compared with the standard GRBF method because it used only a few neighboring points rather than all points in the domain.Furthermore,since the extensional function can be separated along each direction,it is suitable for the treatment of inhomogeneous image problems.Numerical results verify that the GALRBF method combined with RK4 can guarantee successful segmentation results with both circular and constant initial contours and even for images with holes.Therefore,this method is a powerful numerical tool for image segmentation.At present,the number of neighboring points is fixed for the GA-LRBF method;the question of how to determine the optimal number of points will be a focus of our work in the near future.

    Acknowledgement:Authors would like to thank Dr.Rui Zhan at Guangdong University of Technology for providing many valuable suggestions for this research.

    Funding Statement:This work was sponsored by Guangdong Basic and Applied Basic Research Foundation under Grant No.2021A1515110680 and Guangzhou Basic and Applied Basic Research under Grant No.202102020340.

    Author Contributions:Shupeng Qiu: Conceptualization,Methodology,Software,Investigation,Formal Analysis,Writing Original Draft;Chujin Lin:Visualization,Investigation;Wei Zhao:Conceptualization,Funding Acquisition,Resources,Supervision,Writing Review&Editing.

    Availability of Data and Materials:The authors confirm that the data supporting the findings of this study are available within the article.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    Appendix

    Fig.8 displays the segmentation results for a 256×256 pixel image obtained using the GRBF method combined with RK4 withμ=100,100,10,1,0.1 and 0 based on the C-V model.It can be observed that smaller parameter values lead to better results;in particular,whenμis zero,there is almost no influence on evolution.The results are listed for comparison in Table 5.

    Figure 8:Evolution results for the initial image obtained using the GRBF method combined with RK4 with different μ values

    Table 5: Numerical results of using the GRBF method combined with RK4 with different μ values

    欧美成人性av电影在线观看| 亚洲精品乱码久久久v下载方式 | 国产精品三级大全| 在线观看免费视频日本深夜| 中文字幕人妻熟人妻熟丝袜美 | 网址你懂的国产日韩在线| 国产欧美日韩精品一区二区| 精品久久久久久久久久久久久| 国产精品 欧美亚洲| 女人被狂操c到高潮| 热99re8久久精品国产| av女优亚洲男人天堂| 日韩欧美精品免费久久 | 成人特级av手机在线观看| 有码 亚洲区| 成年女人永久免费观看视频| 亚洲精品国产精品久久久不卡| 19禁男女啪啪无遮挡网站| 九九久久精品国产亚洲av麻豆| 日韩成人在线观看一区二区三区| 免费在线观看影片大全网站| 亚洲中文字幕一区二区三区有码在线看| 午夜两性在线视频| 久久精品国产亚洲av涩爱 | 看片在线看免费视频| 午夜激情欧美在线| 国产一区二区激情短视频| 精品国产美女av久久久久小说| 无遮挡黄片免费观看| 国产三级在线视频| 亚洲精品一区av在线观看| 村上凉子中文字幕在线| 欧美又色又爽又黄视频| 国产高潮美女av| 国产亚洲精品久久久久久毛片| 韩国av一区二区三区四区| 国产精品亚洲美女久久久| 一个人看视频在线观看www免费 | 国内揄拍国产精品人妻在线| 亚洲精品成人久久久久久| 久久人人精品亚洲av| 亚洲精品日韩av片在线观看 | 色综合站精品国产| 俄罗斯特黄特色一大片| 99久久精品热视频| 91麻豆精品激情在线观看国产| 国产精品久久久久久久电影 | 亚洲欧美日韩卡通动漫| 99国产综合亚洲精品| 嫩草影院精品99| 深爱激情五月婷婷| 黄色视频,在线免费观看| 欧美一区二区亚洲| 亚洲七黄色美女视频| 男女之事视频高清在线观看| 精品久久久久久久毛片微露脸| 亚洲精品国产精品久久久不卡| 九色成人免费人妻av| 亚洲精品粉嫩美女一区| 精品久久久久久久毛片微露脸| 国产精品女同一区二区软件 | 波野结衣二区三区在线 | 日韩欧美三级三区| 色吧在线观看| 亚洲精品色激情综合| 色吧在线观看| 国产精品,欧美在线| 91麻豆精品激情在线观看国产| 国产91精品成人一区二区三区| 中文字幕人妻丝袜一区二区| 久久久久久久久大av| 亚洲精品美女久久久久99蜜臀| 亚洲精品国产精品久久久不卡| 成年女人永久免费观看视频| 免费大片18禁| 免费看美女性在线毛片视频| 久久6这里有精品| 亚洲精华国产精华精| 国产亚洲av嫩草精品影院| 18禁裸乳无遮挡免费网站照片| 久久久久九九精品影院| 桃红色精品国产亚洲av| 亚洲欧美日韩高清专用| 美女高潮的动态| 国产v大片淫在线免费观看| 中文字幕人妻熟人妻熟丝袜美 | 国产精品久久久人人做人人爽| 国产欧美日韩一区二区三| 欧美bdsm另类| 亚洲,欧美精品.| 哪里可以看免费的av片| 国产精品精品国产色婷婷| 亚洲黑人精品在线| 午夜免费激情av| 可以在线观看的亚洲视频| 51国产日韩欧美| 国内精品久久久久久久电影| 欧美中文日本在线观看视频| 亚洲avbb在线观看| 真实男女啪啪啪动态图| 免费在线观看日本一区| 亚洲午夜理论影院| 欧美不卡视频在线免费观看| 一区二区三区激情视频| 嫩草影视91久久| 97人妻精品一区二区三区麻豆| 久久99热这里只有精品18| 国产精品一区二区三区四区久久| 99在线人妻在线中文字幕| 乱人视频在线观看| 99国产精品一区二区蜜桃av| 精品乱码久久久久久99久播| 丰满人妻一区二区三区视频av | 国产蜜桃级精品一区二区三区| 国产一区二区亚洲精品在线观看| 国内毛片毛片毛片毛片毛片| 18禁裸乳无遮挡免费网站照片| 国产精品美女特级片免费视频播放器| 国产69精品久久久久777片| 成人高潮视频无遮挡免费网站| 婷婷精品国产亚洲av| 中文在线观看免费www的网站| 国产综合懂色| netflix在线观看网站| 国产探花极品一区二区| 亚洲人成网站在线播放欧美日韩| 国产爱豆传媒在线观看| 国产三级在线视频| 88av欧美| 国产亚洲欧美在线一区二区| av视频在线观看入口| 久久午夜亚洲精品久久| 亚洲五月婷婷丁香| 国内精品久久久久久久电影| xxxwww97欧美| 国产在视频线在精品| 免费一级毛片在线播放高清视频| 国产精品国产高清国产av| 国产亚洲精品久久久久久毛片| 国产爱豆传媒在线观看| 丁香欧美五月| 丰满的人妻完整版| 亚洲国产欧美人成| 91在线精品国自产拍蜜月 | 国产亚洲精品av在线| 搡老熟女国产l中国老女人| 久久国产精品影院| 国产精品久久久久久亚洲av鲁大| 国产91精品成人一区二区三区| 黄色视频,在线免费观看| 青草久久国产| 亚洲第一欧美日韩一区二区三区| 国产色婷婷99| 色老头精品视频在线观看| 熟女电影av网| 成人国产一区最新在线观看| 啦啦啦免费观看视频1| 国产av不卡久久| 性色av乱码一区二区三区2| 男插女下体视频免费在线播放| 99热6这里只有精品| 亚洲精品乱码久久久v下载方式 | 中文字幕人妻丝袜一区二区| 亚洲欧美日韩卡通动漫| 久久久国产成人免费| 亚洲欧美精品综合久久99| 国产精品 欧美亚洲| 日日摸夜夜添夜夜添小说| 变态另类成人亚洲欧美熟女| 悠悠久久av| 久久久久久久久大av| 国内毛片毛片毛片毛片毛片| 日韩欧美精品免费久久 | 免费在线观看亚洲国产| 一本精品99久久精品77| 99久久99久久久精品蜜桃| 亚洲国产高清在线一区二区三| 午夜福利欧美成人| 露出奶头的视频| 日韩高清综合在线| 成人鲁丝片一二三区免费| 日韩大尺度精品在线看网址| 一个人看视频在线观看www免费 | 99国产综合亚洲精品| 午夜老司机福利剧场| 成人性生交大片免费视频hd| 在线看三级毛片| 久久久久久久亚洲中文字幕 | 一个人看视频在线观看www免费 | 中亚洲国语对白在线视频| 99久久精品国产亚洲精品| 国产激情欧美一区二区| 国产乱人伦免费视频| 日韩欧美 国产精品| 日韩 欧美 亚洲 中文字幕| 国产精品日韩av在线免费观看| 99国产精品一区二区蜜桃av| 99热6这里只有精品| 男女那种视频在线观看| 手机成人av网站| 女人高潮潮喷娇喘18禁视频| 少妇的逼好多水| 日韩高清综合在线| 老司机福利观看| 亚洲成av人片在线播放无| 中文亚洲av片在线观看爽| 日韩 欧美 亚洲 中文字幕| 久久精品综合一区二区三区| 十八禁人妻一区二区| 又爽又黄无遮挡网站| 99精品在免费线老司机午夜| 99久久九九国产精品国产免费| 中文字幕av成人在线电影| 国产野战对白在线观看| 亚洲精品一区av在线观看| 热99在线观看视频| 嫩草影视91久久| 亚洲无线观看免费| 香蕉久久夜色| 精品一区二区三区人妻视频| 日韩人妻高清精品专区| 国产高清视频在线观看网站| 亚洲五月天丁香| 亚洲人成网站在线播| 免费看光身美女| 伊人久久大香线蕉亚洲五| 久久99热这里只有精品18| 免费搜索国产男女视频| 亚洲五月婷婷丁香| 国产成人欧美在线观看| 亚洲国产日韩欧美精品在线观看 | 免费电影在线观看免费观看| 免费人成视频x8x8入口观看| 99精品久久久久人妻精品| 欧美大码av| 中文亚洲av片在线观看爽| 久久婷婷人人爽人人干人人爱| 观看美女的网站| 国内精品久久久久久久电影| 午夜日韩欧美国产| 精品电影一区二区在线| 亚洲内射少妇av| 亚洲成av人片免费观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产欧美日韩一区二区精品| 日本一本二区三区精品| 国产一区二区三区视频了| 丰满人妻一区二区三区视频av | 99热这里只有是精品50| 欧美日韩综合久久久久久 | 嫁个100分男人电影在线观看| 精品午夜福利视频在线观看一区| 搞女人的毛片| av国产免费在线观看| 国产精品精品国产色婷婷| 女警被强在线播放| 一级毛片女人18水好多| 欧美乱色亚洲激情| 亚洲av成人不卡在线观看播放网| 亚洲av免费在线观看| 欧美日韩乱码在线| 欧美黄色淫秽网站| 熟妇人妻久久中文字幕3abv| 1000部很黄的大片| 婷婷六月久久综合丁香| 亚洲av熟女| 免费看日本二区| 欧美日韩国产亚洲二区| 欧美一区二区精品小视频在线| 国产91精品成人一区二区三区| a在线观看视频网站| 国产高清三级在线| 亚洲精品一卡2卡三卡4卡5卡| 好男人电影高清在线观看| 长腿黑丝高跟| 一边摸一边抽搐一进一小说| 久久精品国产99精品国产亚洲性色| 亚洲无线观看免费| 男女边摸边吃奶| 搡老乐熟女国产| 99热这里只有是精品在线观看| 一级毛片aaaaaa免费看小| 国产免费福利视频在线观看| 高清av免费在线| 非洲黑人性xxxx精品又粗又长| 亚洲精品一二三| 中文欧美无线码| 一夜夜www| 内地一区二区视频在线| 少妇熟女aⅴ在线视频| 免费观看a级毛片全部| 一级毛片久久久久久久久女| 中文字幕免费在线视频6| 插逼视频在线观看| av免费在线看不卡| 成人性生交大片免费视频hd| 国产探花在线观看一区二区| 午夜福利在线观看免费完整高清在| 九色成人免费人妻av| 在线免费十八禁| 国产精品人妻久久久久久| 婷婷色麻豆天堂久久| 欧美一区二区亚洲| 久久草成人影院| 少妇高潮的动态图| 久久久久久久久大av| 国产精品嫩草影院av在线观看| 99久久精品一区二区三区| 91午夜精品亚洲一区二区三区| 欧美一区二区亚洲| 18禁动态无遮挡网站| 女人久久www免费人成看片| 亚洲综合色惰| 国产精品熟女久久久久浪| 美女被艹到高潮喷水动态| 汤姆久久久久久久影院中文字幕 | 中文乱码字字幕精品一区二区三区 | 精品久久久久久成人av| 伊人久久精品亚洲午夜| 精品国产三级普通话版| 亚洲婷婷狠狠爱综合网| 九九爱精品视频在线观看| 大香蕉久久网| 亚洲av成人精品一二三区| 卡戴珊不雅视频在线播放| 真实男女啪啪啪动态图| 亚洲欧美精品自产自拍| or卡值多少钱| 直男gayav资源| 天天躁夜夜躁狠狠久久av| 国产亚洲最大av| 一级av片app| 美女脱内裤让男人舔精品视频| 亚洲欧美成人综合另类久久久| 国产精品一区二区在线观看99 | 日日撸夜夜添| 嫩草影院入口| 国产日韩欧美在线精品| 日韩人妻高清精品专区| 亚洲欧美日韩卡通动漫| 精品人妻一区二区三区麻豆| 日韩欧美 国产精品| 国产综合精华液| 午夜久久久久精精品| 中文字幕av成人在线电影| 18禁在线播放成人免费| 亚洲人成网站在线播| 波野结衣二区三区在线| 久久人人爽人人爽人人片va| 建设人人有责人人尽责人人享有的 | 亚洲成色77777| 一级片'在线观看视频| 色视频www国产| 久久久久久久久久久免费av| 亚洲精品色激情综合| 亚洲成人久久爱视频| 欧美日本视频| 成人国产麻豆网| 欧美xxxx黑人xx丫x性爽| 国产高清三级在线| 国产黄色免费在线视频| 欧美zozozo另类| 男女那种视频在线观看| 国产永久视频网站| 久久精品久久精品一区二区三区| 国产精品久久久久久久久免| av福利片在线观看| 国产一区二区亚洲精品在线观看| 晚上一个人看的免费电影| 亚洲欧美一区二区三区黑人 | 亚洲欧美中文字幕日韩二区| 日本wwww免费看| 欧美区成人在线视频| a级一级毛片免费在线观看| 精品欧美国产一区二区三| 男的添女的下面高潮视频| 一区二区三区高清视频在线| 欧美精品国产亚洲| 一级毛片我不卡| 一级爰片在线观看| 国产亚洲5aaaaa淫片| 少妇猛男粗大的猛烈进出视频 | 国产色婷婷99| av在线蜜桃| 亚洲aⅴ乱码一区二区在线播放| 男女那种视频在线观看| 男人舔奶头视频| 嫩草影院入口| 午夜视频国产福利| 亚洲av成人精品一二三区| 午夜激情欧美在线| 国产午夜精品论理片| 国产伦精品一区二区三区视频9| 麻豆成人午夜福利视频| 欧美+日韩+精品| 亚洲av免费在线观看| 青春草国产在线视频| 欧美不卡视频在线免费观看| 国产伦精品一区二区三区视频9| 成人性生交大片免费视频hd| 国产伦在线观看视频一区| 我的女老师完整版在线观看| 国产黄色视频一区二区在线观看| 99久久九九国产精品国产免费| 九色成人免费人妻av| 国产精品久久久久久久久免| 国产一级毛片七仙女欲春2| 丰满乱子伦码专区| 啦啦啦啦在线视频资源| 国产老妇女一区| 中国国产av一级| 丝袜喷水一区| 国产一区二区三区av在线| 国产精品嫩草影院av在线观看| 中文资源天堂在线| 一级毛片 在线播放| 亚洲精品第二区| 99视频精品全部免费 在线| 一级毛片久久久久久久久女| 男女那种视频在线观看| 久久久午夜欧美精品| 美女内射精品一级片tv| 赤兔流量卡办理| 在线观看一区二区三区| 国产精品美女特级片免费视频播放器| 伦理电影大哥的女人| 国产亚洲午夜精品一区二区久久 | 久久久久久久大尺度免费视频| 精品国产露脸久久av麻豆 | 亚洲国产成人一精品久久久| 欧美精品一区二区大全| 一个人观看的视频www高清免费观看| 久久国产乱子免费精品| 亚洲精品aⅴ在线观看| 少妇猛男粗大的猛烈进出视频 | 国产色婷婷99| 22中文网久久字幕| 国产一区二区亚洲精品在线观看| a级毛色黄片| 色5月婷婷丁香| 久久久成人免费电影| 美女cb高潮喷水在线观看| 18+在线观看网站| 欧美日韩精品成人综合77777| 精品久久久久久久末码| 午夜久久久久精精品| 一区二区三区高清视频在线| 色综合站精品国产| 少妇人妻精品综合一区二区| 国产伦理片在线播放av一区| 亚洲自拍偷在线| 一二三四中文在线观看免费高清| 久久这里有精品视频免费| 街头女战士在线观看网站| 久久午夜福利片| 久久久精品免费免费高清| 亚洲精品视频女| 一夜夜www| 欧美成人午夜免费资源| 人体艺术视频欧美日本| 国产成人福利小说| 国产一级毛片在线| 全区人妻精品视频| 床上黄色一级片| 蜜桃亚洲精品一区二区三区| 人体艺术视频欧美日本| 狂野欧美激情性xxxx在线观看| 极品教师在线视频| 日本-黄色视频高清免费观看| 国产高清国产精品国产三级 | 午夜福利在线在线| 久久午夜福利片| 91精品一卡2卡3卡4卡| 亚洲国产av新网站| 非洲黑人性xxxx精品又粗又长| 成年版毛片免费区| 精品久久久久久久久av| 欧美成人精品欧美一级黄| 成年女人看的毛片在线观看| 青春草亚洲视频在线观看| 亚洲av在线观看美女高潮| 国产永久视频网站| 天天躁日日操中文字幕| 国产伦精品一区二区三区四那| 日韩中字成人| 亚洲欧美一区二区三区国产| 亚洲,欧美,日韩| 一边亲一边摸免费视频| 欧美极品一区二区三区四区| 欧美精品一区二区大全| 丝袜美腿在线中文| 赤兔流量卡办理| 亚洲av.av天堂| 日本黄色片子视频| 肉色欧美久久久久久久蜜桃 | 欧美日韩视频高清一区二区三区二| 老女人水多毛片| 亚洲精品成人久久久久久| 美女cb高潮喷水在线观看| 免费看光身美女| 欧美精品国产亚洲| 亚洲图色成人| 亚洲精品自拍成人| 免费观看性生交大片5| 一级毛片aaaaaa免费看小| 精品久久久久久电影网| 国产精品伦人一区二区| 精品人妻偷拍中文字幕| 毛片一级片免费看久久久久| 观看免费一级毛片| 日产精品乱码卡一卡2卡三| 亚洲欧美日韩卡通动漫| 国产淫语在线视频| 97人妻精品一区二区三区麻豆| 亚洲国产最新在线播放| 99久久精品一区二区三区| 美女黄网站色视频| 国产精品嫩草影院av在线观看| 啦啦啦韩国在线观看视频| 国产一区二区三区av在线| 日韩欧美精品免费久久| 久久久久久久久久久免费av| 日本免费a在线| 中文资源天堂在线| 久久久欧美国产精品| 国产男人的电影天堂91| 亚洲综合精品二区| 午夜免费观看性视频| 天堂√8在线中文| 国产精品麻豆人妻色哟哟久久 | 禁无遮挡网站| 国产一级毛片七仙女欲春2| 亚洲欧洲国产日韩| 国产精品熟女久久久久浪| 精品国产露脸久久av麻豆 | 18禁动态无遮挡网站| 免费观看在线日韩| 国产成人精品久久久久久| 一级二级三级毛片免费看| 欧美激情在线99| 99热这里只有是精品在线观看| 大话2 男鬼变身卡| 97热精品久久久久久| 内射极品少妇av片p| 久久精品综合一区二区三区| 丝袜喷水一区| 看非洲黑人一级黄片| 亚洲精品日本国产第一区| 精品熟女少妇av免费看| eeuss影院久久| 国国产精品蜜臀av免费| 国产精品熟女久久久久浪| 麻豆成人av视频| 国产国拍精品亚洲av在线观看| 狠狠精品人妻久久久久久综合| 亚洲精品乱码久久久久久按摩| 69av精品久久久久久| 久久精品熟女亚洲av麻豆精品 | 日本与韩国留学比较| 国产精品久久久久久精品电影小说 | 青春草国产在线视频| 成人毛片60女人毛片免费| 亚洲高清免费不卡视频| 日韩国内少妇激情av| 久久精品综合一区二区三区| 亚洲av成人精品一区久久| 最新中文字幕久久久久| 韩国高清视频一区二区三区| 久久热精品热| 久久久色成人| 高清午夜精品一区二区三区| 欧美zozozo另类| 欧美人与善性xxx| 久久精品综合一区二区三区| 欧美一级a爱片免费观看看| 99热网站在线观看| 亚洲不卡免费看| 国产亚洲5aaaaa淫片| 少妇猛男粗大的猛烈进出视频 | 亚洲国产精品国产精品| 亚洲成人中文字幕在线播放| 一级黄片播放器| 中文天堂在线官网| 大片免费播放器 马上看| 国产毛片a区久久久久| 深爱激情五月婷婷| 小蜜桃在线观看免费完整版高清| 久久人人爽人人爽人人片va| 国产日韩欧美在线精品| 在线免费观看的www视频| 午夜久久久久精精品| 国产成人91sexporn| 精品99又大又爽又粗少妇毛片| 中文欧美无线码| 日本黄色片子视频| 2021天堂中文幕一二区在线观| 精品一区二区三区视频在线| 日本免费在线观看一区| 亚洲精品国产av成人精品| 免费av不卡在线播放| 丝袜美腿在线中文| 成年版毛片免费区| 两个人视频免费观看高清| 麻豆成人av视频| 深爱激情五月婷婷| 国产伦一二天堂av在线观看| 18禁在线播放成人免费| 在线播放无遮挡| 久久久精品欧美日韩精品| 欧美日本视频| 国产高清国产精品国产三级 | 777米奇影视久久| 精品久久久久久成人av| 日本午夜av视频| 超碰97精品在线观看|