• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    3D Target Localization Based on FrFT from Spaceborne Curve SAR

    2024-01-12 13:04:12ZhitongNieZhiyangChenYuanhaoLiChengHu

    Zhitong Nie, Zhiyang Chen, Yuanhao Li, Cheng Hu

    Abstract: Synthetic aperture radar (SAR) three-dimensional (3D) imaging technology can reconstruct the complete structure of observed targets and has been a hot topic. Compared with tomographic SAR, array interferometric SAR, and circular SAR, curve SAR can use less data to achieve 3D positioning of targets. Most existing algorithms for estimating Doppler frequency modulation(FM) rate are based on sub aperture partitioning, resulting in low computational efficiency. To address this, this article establishes a target height estimation model, which reflects the relationship between the height and the residual Doppler FM rate for spaceborne curve SAR. Then, a fast SAR 3D localization processing flow based on fractional Fourier transform (FrFT) is proposed.Experimental verification demonstrates that this method can estimate the Doppler FM of the target column by column, and the 3D position error for non-overlapping targets is controlled within 1 m. For overlapping points with an intensity ratio greater than 1.5, the root mean square error(RMSE) of the estimation results is around 5 m. If the separation between overlapping points is greater than 35 m, the RMSE decreases to approximately 2 m.

    Keywords: three dimensional (3D) localization; fractional Fourier transform (FrFT); spaceborne synthetic aperture radar (SAR); curve trajectory

    1 Introduction

    Synthetic aperture radar (SAR) possesses the capability of all-weather, all-day, and high-resolution observation, making it a crucial tool in Earth observation [1, 2]. Conventional SAR twodimensional (2D) images can only provide a rough estimate of the target’s 2D location, lacking information about its height, and often encountering problems such as layover and topbottom inversion [3, 4]. This issue is particularly pronounced in densely built urban areas with complex structures. Cities hold significant strategic importance in modern warfare, which is selfevident [5]. Therefore, the precise estimation of target height and the reconstruction of its threedimensional (3D) structure are of utmost importance.

    Over the years, SAR 3D imaging technology has seen several common approaches, including Tomographic SAR (TomoSAR), Array Interferometric SAR (InSAR) , and Circular SAR(CSAR). TomoSAR, often referred to as multibaseline SAR, involves the radar observation platform flying at different heights to repeat the process, creating a synthetic aperture in the height dimension, thus achieving high resolution in the range-elevation 2D plane [6]. Array InSAR, on the other hand, involves mounting multiple antennas on the observation platform,employing multi-input multi-output techniques to acquire multi-channel SAR images, enabling single-pass 3D imaging [7, 8 ]. Circular SAR involves the observation platform moving in a circular path around the target, capturing allaround target information [3]. Similarly, it can achieve high resolution in the range-azimuth and range-elevation 2D planes with just one flight,addressing the time-consuming issue of Tomo-SAR.

    In terms of timeliness, these methods all require a large amount of data as the foundation,while the spaceborne curve SAR can achieve rapid 3D reconstruction of targets using a single channel. In military scenarios such as battlefield reconnaissance and damage assessment, where timeliness is crucial, this is of utmost importance.Since the satellite’s complete trajectory is circular, as long as the synthetic aperture time is long enough, it can capture the satellite’s partially curved path, forming a synthetic aperture in the elevation direction. Although the elevation synthetic aperture is relatively small, leading to lower resolution, it is possible to estimate the heights of the main points using parameter estimation methods.

    The Naval Surface Warfare Center (NSWC)in the United States began researching the imaging mechanisms of curve SAR [9]. A study in [10]analyzed the distribution characteristics of scattering centers, enabling the reconstruction of the 3D structure of known target models but not for unknown targets. Another study in [11], using the TerraSAR-X staring spotlight mode, proposed a method to estimate the absolute height of a target based on the scattering behavior of point targets. This research confirmed the feasibility of estimating target height through spaceborne curve SAR. A spaceborne SAR 3D information extraction technique was proposed in [12],which utilizes the inversion of height information based on the Doppler frequency modulation(FM) rate error.

    The above article employed the method of map drift (MD) to estimate the Doppler FM rate error. This method not only loses signal-tonoise ratio, but also leads to lower processing speed.

    To address the above issues, this article proposes a 3D localization estimation method based on the fractional Fourier transform (FrFT),which offers the advantage of faster processing by estimating target parameters column-wise. In the rest of this paper, a new height estimation model is established in Section 2, a 3D target localization processing workflow is provided in Section 3,simulation experiments are conducted in Section 4,and conclusions are presented in Section 5.

    2 Height Estimation Model

    The essence of the 3D positioning method based on curve trajectory targets is to estimate the height from the residual Doppler FM rate after imaging. Therefore, we first need to derive a model of frequency modulation and target height.This is the main content of this section. The motion trajectory of the satellite is shown in Fig. 1. The satellite moves along a uniform circular path with a velocityv. Due to the very low orbit of the satellite, the Earth’s rotation effect can be ignored, and during satellite observation,the target can be considered stationary. When the synthetic aperture time is relatively short,the satellite’s angular displacementθis small,allowing us to calculate the satellite’s coordinates at a given moment based on its velocity at the synthetic aperture center moment.

    Fig. 1 The satellite trajectory model

    The angular displacementθcan be represented as

    wheretais the slow time and belongs to(-Ts/2,Ts/2),Tsis synthetic aperture time,Rerepresents the Earth’s radius, andHsdenotes the satellite’s orbital height.

    The coordinates of the satellite can be expressed as

    By differentiating the satellite’s trajectory,we can obtain the velocity vector of the satellite as

    In the same coordinate system, the target position model is shown in Fig.2, where pointArepresents a location on the ground,RAis the slant range from satelliteSto pointA, and pointBis the observed target point, and it is at a distance Δhfrom pointA.RBrepresents the slant range from the satellite to pointB, and it is equal toRA.

    Fig.2 Observation geometry model

    Based on geometric relationships, we can derive the coordinates of pointAand pointBas

    whereβ1=∠SOAandβ2=∠SOB.

    The range vector betweenSAandSBcan be obtained from the satellite’s position coordinates and the point target’s position coordinates,i.e.

    The frequency of two points can be represented by

    whereλrepresents wavelength.And the Doppler bandwidth for each of them can be shown as

    As well as the difference in Doppler bandwidth between the two is shown as

    Finally, the difference in Doppler FM rate between the two points ΔKacan be represented by

    and derive the Δh

    3 3D Localization Processing Workflow

    From Eq.(13), it can be seen that there is a linear relationship between the target’s Doppler FM rate residual and its height.By obtaining the difference in Doppler FM rate between the target and the ground target, the target’s height can be estimated.Therefore, the processing workflow is divided into two parts: target imaging and parameter estimation.In the target imaging phase, the target’s position is determined, and a reference 2D spectrum is constructed based on the scene’s center.This spectrum is then conjugately multiplied with the 2D spectrum of the target point in the frequency domain to form the Doppler FM rate difference.In the parameter estimation phase, the FrFT is used to estimate the Doppler FM rate difference, and the target’s height is derived using Eq.(13).Additionally,the initial frequency is used to compute the target’s azimuthal position.The specific workflow is illustrated in Fig.3.

    Fig.3 3D localization processing workflow

    3.1 Target Imaging

    To better illustrate the data processing workflow,this article establishes a scene coordinate system based on Fig.2.Firstly, the scene’s center is taken as the origin, the line connecting the Earth’s center to the scene center serves as thezaxis, the satellite’s velocity direction forms thexaxis, and the ground-range direction defines they-axis, as depicted in Fig.4.The echo spectrum of reference pointOis assumed as

    whereσis the scattering coefficient;ωrandωastand for the range envelope and the azimuth envelope, respectively;τandηare the range time and the azimuth time, respectively;Kris the range FM rate;R(η) is the slant range history from the satellite to the scene center;cis speed of light.

    Night represents the unconscious, the feminine principle, death, evil, germination, potentiality, darkness, the subconscious, the womb, and the precursor of creation (Olderr 1986).Return to place in story.

    Fig.4 Scene coordinate system

    Usually, curved trajectory spaceborne SAR uses a longer synthetic aperture time to locate the target (close to 10 s) and cannot be represented by a second-order polynomial.Therefore,a fourth-order polynomial is used here.From satellite tool kit (STK) verification, it shows that the error is only on the order of 10-4m.The polynomial expression forR(η) is

    whereR0is the constant term andk1,k2,k3andk4are the coefficients.Under curve-based trajectories, traditional range-Doppler (RD) imaging methods are no longer applicable.Therefore, this paper adopts frequency domain imaging techniques.Ref.[1] proposed a reference 2D spectrum for the scene center under a curved but only expandedfato the fourth order.However,the system in this paper is for spaceborne SAR long-time observation.The satellite platform follows a relatively long curved trajectory.The fourth-order spectrum offacannot precisely depict the spectral model, due to the presence of residual phase, resulting in ground targets appearing defocused during imaging.Therefore,in this article, the standard 2D spectrum is expanded into the sixth-order terms offa.The spectral expression is shown as

    wherefrandfastand for the range frequency and the azimuth frequency, respectively;fcstands for signal frequency.

    From Eqs.(13) and (16), it can be observed that the original Doppler FM has a nonlinear relationship with target altitude.However, after the echo undergoes matched filtering with the ground target, a linear relationship between residual Doppler FM and target altitude can be seen.

    By multiplying the Echo spectrum with the complex conjugate of this reference 2D spectrum,followed by an inverse Fourier transform, the imaging result can be obtained.Due to inconsistency between the positions of the target point and the reference point, this result includes the Doppler FM rate residual of the target.

    3.2 Parameter Estimation

    In order to rapidly estimate the frequency differences of all target points, this paper employs the FrFT to estimate the target points’ frequency and initial frequency.The FrFT is a common tool for processing non-stationary signals [13] and is particularly accurate for linear frequency modulated (LFM) signals, making it capable of simultaneously estimating the frequencies of multiple target points as well as the initial frequency.Over the years, many scholars have proposed fast algorithms, with one of the more notable being the improved FrFT algorithm introduced by Haldun M.Ozaktas, which utilizes fast Fourier transformation (FFT) to reduce algorithm complexity [14].Its definition is shown as

    The FrFT is applied column by column to estimate target parameters.Therefore, it is possible to locate the target positions based on the SAR image after imaging.Then, the signal along the azimuth direction is extracted for FFT,allowing for the simultaneous estimation of multiple targets.At this point, the signal is in the frequency domain and contains Doppler FM rate residuals.Finally, the FrFT is applied to this frequency domain signal.

    When using FrFT, since the time domaintand frequency domainfhave different units, it is necessary to transform both the time domain and the frequency domain into dimensionless domains.Introducing a scaling factorQ, we define new scaled coordinates as

    In estimating the initial frequency and Doppler FM rate of the signal, the properties of linear LFM in different FrFT domains can be utilized.The process is as follows:

    1) First, the signal, which has undergone scaling transformation, is subjected to FrFT transformation with different ordersp, resulting in a 2D energy distribution map in thep-uplane.

    2) Next, the peak positions of the energy are searched for in this map.

    From Eq.(22) , the difference in Doppler FM rate between target pointBand the scene center pointOin the frequency domain is obtained.As the time-domain frequencyKOat pointOcan be obtained through fitting, the time-domain FM rate at pointBcan thus be determined as

    Then the difference in FM rate between the two points in the time domain can be obtained as

    Due to the model established in Section 2,which uses pointAas the reference point, we now need to calculate the position of pointAin the ground-range directionAybased on the geometric relationship in Fig.4.

    whereSyis the satellite’sycoordinate at the moment of the synthetic aperture center, andShis the satellite’szcoordinate at the moment of the synthetic aperture center.

    By fitting the slant range, we can determine the FM rateKAof the reference pointA.By using Eqs.(24) and (26) , the difference in Doppler FM rate between pointsAandBcan be obtained as

    By substituting Eq.(27) into Eq.(13), the height difference Δhcan be obtained, that isBz.Finally, compute the ground-range coordinate of targetB, which is

    Now, we have obtained the 3D position of targetB.

    4 Simulation Experiment

    To verify the effectiveness of the proposed method, this paper conducted single-point and multi-point simulation experiments.The satellite trajectory and velocity were obtained using STK,and the orbital elements are shown in Tab.1.Other simulation parameters are presented in Tab.2, where the range resolution is 1.5 m, and the azimuth resolution is 0.2 m.We chose a higher sampling rate ( 2.5 times bandwidth instead of 1.2 times) for better observation of the imaging results of the target points. From Ref. [15],we can learn that for a practical spaceborne SAR working in spotlight mode, PRF variation is conventionally employed to resolve the problem of fixed blind ranges as well as the conflict of high resolution and wide swath. This paper aims to validate the principles and feasibility of the algorithm, thus omitting the step of converting original PRF to equivalent PRF and directly treating the equivalent PRF as the input PRF.

    Tab.1 Orbital elements

    Tab.2 Simulation parameter

    4.1 Single Point Simulation

    In the scene coordinate system, the coordinates of the target pointT1 are set to [15, 15, 50].First, the echo is constructed, and then it is multiplied by the complex conjugate of the reference spectrum, yielding the imaging result shown in Fig. 5. From Fig. 5, it can be observed that due to the presence of height in the target, there is defocusing in the azimuth direction. To show the defocusing condition, Fig. 5 (b) shows the imaging result of point [15, 15, 0]. And an azimuth profile plot was generated showing in Fig. 5 (c).

    The result of applying FrFT to the column containing the target is shown in Fig. 6. From Fig. 6, it can be observed that a single target in theu-pplane will exhibit only one peak. The transformation orderpis 0.994 6. Based on the position of this peak, the target parameters can be estimated. The final estimation results are shown in Tab. 3.

    Fig. 5 Single point imaging: (a) defocusing result; (b) focusing result; (c) azimuth profile plot

    Fig. 6 Single point FrFT result

    Tab.3 Single point estimation results

    From Tab. 3, we can see that this method provides accurate estimation for a single-point target. The errors in all three dimensions for the single-point target are within 1 m, indicating a precise localization of the target position.

    4.2 Multi-Point Simulation

    In modern cities, many buildings have a significant amount of glass on their exteriors, which results in dihedral angles, leading to isolated strong points in the radar echoes from these structures. Therefore, by estimating the 3D positions of these isolated strong points, it’s possible to reconstruct the 3D structure of the buildings.This paper simulated scenarios with multiple isolated strong points, demonstrating the method’s ability to estimate the positions of multiple points. The input target positions and the estimated target positions are shown in Tab. 4.

    The multi-point imaging result is shown in Fig. 7. It can be observed thatT2 andT4 are in the same azimuth direction, whileT2 andT3 are in the same range direction. Therefore, when esti-mating the positions of these two points, only the respective columns need to be considered.

    Tab.4 Multi-point simulation results

    The FrFT results are shown in Fig. 8. It can be seen from Fig. 8 that if there are multiple points in a certain range direction, the FrFT results will also exhibit multiple peaks. Similarly,based on the positions of these peaks, the parameters of the targets can be estimated.

    From Tab. 4, we can observe that in the case of targets with certain intervals, this method provides accurate estimation for multi-point targets. The errors in all three dimensions for the multi-point targets are within 1 m, demonstrating the capability of this method to accurately locate multiple target positions.

    4.3 Strong Scattering Points Simulation

    To validate the estimation performance of this method for strong targets, two targets were set at the same slant range and azimuth positions,with Target 1 at varying heights of 15 m, 25 m,35 m, 45 m, and 55 m, and Target 2 at a height of 5 m. A total of 100 repeated experiments were simulated with different intensity ratios of 1:1,1.1:1, 1.3:1, 1.5:1, 1.8:1, 2:1, 2.5:1, and 3:1. The average error and root mean square error(RMSE) of the estimation results from this method were calculated.

    Fig. 7 Multi-point imaging: (a) defocusing result;(b) focusing result

    Fig. 8 Multi-point FrFT results: (a) FrFT results for the column containing T2 and T3; (b) FrFT results for the column containing T4

    The results in Fig. 9 indicate that when the intensity ratio between the two targets is greater than 1.5:1, this method achieves an estimation accuracy for strong target heights within 1 m.Furthermore, as the intensity ratio increases, the accuracy gradually improves, and the RMSE decreases progressively.

    Fig. 9 Strong scattering points simulation results: (a) average error of different amplitude ratios; (b) RMSE of different amplitude ratios

    5 Conclusion

    This paper proposes a novel satellite-based altitude estimation model, derives the relationship between Doppler FM rate error and target height, and introduces a 3D target localization processing workflow. FrFT is employed to estimate the Doppler FM rate and initial frequency information of the target echo. In terms of the ability to resolve overlapping points, this method is not as strong as tomographic SAR. However,in terms of timeliness, this approach can complete 3D reconstruction with just one flight.

    To validate the 3D positioning capability of this method, we conducted simulation experiments for single-point and multi-point targets.The results indicate that the positioning error in all three dimensions is within 1 m. Furthermore,to assess the estimation performance of this method for overlapping points, we simulated the estimation of overlapping points at different heights with varying intensity ratios. The results show that when the intensity ratio of overlapping points is greater than 1.5 and the separation is greater than 35 m, the RMSE of the estimation results is around 2 m.

    最新中文字幕久久久久| 国产在线精品亚洲第一网站| 在线看三级毛片| 国产一区二区三区在线臀色熟女| 免费看光身美女| 欧美中文综合在线视频| 一本久久中文字幕| 亚洲av电影在线进入| 在线视频色国产色| 国产精品久久久久久久电影 | 成人欧美大片| 欧美另类亚洲清纯唯美| 51国产日韩欧美| 18美女黄网站色大片免费观看| 在线免费观看的www视频| 神马国产精品三级电影在线观看| 国产伦一二天堂av在线观看| 中文在线观看免费www的网站| 黄色片一级片一级黄色片| 国产精品久久久久久人妻精品电影| 国产伦精品一区二区三区视频9 | 男人舔女人下体高潮全视频| 亚洲成人免费电影在线观看| 成人精品一区二区免费| 99精品在免费线老司机午夜| 免费看日本二区| 十八禁人妻一区二区| or卡值多少钱| 丰满人妻一区二区三区视频av | 深夜精品福利| 精品人妻1区二区| 免费av不卡在线播放| 欧美一区二区精品小视频在线| 狂野欧美白嫩少妇大欣赏| 国内毛片毛片毛片毛片毛片| 久久久久久久久大av| 免费在线观看影片大全网站| 久久精品亚洲精品国产色婷小说| 国产综合懂色| bbb黄色大片| 亚洲欧美日韩卡通动漫| 99精品欧美一区二区三区四区| 久久亚洲精品不卡| 伊人久久大香线蕉亚洲五| 成人高潮视频无遮挡免费网站| 一级毛片女人18水好多| 日本撒尿小便嘘嘘汇集6| 亚洲精品影视一区二区三区av| 亚洲熟妇熟女久久| 一进一出好大好爽视频| 国产三级在线视频| 此物有八面人人有两片| 男女下面进入的视频免费午夜| 午夜a级毛片| 国产野战对白在线观看| 精品不卡国产一区二区三区| 日本熟妇午夜| 亚洲午夜理论影院| 欧美日韩瑟瑟在线播放| 看黄色毛片网站| 国产色爽女视频免费观看| 很黄的视频免费| 一级作爱视频免费观看| 久久天躁狠狠躁夜夜2o2o| 综合色av麻豆| 久久精品国产亚洲av香蕉五月| 亚洲国产高清在线一区二区三| 亚洲最大成人中文| 在线播放无遮挡| 99热这里只有是精品50| 久久精品国产99精品国产亚洲性色| 青草久久国产| 性色av乱码一区二区三区2| 久久久精品欧美日韩精品| 男女做爰动态图高潮gif福利片| 国产精品久久久久久亚洲av鲁大| 亚洲欧美日韩东京热| 看免费av毛片| 亚洲男人的天堂狠狠| 欧美日韩一级在线毛片| 给我免费播放毛片高清在线观看| 亚洲精品影视一区二区三区av| 搡老妇女老女人老熟妇| 九色成人免费人妻av| 欧美性感艳星| av欧美777| eeuss影院久久| 欧美午夜高清在线| 99热只有精品国产| 国产精品久久久人人做人人爽| 国产成人系列免费观看| 男女午夜视频在线观看| 亚洲电影在线观看av| 欧美绝顶高潮抽搐喷水| av福利片在线观看| 网址你懂的国产日韩在线| 精品久久久久久久人妻蜜臀av| 男女那种视频在线观看| 欧美另类亚洲清纯唯美| 日韩欧美在线二视频| 亚洲第一欧美日韩一区二区三区| 亚洲人成伊人成综合网2020| 久久午夜亚洲精品久久| 91久久精品国产一区二区成人 | 欧美一区二区亚洲| 日本a在线网址| 成年女人永久免费观看视频| 一二三四社区在线视频社区8| 99热只有精品国产| 88av欧美| 99久久精品热视频| 欧美日本亚洲视频在线播放| 999久久久精品免费观看国产| 久久香蕉精品热| 精品福利观看| 国产毛片a区久久久久| 又黄又粗又硬又大视频| 免费人成在线观看视频色| 亚洲不卡免费看| 日本撒尿小便嘘嘘汇集6| 亚洲av免费高清在线观看| 久久天躁狠狠躁夜夜2o2o| 免费观看人在逋| 国产一区二区三区在线臀色熟女| АⅤ资源中文在线天堂| 搡老妇女老女人老熟妇| 国产精品三级大全| 久久久久久久久久黄片| 国产伦精品一区二区三区视频9 | 噜噜噜噜噜久久久久久91| 国产精品爽爽va在线观看网站| 19禁男女啪啪无遮挡网站| 亚洲内射少妇av| 99在线人妻在线中文字幕| 日韩欧美三级三区| 一进一出好大好爽视频| 国产91精品成人一区二区三区| 日韩 欧美 亚洲 中文字幕| 成年女人看的毛片在线观看| 成人一区二区视频在线观看| 精品人妻一区二区三区麻豆 | 真人做人爱边吃奶动态| 欧美日韩瑟瑟在线播放| 可以在线观看毛片的网站| 校园春色视频在线观看| 别揉我奶头~嗯~啊~动态视频| 亚洲av熟女| 久久久精品欧美日韩精品| 老汉色av国产亚洲站长工具| 久久久久久久久久黄片| 亚洲熟妇熟女久久| 母亲3免费完整高清在线观看| aaaaa片日本免费| 亚洲第一电影网av| 无限看片的www在线观看| 国产精品1区2区在线观看.| 成人av一区二区三区在线看| 午夜福利18| 丰满人妻一区二区三区视频av | 久久天躁狠狠躁夜夜2o2o| 好男人在线观看高清免费视频| 无人区码免费观看不卡| 欧美极品一区二区三区四区| 国产成人a区在线观看| 一区二区三区国产精品乱码| 手机成人av网站| 亚洲色图av天堂| 欧美日韩精品网址| 又黄又粗又硬又大视频| 国产乱人伦免费视频| 99久久久亚洲精品蜜臀av| 亚洲国产精品999在线| 热99在线观看视频| 久久久久久大精品| 性色av乱码一区二区三区2| 美女cb高潮喷水在线观看| 成人性生交大片免费视频hd| 亚洲av电影不卡..在线观看| 美女被艹到高潮喷水动态| 国产伦一二天堂av在线观看| 999久久久精品免费观看国产| 国产三级在线视频| 88av欧美| 国产成人影院久久av| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 日韩av在线大香蕉| 国产美女午夜福利| 看免费av毛片| 成人高潮视频无遮挡免费网站| 最好的美女福利视频网| 高清日韩中文字幕在线| 最近视频中文字幕2019在线8| 国产精华一区二区三区| 久久伊人香网站| 欧美日韩瑟瑟在线播放| 91字幕亚洲| 久久久久久久久久黄片| 99国产精品一区二区蜜桃av| 欧美色欧美亚洲另类二区| 日韩欧美国产在线观看| 日本熟妇午夜| 欧美日本亚洲视频在线播放| 淫秽高清视频在线观看| 别揉我奶头~嗯~啊~动态视频| 尤物成人国产欧美一区二区三区| 日韩国内少妇激情av| 久久国产乱子伦精品免费另类| 国产一区二区激情短视频| 日韩高清综合在线| 亚洲精品乱码久久久v下载方式 | 亚洲,欧美精品.| 天美传媒精品一区二区| 一进一出抽搐动态| 人妻丰满熟妇av一区二区三区| 成年女人看的毛片在线观看| 亚洲激情在线av| 一个人免费在线观看电影| 欧美色视频一区免费| 无人区码免费观看不卡| 国产aⅴ精品一区二区三区波| 天堂网av新在线| 一本综合久久免费| 黄色成人免费大全| 国产乱人视频| 国产一区二区在线观看日韩 | 香蕉丝袜av| 嫩草影院入口| 成人av在线播放网站| 日本撒尿小便嘘嘘汇集6| 欧美极品一区二区三区四区| 99热这里只有是精品50| 免费av观看视频| 老司机深夜福利视频在线观看| 网址你懂的国产日韩在线| 欧美日韩黄片免| 国产av在哪里看| 国产精品av视频在线免费观看| 亚洲18禁久久av| 九九热线精品视视频播放| 偷拍熟女少妇极品色| www.www免费av| 日韩欧美精品免费久久 | 舔av片在线| 一区二区三区免费毛片| 成人av在线播放网站| 色综合欧美亚洲国产小说| 亚洲在线自拍视频| 18+在线观看网站| 成年版毛片免费区| 国产午夜福利久久久久久| 神马国产精品三级电影在线观看| 国产蜜桃级精品一区二区三区| 国产精品日韩av在线免费观看| 69av精品久久久久久| 精品欧美国产一区二区三| e午夜精品久久久久久久| 在线播放国产精品三级| 波多野结衣巨乳人妻| 国产精品国产高清国产av| 91久久精品电影网| 男女下面进入的视频免费午夜| 国产黄a三级三级三级人| 51午夜福利影视在线观看| 一本一本综合久久| 欧美另类亚洲清纯唯美| a级一级毛片免费在线观看| 99久久九九国产精品国产免费| 日韩欧美 国产精品| 一区福利在线观看| 成人特级av手机在线观看| 免费人成视频x8x8入口观看| 可以在线观看的亚洲视频| 日韩欧美在线二视频| 少妇的逼水好多| 中文亚洲av片在线观看爽| 女人高潮潮喷娇喘18禁视频| 午夜免费观看网址| 日韩欧美免费精品| 亚洲最大成人手机在线| 色av中文字幕| 看黄色毛片网站| 欧美日韩综合久久久久久 | 国产精品一区二区三区四区久久| 一夜夜www| 成人性生交大片免费视频hd| 国产久久久一区二区三区| netflix在线观看网站| 脱女人内裤的视频| 久久精品亚洲精品国产色婷小说| 美女大奶头视频| 一个人免费在线观看电影| 久久午夜亚洲精品久久| 欧美日韩亚洲国产一区二区在线观看| 小蜜桃在线观看免费完整版高清| 国产精品99久久99久久久不卡| 好男人电影高清在线观看| 国产91精品成人一区二区三区| 亚洲av第一区精品v没综合| 国产真实乱freesex| 精品人妻一区二区三区麻豆 | 色视频www国产| 国产精品一区二区免费欧美| 国产精品国产高清国产av| 亚洲精品在线观看二区| 长腿黑丝高跟| 日本 欧美在线| 最新在线观看一区二区三区| 国产色婷婷99| 麻豆成人av在线观看| 国产av在哪里看| 日本精品一区二区三区蜜桃| 91久久精品国产一区二区成人 | 看免费av毛片| 99视频精品全部免费 在线| 色噜噜av男人的天堂激情| 亚洲性夜色夜夜综合| 成人性生交大片免费视频hd| 欧美大码av| 亚洲av二区三区四区| av国产免费在线观看| 综合色av麻豆| 在线观看日韩欧美| 男女那种视频在线观看| 亚洲精品一卡2卡三卡4卡5卡| 国产av在哪里看| 亚洲av日韩精品久久久久久密| 久久午夜亚洲精品久久| 中文字幕人妻熟人妻熟丝袜美 | 90打野战视频偷拍视频| 别揉我奶头~嗯~啊~动态视频| xxx96com| 亚洲人成网站在线播放欧美日韩| 国产真人三级小视频在线观看| 国产精品女同一区二区软件 | 999久久久精品免费观看国产| 草草在线视频免费看| 深爱激情五月婷婷| 一级黄片播放器| 人人妻人人看人人澡| 亚洲专区中文字幕在线| 国产国拍精品亚洲av在线观看 | 特大巨黑吊av在线直播| 欧美日韩国产亚洲二区| 日本与韩国留学比较| 听说在线观看完整版免费高清| 亚洲成人久久爱视频| 国产激情偷乱视频一区二区| 中文字幕av成人在线电影| 亚洲内射少妇av| 好男人在线观看高清免费视频| 怎么达到女性高潮| 国内精品美女久久久久久| 日韩欧美精品v在线| 欧美午夜高清在线| 午夜老司机福利剧场| 精品99又大又爽又粗少妇毛片 | 成年女人看的毛片在线观看| 无遮挡黄片免费观看| 偷拍熟女少妇极品色| aaaaa片日本免费| 中文字幕av在线有码专区| 精品一区二区三区人妻视频| 天堂√8在线中文| 午夜精品久久久久久毛片777| 国产激情欧美一区二区| 人妻夜夜爽99麻豆av| 有码 亚洲区| 国产淫片久久久久久久久 | 51午夜福利影视在线观看| 国产亚洲欧美98| 国产亚洲精品av在线| 免费看a级黄色片| 黄色视频,在线免费观看| 在线观看免费午夜福利视频| 免费在线观看日本一区| 一进一出抽搐gif免费好疼| 亚洲熟妇熟女久久| 久9热在线精品视频| 免费人成在线观看视频色| 嫩草影视91久久| 黄色视频,在线免费观看| 97超级碰碰碰精品色视频在线观看| 欧美另类亚洲清纯唯美| 99久久99久久久精品蜜桃| 久久欧美精品欧美久久欧美| 丰满乱子伦码专区| 免费在线观看成人毛片| 9191精品国产免费久久| 日本五十路高清| 99国产综合亚洲精品| 日本黄色片子视频| 内射极品少妇av片p| av天堂在线播放| 日本a在线网址| 久久草成人影院| 少妇熟女aⅴ在线视频| av欧美777| 国产成人影院久久av| 国内精品久久久久精免费| 久久欧美精品欧美久久欧美| 亚洲av日韩精品久久久久久密| 亚洲欧美日韩无卡精品| 岛国在线免费视频观看| 可以在线观看毛片的网站| 一区福利在线观看| 亚洲成人久久爱视频| 搡老熟女国产l中国老女人| 亚洲精品成人久久久久久| 国产精品 国内视频| 午夜久久久久精精品| 亚洲成人久久性| 淫秽高清视频在线观看| 亚洲一区高清亚洲精品| 久久久久国产精品人妻aⅴ院| 在线观看一区二区三区| 亚洲五月婷婷丁香| 日日夜夜操网爽| 最好的美女福利视频网| 免费人成视频x8x8入口观看| 天堂影院成人在线观看| 91久久精品电影网| 天美传媒精品一区二区| 国产色爽女视频免费观看| 日韩人妻高清精品专区| 51午夜福利影视在线观看| 淫妇啪啪啪对白视频| 久久欧美精品欧美久久欧美| 搡老妇女老女人老熟妇| 在线播放国产精品三级| 我的老师免费观看完整版| 免费大片18禁| 校园春色视频在线观看| 亚洲电影在线观看av| 国产一区二区亚洲精品在线观看| 蜜桃亚洲精品一区二区三区| 欧美区成人在线视频| 丰满乱子伦码专区| 最近在线观看免费完整版| 久久久久免费精品人妻一区二区| 香蕉av资源在线| 亚洲人成伊人成综合网2020| 国内精品一区二区在线观看| 五月玫瑰六月丁香| 97超级碰碰碰精品色视频在线观看| 国产乱人伦免费视频| 成年女人永久免费观看视频| 中出人妻视频一区二区| 国产精品亚洲一级av第二区| 极品教师在线免费播放| 亚洲成a人片在线一区二区| 黄色成人免费大全| 久久久久久久午夜电影| 久久精品国产99精品国产亚洲性色| 亚洲av免费高清在线观看| 欧美高清成人免费视频www| 精品国产三级普通话版| 成人av在线播放网站| 亚洲av五月六月丁香网| 床上黄色一级片| 蜜桃久久精品国产亚洲av| 亚洲成人久久性| 两个人视频免费观看高清| 高潮久久久久久久久久久不卡| 亚洲精品日韩av片在线观看 | 18禁黄网站禁片午夜丰满| 岛国在线观看网站| 国产精品一区二区三区四区久久| 97超级碰碰碰精品色视频在线观看| 久久久久国产精品人妻aⅴ院| 亚洲,欧美精品.| 国产亚洲欧美98| 波野结衣二区三区在线 | 18美女黄网站色大片免费观看| 99热这里只有是精品50| 亚洲成人精品中文字幕电影| 国产精品嫩草影院av在线观看 | 91久久精品电影网| 亚洲av一区综合| 观看免费一级毛片| 男人舔奶头视频| 老鸭窝网址在线观看| 亚洲欧美日韩高清在线视频| 久久欧美精品欧美久久欧美| 欧美zozozo另类| 一级毛片女人18水好多| 村上凉子中文字幕在线| 最后的刺客免费高清国语| 欧美日本视频| 丰满人妻一区二区三区视频av | 真实男女啪啪啪动态图| 日韩欧美精品v在线| 十八禁人妻一区二区| 午夜日韩欧美国产| avwww免费| 毛片女人毛片| 国内精品一区二区在线观看| 九色成人免费人妻av| 老司机福利观看| 中文亚洲av片在线观看爽| 国产精品爽爽va在线观看网站| 国产精品野战在线观看| 亚洲国产精品999在线| 国产欧美日韩一区二区精品| 精品不卡国产一区二区三区| 香蕉丝袜av| 可以在线观看毛片的网站| 中文字幕人成人乱码亚洲影| 成人av在线播放网站| 黄色日韩在线| 国产一区二区三区在线臀色熟女| 久久人妻av系列| 3wmmmm亚洲av在线观看| 国产成人av教育| 国产精品久久久久久久电影 | 日韩大尺度精品在线看网址| 草草在线视频免费看| 欧美3d第一页| 欧美一区二区精品小视频在线| 美女cb高潮喷水在线观看| 国语自产精品视频在线第100页| 国产伦人伦偷精品视频| 国产欧美日韩精品一区二区| 午夜免费观看网址| 亚洲第一欧美日韩一区二区三区| 久久久久久九九精品二区国产| 99riav亚洲国产免费| 久久久久国产精品人妻aⅴ院| 国产精品自产拍在线观看55亚洲| 国产成人a区在线观看| 国产高清激情床上av| 国产v大片淫在线免费观看| 亚洲av成人不卡在线观看播放网| 日韩亚洲欧美综合| 国产亚洲精品久久久久久毛片| 国产黄色小视频在线观看| 亚洲中文日韩欧美视频| 高清日韩中文字幕在线| 成人亚洲精品av一区二区| 国产真实伦视频高清在线观看 | 黄色成人免费大全| 乱人视频在线观看| 黑人欧美特级aaaaaa片| 中文字幕人成人乱码亚洲影| 少妇人妻精品综合一区二区 | 国产高清激情床上av| 欧美成人免费av一区二区三区| 亚洲美女黄片视频| 国产亚洲欧美98| 嫩草影视91久久| 熟女人妻精品中文字幕| 老汉色∧v一级毛片| 好男人在线观看高清免费视频| 欧美日韩黄片免| 久久久色成人| 国产高潮美女av| 99精品久久久久人妻精品| 日本黄大片高清| а√天堂www在线а√下载| 国产伦一二天堂av在线观看| 国内毛片毛片毛片毛片毛片| 中文资源天堂在线| 乱人视频在线观看| 中文资源天堂在线| 听说在线观看完整版免费高清| a级一级毛片免费在线观看| 老汉色av国产亚洲站长工具| 一级毛片女人18水好多| 亚洲熟妇熟女久久| 成人欧美大片| 国产精品一区二区三区四区久久| 精品一区二区三区av网在线观看| 97超视频在线观看视频| 国产色爽女视频免费观看| 在线免费观看的www视频| 观看免费一级毛片| 男女床上黄色一级片免费看| 国产成人av激情在线播放| 欧美黑人欧美精品刺激| 天堂网av新在线| 九色成人免费人妻av| 99久久精品一区二区三区| 久久香蕉国产精品| 少妇的逼水好多| 亚洲狠狠婷婷综合久久图片| 91在线观看av| 少妇裸体淫交视频免费看高清| 国产伦在线观看视频一区| 制服丝袜大香蕉在线| 久久精品国产亚洲av涩爱 | 波野结衣二区三区在线 | 在线观看日韩欧美| 少妇熟女aⅴ在线视频| 欧美zozozo另类| 国产精品亚洲美女久久久| 欧美黑人欧美精品刺激| 最近最新中文字幕大全电影3| 97超视频在线观看视频| 日本一本二区三区精品| www.999成人在线观看| 99精品在免费线老司机午夜| 国产一区二区激情短视频| 中文字幕av在线有码专区| 国产精品自产拍在线观看55亚洲| 亚洲无线观看免费| 日本a在线网址| 少妇高潮的动态图| 一边摸一边抽搐一进一小说| 熟女电影av网| 国产精品嫩草影院av在线观看 | 岛国视频午夜一区免费看| 99热这里只有是精品50| 长腿黑丝高跟| 在线国产一区二区在线| 淫秽高清视频在线观看| 亚洲无线观看免费|