• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improvement of Attributed Scattering Center Extraction by Using SAR Super-Resolution Preprocessing

    2024-01-12 14:07:36GuozhenChengJiachengChenFengmingHuFengXu

    Guozhen Cheng, Jiacheng Chen, Fengming Hu, Feng Xu

    Abstract: Synthetic aperture radar (SAR) is able to acquire high-resolution method using the active microwave imaging method.SAR images are widely used in target recognition, classification,and surface analysis, with extracted features.Attribute scattering center (ASC) is able to describe the image features for these tasks.However, sidelobe effects reduce the accuracy and reliability of the estimated ASC model parameters.This paper incorporates the SAR super-resolution into the ASC extraction to improve its performance.Both filter bank and subspace methods are demonstrated for preprocessing to supress the sidelobe.Based on the preprocessed data, a reinforcement based ASC method is used to get the parameters.The experimental results show that the super-resolution method can reduce noise and suppress sidelobe effect, which improve accuracy of the estimated ASC model parameters.

    Keywords: synthetic aperture radar (SAR); spectrum estimation; attributed scattering center(ASC); reinforcement learning

    1 Introduction

    Synthetic aperture radar (SAR) is able to map earth surface with high resolution.Since SAR operates in the microwave portion of the electromagnetic spectrum, it is able to to overcome limitations posed by cloud cover, darkness, and adverse weather conditions, making it a versatile tool for various applications.

    In some practical applications, such as radar-based material identification, classification [1], surface analysis [2], and object recognition [3,4], these all depend on accurate feature extraction.While traditional target feature extraction methods mainly focus on the image domain [5].The ideal point scattering model used only has the characterization ability of isolated scatterers, but lacks the characterization of frequency dependence and angle dependence [5].As a result, the model can only roughly extract the geometric shape features reflecting the target,but cannot provide shape dependent parameters,and thus cannot fully characterize the essential properties of the target [6].The electromagnetic characteristics of the target can be described using either mathematical or physical models.The established electromagnetic model shows the relationship between the scattering center and the target physical component, which enables an accurate description of physical properties [7,8].Feature extraction based on electromagnetic scattering model directly extracts its genus from the scattering response of the target information avoids information loss in the process of intermediate links [8], and fully characterizes the frequency and angle of the target.The degree and polarization-dependent characteristics are more conducive to target identification [9].

    Attributed scattering center extraction(ASC) involves identifying and characterizing discrete scattering centers within a SAR image[10].Scattering centers are individual points or areas on a target that contribute significantly to the radar echo received by the SAR system [11].These centers possess unique characteristics that can help differentiate between different types of targets and their physical properties [12].ASC methods attempt to isolate these scattering centers and extract information about their attributes, which could include location, size, shape,and radar cross-section (reflectivity) [13].

    ASC techniques play a crucial role in SAR image interpretation and understanding complex scenes [10,13].They can enhance target discrimination and enable more accurate target recognition and classification [14].However, the challenges posed by sidelobe effects, along with factors like noise and complex terrain, need to be carefully addressed to ensure the reliability of the extracted scattering center attributes.

    2-D SAR focusing algorithms (such as range Doppler algorithm (RDA), range migration algorithm (RMA) [15,16], etc.) requires both range and azimuth FFT for original raw data respectively.Since the limited range of the two-dimensional frequency domain support in the range and azimuth direction [17], sidelobe appears in the target SAR image, which might be erroneously interpreted as scattering centers or targets, leading to the generation of false attribute information.In the context of ASC applications, this could result in the misestimation of target attributes, thereby impacting target classification and identification.This concern becomes particularly pertinent when the target closely resembles its surroundings or when the target’s resolution is low.Sidelobe effects could potentially mask genuine target features, making their accurate extraction and analysis challenging [18].

    In order to address the impact of sidelobe effects in ASC applications, a spectral estimation approach is employed for super-resolution imaging to mitigate the interference caused by sidelobes [19].This technique involves enhancing image resolution by analyzing the spectral information of the signal.In this paper, two methods,Capon [20] and multiple signal classification(MUSIC) [21], are utilized to process the twodimensional SAR images [17].Subsequently, the processed images are subjected to ASC.By improving the resolution of the images through spectral analysis, ASC can then yield more accurate and reliable information about the scattering centers, aiding in better target understanding and characterization.

    2 Methodology

    According to the frequency modulated continuous wave (FMCW) SAR imaging model [22], the imaging problem of FMCW SAR can be transformed into a 2-D complex sinusoidal signal parameter estimation problem.The signal model of applying spectral estimation method in radar imaging processing is

    wherex(m,n) is the sampling data after preprocessing andm=0,...,M-1,n= 0,...,N-1.Range frequency of Scatterpisωrp, azimuth frequency isωap, and complex backscattering coefficient issp.The numberDof signal components is determined by the estimation method of signal sources numbers.At first, the frequency parameter (position)θ=(ωr,ωa) of target point is estimated.Then the backscatter coefficients of target point can be estimated according to the expected parameterθi=(ωr,i,ωa,i)D i=1.In this paper, Filter bank method and Subspace orthogonal decomposition method are studied.

    2.1 Filter Bank Method

    The filter bank method is a general term for a series of methods, which used to analyze a signal’s frequency content across multiple frequency bands.It involves decomposing a signal into various subbands using a set of filters that have specific frequency ranges [23].The Capon method,also known as minimum variance distortionless response (MVDR) , is one of the filter bank methods for spectral estimation.It is commonly applied in the field of signal processing to enhance signal resolution and suppress noise[20,24].

    In the following formulation, lowercase boldface italic characters refer to vectors while uppercase boldface italic characters refer to matrices.For either real- or complex-valued matrices, (.)*will be used to denote the Hermitian conjugate(or complex-conjugate transpose) operation.

    For simplicity, the one-dimensional formulation is presented.Assuming theNobservationszT=[z1,...,zN] , then theMpoints filter with center frequencyωis

    This algorithm constructs a bank of adaptive bandpass finite impulse-response filters with a length ofM.Then a bank of filtershω1,...,hωNis expected.Such filter can be applied on all observations and produces a response only at its central frequencyω

    Ris the covariance matrix of the observations,we define the vector of data sampleszl=[zl zl+1...zl+M-1]T, the number of the samplesL=N-M+1,Yis

    andRis computed by

    Finally, we get the new estimation [20]

    The Capon filter constructs a set of filters with the property that the energy passing through the filter is as small as possible.So the response only contains a single frequency component.The corresponding manifestation is in the spectrum, where a spike appears and the sidelobe is suppressed.

    2.2 Subspace Orthogonal Decomposition Method

    This method make eigen-decomposition on the autocorrelation matrix of signal and use the eigenvectors as a set of orthogonal vectors to construct a linear space [25].Multiple signal classification (MUSIC) method is a typical algorithm of subspace orthogonal decomposition method for spectral estimation.MUSIC makes eigen-decomposition on covariance matrix of the data to obtain the signal subspace corresponding to the signal component and the noise subspace orthogonal to the signal components [21,26].Then the two orthogonal subspaces are used to estimate the signal parameters.For the high resolution of MUSIC method under a certain condition, it is widely used in super-resolution information processing.

    The signal observation model of MUSIC method can be expressed as

    where data vectorx(k)=[x1(k)...xL(k)]Tis the received data fromLspatial array elements in thektimes,n(k)=[n1(k)...nL(k)]Tis noise vector,s(k)=[s1(k)...sL(k)]Tis composed ofDsignal vectors,L×Ddimensional matrix.A=[a(ω1)...a(ωD)]Tanda(ω) is steering vector.

    We assume that the signal and noise are independent [21], the data covariance matrix can be decomposed into two independent orthogonal subspaces:

    The dimension of the signal subspace isDand the dimension noise subspace isL×D.The basic column vectors of noise subspace can be constitute the matrixUN, and the spectral peak searching of MUSIC method is as follows [21]

    We assume that SAR image is a 2-D spectrum and 2-D IFFT is firstly applied on the image.Then the data is reshaped to get theYmatrix and adopt the process described in Sections 2.1 and 2.2.Fig.1 shows the process flow of a single chip image [5].

    Fig.1 The process flow of MUSIC and Capon

    2.3 ASC

    2.3.1 ASC Model

    Two-dimensional attributed scattering center model describes the dependence of the backward scattering field of the target scattering center on frequency and azimuth under monostatic condition in the high-frequency region.The expression of a single attributed scattering center is[6,11,12,27]

    The backscattered field is modeled by a concise set of seven parametersθ=(A,α,x,y,L,φ,γ),the physical meaning of which is clear.αis taken as one of {-1, -0.5, 0, 0.5, 1} here, according to the values ofLandα, the scattering centers can be simply classified into seven types as listed in Tab.1 [6,13,27].The total backscattered field of a complex target can be expressed as the superposition ofPattributed scattering centers while adding the noise [6,27].

    whereEiis the scattering field of each single scattering center, andNis the noise matrix.Retrieval of the number of scattering centersPand the parametersθiof each scattering center from the total scattering fieldEof is an illposed and multiplicity problem.Considering the sparsity of the scattering centers of scattering field,the scattering center extraction is represented as a sparse representation problem to obtain a feasible solution.The above equation (12) can be equivalent to solving followingL0norm optimization problem defined as follows [6,11,12].

    wheresis the vectorized total scattering,Dis an overredundant dictionary generated according to the ASCM parameters collectionΘ=θ1,θ2,...,θi,...,θQ,σis a sparse vector with non-zero valuesAiin a few positions,nis vectorized noise matrix.

    Tab.1 Scattering center types [6]

    2.3.2 A Reinforcement Learning Method for ASC

    Almost all the traditional ASC parameter estimation methods lack an efficient parameter update strategy, since the large parameter space brings great algorithm complexity.The proposed reinforcement learning approach enable a efficient parameter estimation by modeling the repetitive iterative process of parameter optimization as the interaction process between the agent and the environment [28].This algorithm can significantly improved the efficiency while the accuracy of the algorithm is guaranteed and is able to extract ASC parameters from measured data effectively.It modeled the form of iterative optimizations as an RL environment [29], where its interaction framework is illustrated in Fig.2.The training dataset is generated randomly with the parameters of SNR, number and position of scatterers.The agent can choose the actions to take at each time step, which will change the state of the environment in an unknown way, and receive feedback based on the results of the actions, and the cumulative reward function is defined as

    whereγtis the reward intstep,γ ∈(0,1] is discount factor.Thus, the parameter of next interaction Θi+1=Θi+ΔΘiis obtained [30].More details of this method is shown in [28].

    Fig.2 Interaction flow in the single scattering center parameter retrieval

    3 Results

    3.1 Super-Resolution Results

    Three dataset are used to evaluate the algorithms.The first demonstration, a simulation data is used to test the algorithms.The simulation data parameters is set as shown in Tab.2.The corresponding results are shown in Fig.3.Fig.3(d) shows that Capon reduces the noise to a certain extent compared with the original simulation data Fig.3(a), but the scatterer centers cannot be identified clearly.Fig.3(g) shows the result that processed by MUSIC.It greatly reduces the noise of the image, and greatly weakens the sidelobe, so that the dense scatterers can be well distinguished.

    Tab.2 Simulation data parameters

    The second demonstration, we test the algorithms on a measured airborne SAR data.Fig.3(b)shows the corner reflector SAR image, showing significant sidelobe and noise.Similar to previous results, the performance of noise reduction by capon is weaker than that by MUSIC.Fig.4 shows the measured data PSF in range and azimuth.Both Capon and MUSIC can suppress the sidelobe, and MUSIC even has better performance compared with Capon.

    Fig.3 Preprocessed results using spectral estimation methods: (a) simulation data; (b) measured data in Tianjin; (c) data from MSTAR; (d)(e)(f) results used Capon method; (g)(h)(i) results used MUSIC method

    Fig.4 PSF of the super-resolution result use Tianjin data: (a) Azimuth PSF; (b) Range PSF

    The third demonstration is conducte using the MSTAR dataset.The data were collected by the Sandia National Laboratory SAR sensor platform.The collection was jointly sponsored by the Defense Advanced Research Projects Agency and the Air Force Research Laboratory as part of the MSTAR program [31].Hundreds of thousands of SAR images containing ground targets were collected, including different target types, aspect angles, depression angles, serial number, and articulation, and only a small subset of which are publicly available on the website [32].The dataset provides a variety of different types of radar images, including images from different angles, different polarizations, and different target types, as well as real data containing noise and clutter, which shown in Fig.3(c).Fig.3 (f)and (i) are the results of Capon and MUSIC processing results.MUSIC does better not only noise reduction but also sidelobe suppression.

    The performance of MUSIC and Capon varies with the scene.Based on the concept of signal subspace and noise subspace, MUSIC can obtain signal subspace by calculating the eigenvalue decomposition of signal and noise covariance matrix.In contrast, Capon relies on the inverse of the covariance matrix, and its calculation process can produce numerical instability in the case of low signal noise.MUSIC and Capon may show different strengths in different situations.Capon method can better deal with the balance between signal and noise, and is suitable for the case of relatively low signal noise.On the other hand, the MUSIC method may be more accurate in the case of high SNR.Which method should be chosen depends on the needs of the particular application and the signal environment.

    3.2 ASC Results

    Based on the proposed reinforcement learning approach, the ASC parameters of the three dataset are obtained correspondingly.Note that the residuals between the original and the reconstructed image vary with the radar imaging process, which cannot be used for the evaluation.So we only focus on the difference between the estimated and the true ASC parameters.In the simulated and measured dataset, we have the actual ASC parameters since the types of the targets are known.

    The experimental results of simulation data show that the preprocessing algorithm is helpful for the ASC inversion algorithm to decouple the scattering centers with tight spatial distribution,as shown in Fig.5 (a)(d)(g).From the results of inversion parameters, it can be found by comparing the true values in the simulation that super-resolution preprocessing can improve the accuracy of scattering center position parameters,but it will increase the inversion errors of other information such as intensity.A feasible idea is to invert the position parameters only with the preprocessed image, and then fix the position parameters and invert other parameters on the original image.

    The experimental of measured data results show that for ASC inversion of a single target,whether using MUSIC method or Capon method for pre-processing, it is better than direct inversion without processing.Fig.5(b) shows that due to the influence of sidelobe, the ASC inversion method in image domain will disassemble a single angular inverse target into multiple scattering centers by mistake.After MUSIC and Capon preprocessing as shown in Fig.5(e)(h),only one scattering center is obtained.The type of scattering center deduced by inversion parameters is angular inverse (L=0,α=1), which is consistent with the actual situation as shown in Tab.3.Moreover, Tab.3 shows that with Capon or MUSIC, the number of scatters is estimated more accuracy that less noise is estimated to signal by mistake.L,αare estimated almost with no errors.

    For the measured data MSTAR, the inversion directly on the original image will also invert part of the background noise as the scattering center of the target as shown in Fig.5(c), which is eliminated by the two pretreatment methods.MUSIC preprocessing can assist ASC inversion algorithm to distinguish multiple scattering centers that are misidentified as one distributed scattering center.In contrast, Fig.5(f)(i) show that the Capon method makes it easier to weaken some weak scattering centers near the strong scattering centers, so that they are ignored by the inversion algorithm.

    Fig.5 Rebuilt image based on parameter retrieval result of proposed method: (a)(b)(c) using the origin data rebuilt image based on parameter retrieval result of proposed ASC method; (d)(e)(f) and (g)(h)(i) results obtained using Capon and MUSIC

    Tab.3 Estimated ASC parameters

    In summary, the superresolution preprocessing algorithm has the following conclusions for ASC inversion in the image domain: 1) It can eliminate most of the side lobes and noise effects on inversion results; 2) Both the MUSIC method and the Capon method are applicable to scattering centers with sparse spatial distribution; 3)For images with dense scattering centers, the MUSIC method is more suitable; 4) It can improve the accuracy of scattering center location parameters, but it will also lead to an increase in errors related to the inversion of intensity and other information; 5) In order to better apply to the ASC parameter inversion task, only the pre-processed image can be used to invert the position parameters, and then other parameters can be inverted on the original image.

    4 Conclusion

    In this study, we implemente the Capon and MUSIC algorithms to achieve super-resolution reconstruction of SAR images and incorporates this process into the ASC parameters estimation.These super-resolution algorithms effectively suppresses noise and sidelobe present in the original images.The experimental results demonstrate a significant improvement in the accuracy and reliability of retrieving the scattering center information.Typically, Capon could reduces noise and suppresses sidelobe without the need to set additional hyperparameters, but need much compute resources, and poor performance in the case of low SNR condition.Compared with Capon,MUSIC has better performance, but such performance improvement depends on selecting a suitable noise subspace size.So optimal noise subspace size should be investigated in the future work.

    国产一区二区三区综合在线观看 | 国产日韩欧美在线精品| .国产精品久久| 国产精品成人在线| 久久综合国产亚洲精品| 51国产日韩欧美| 天堂网av新在线| 99视频精品全部免费 在线| 99热国产这里只有精品6| 成人特级av手机在线观看| 亚洲最大成人手机在线| 国产综合懂色| 国产av码专区亚洲av| 99热国产这里只有精品6| 午夜免费鲁丝| 91精品国产九色| 人人妻人人爽人人添夜夜欢视频 | 久久亚洲国产成人精品v| 久久热精品热| 久久人人爽人人爽人人片va| 日韩av免费高清视频| 日韩强制内射视频| 一级二级三级毛片免费看| av国产久精品久网站免费入址| 日本欧美国产在线视频| 在线免费十八禁| 日本黄色片子视频| 国产成人freesex在线| 自拍偷自拍亚洲精品老妇| 精品国产三级普通话版| 国产成人免费观看mmmm| 国产成年人精品一区二区| 嫩草影院精品99| 能在线免费看毛片的网站| 免费观看的影片在线观看| 狂野欧美激情性bbbbbb| 久久精品久久久久久久性| 少妇熟女欧美另类| 免费看光身美女| 国产黄频视频在线观看| 欧美日韩精品成人综合77777| 欧美国产精品一级二级三级 | 五月伊人婷婷丁香| 午夜视频国产福利| 国产欧美亚洲国产| 中文字幕久久专区| 亚洲aⅴ乱码一区二区在线播放| 高清av免费在线| 男女国产视频网站| av一本久久久久| 男女下面进入的视频免费午夜| 深夜a级毛片| 国产欧美另类精品又又久久亚洲欧美| 在线观看国产h片| 久久韩国三级中文字幕| 18禁裸乳无遮挡免费网站照片| 国产片特级美女逼逼视频| 国产一级毛片在线| 一级毛片我不卡| 亚洲欧美清纯卡通| 久久精品久久久久久久性| 乱码一卡2卡4卡精品| 国产精品不卡视频一区二区| 五月开心婷婷网| 亚洲欧美精品自产自拍| 只有这里有精品99| 久久久久久伊人网av| 男女国产视频网站| 91精品伊人久久大香线蕉| 麻豆成人午夜福利视频| 热re99久久精品国产66热6| 高清毛片免费看| 午夜精品一区二区三区免费看| 久久精品国产亚洲av涩爱| 九九在线视频观看精品| 久久99蜜桃精品久久| 欧美精品人与动牲交sv欧美| 国产精品福利在线免费观看| 久久99热这里只有精品18| 亚洲最大成人av| 免费观看无遮挡的男女| 男人和女人高潮做爰伦理| 国产中年淑女户外野战色| 欧美成人午夜免费资源| 免费看av在线观看网站| 久久久久性生活片| 午夜福利视频1000在线观看| 午夜爱爱视频在线播放| 欧美3d第一页| 国产 一区 欧美 日韩| 在线观看一区二区三区激情| 午夜视频国产福利| 亚洲成色77777| 成人毛片a级毛片在线播放| 婷婷色麻豆天堂久久| 精品国产三级普通话版| 有码 亚洲区| 亚洲av一区综合| 欧美成人一区二区免费高清观看| 热99国产精品久久久久久7| 成年人午夜在线观看视频| 女人被狂操c到高潮| 老女人水多毛片| 一级毛片aaaaaa免费看小| 内射极品少妇av片p| 亚洲av二区三区四区| 国产免费一级a男人的天堂| av免费观看日本| 爱豆传媒免费全集在线观看| 深爱激情五月婷婷| 国模一区二区三区四区视频| 一本一本综合久久| 男人狂女人下面高潮的视频| 成年av动漫网址| 亚洲丝袜综合中文字幕| 国产精品.久久久| 91久久精品电影网| 日韩中字成人| 男女边吃奶边做爰视频| 超碰av人人做人人爽久久| 国产精品熟女久久久久浪| 日韩一区二区三区影片| 高清在线视频一区二区三区| a级一级毛片免费在线观看| 国产精品爽爽va在线观看网站| 校园人妻丝袜中文字幕| 久久久色成人| 国产v大片淫在线免费观看| 精品一区二区三卡| 99re6热这里在线精品视频| 欧美精品一区二区大全| 一区二区av电影网| 欧美另类一区| 亚洲高清免费不卡视频| 性色avwww在线观看| 麻豆精品久久久久久蜜桃| 亚洲精品一区蜜桃| 午夜免费观看性视频| 免费大片黄手机在线观看| 老司机影院毛片| 亚洲精品,欧美精品| 国产成人一区二区在线| 欧美区成人在线视频| 亚洲精品,欧美精品| 日韩三级伦理在线观看| 欧美zozozo另类| 亚洲国产色片| 亚洲精品中文字幕在线视频 | 亚洲人成网站在线观看播放| 欧美日韩综合久久久久久| 婷婷色麻豆天堂久久| 五月玫瑰六月丁香| 九色成人免费人妻av| videossex国产| 18禁动态无遮挡网站| 成人午夜精彩视频在线观看| 高清午夜精品一区二区三区| eeuss影院久久| 激情 狠狠 欧美| 国产精品99久久99久久久不卡 | videossex国产| 91精品国产九色| 国产伦理片在线播放av一区| 久久久久久九九精品二区国产| 在线观看三级黄色| 男男h啪啪无遮挡| 啦啦啦啦在线视频资源| 午夜免费观看性视频| 亚洲国产高清在线一区二区三| 男女下面进入的视频免费午夜| 色视频在线一区二区三区| 麻豆乱淫一区二区| 天堂网av新在线| 在线天堂最新版资源| 少妇人妻一区二区三区视频| 听说在线观看完整版免费高清| 丝袜脚勾引网站| 观看免费一级毛片| 成人亚洲精品一区在线观看 | 在线观看人妻少妇| 国产午夜精品一二区理论片| av福利片在线观看| 久久久久精品久久久久真实原创| 亚洲精品久久午夜乱码| 国产视频内射| 亚洲精华国产精华液的使用体验| 91久久精品电影网| 高清av免费在线| 丰满乱子伦码专区| 18禁在线无遮挡免费观看视频| 能在线免费看毛片的网站| 国产乱来视频区| 久久久精品免费免费高清| 中文天堂在线官网| 大片电影免费在线观看免费| 老司机影院成人| 男人添女人高潮全过程视频| 午夜福利在线观看免费完整高清在| 亚州av有码| 99久国产av精品国产电影| 精品人妻一区二区三区麻豆| 看十八女毛片水多多多| 五月伊人婷婷丁香| 久久影院123| 婷婷色av中文字幕| 亚洲精品一二三| freevideosex欧美| 国产视频首页在线观看| 少妇 在线观看| 精品视频人人做人人爽| 身体一侧抽搐| 五月玫瑰六月丁香| 在线免费十八禁| 一级毛片aaaaaa免费看小| av在线蜜桃| 午夜激情久久久久久久| 99久国产av精品国产电影| 老师上课跳d突然被开到最大视频| 欧美最新免费一区二区三区| 国产精品秋霞免费鲁丝片| 午夜亚洲福利在线播放| 日本黄色片子视频| 高清视频免费观看一区二区| 街头女战士在线观看网站| 亚洲av一区综合| 免费看av在线观看网站| 欧美激情国产日韩精品一区| 深夜a级毛片| 亚洲色图综合在线观看| 欧美3d第一页| 一个人看视频在线观看www免费| 成人黄色视频免费在线看| 少妇裸体淫交视频免费看高清| 国产成人aa在线观看| 国产又色又爽无遮挡免| 国产乱人视频| 国产精品精品国产色婷婷| 51国产日韩欧美| 国产午夜精品一二区理论片| 久久精品人妻少妇| 精品午夜福利在线看| 国产亚洲av嫩草精品影院| 成人美女网站在线观看视频| 国产精品一区二区性色av| 日本猛色少妇xxxxx猛交久久| 国产精品熟女久久久久浪| 成人一区二区视频在线观看| 人妻夜夜爽99麻豆av| 麻豆国产97在线/欧美| 最近的中文字幕免费完整| 亚洲精华国产精华液的使用体验| 午夜福利在线在线| 狂野欧美激情性xxxx在线观看| 国产乱来视频区| 亚洲,欧美,日韩| 看非洲黑人一级黄片| 观看美女的网站| 午夜福利在线在线| 久久久国产一区二区| 国产精品久久久久久精品电影小说 | 亚洲精品日韩在线中文字幕| 亚洲精品国产色婷婷电影| 国产亚洲一区二区精品| 日日摸夜夜添夜夜添av毛片| 欧美亚洲 丝袜 人妻 在线| 超碰av人人做人人爽久久| 欧美3d第一页| 国产精品.久久久| 日韩大片免费观看网站| 色婷婷久久久亚洲欧美| 成年女人在线观看亚洲视频 | 熟女人妻精品中文字幕| 小蜜桃在线观看免费完整版高清| 亚洲精品视频女| 国产视频首页在线观看| 韩国高清视频一区二区三区| 天天一区二区日本电影三级| www.色视频.com| 男人和女人高潮做爰伦理| 精品久久久久久久人妻蜜臀av| 亚洲精品视频女| 超碰av人人做人人爽久久| 欧美成人精品欧美一级黄| 久久女婷五月综合色啪小说 | av女优亚洲男人天堂| 久久久精品免费免费高清| 亚洲欧美精品专区久久| 久久精品久久精品一区二区三区| 国产91av在线免费观看| 精品国产露脸久久av麻豆| 777米奇影视久久| 日韩 亚洲 欧美在线| 在线播放无遮挡| 黄片wwwwww| 欧美xxxx黑人xx丫x性爽| 国产综合懂色| 精品人妻偷拍中文字幕| 亚洲精品国产成人久久av| 久久久久久久大尺度免费视频| 黄色一级大片看看| 国产成人免费观看mmmm| 久久久久网色| 欧美日本视频| 免费观看a级毛片全部| 亚洲va在线va天堂va国产| 国产成人a区在线观看| 日韩欧美 国产精品| 国产精品女同一区二区软件| 欧美成人午夜免费资源| 精品国产一区二区三区久久久樱花 | 色哟哟·www| 免费黄色在线免费观看| 不卡视频在线观看欧美| 久久久久久伊人网av| 99热6这里只有精品| 伊人久久精品亚洲午夜| 国产男人的电影天堂91| 欧美丝袜亚洲另类| 国产毛片a区久久久久| 久久久成人免费电影| 午夜爱爱视频在线播放| 亚洲精品一二三| 国产成人91sexporn| 国产 精品1| 伊人久久精品亚洲午夜| 亚州av有码| 免费黄色在线免费观看| 国产探花极品一区二区| 亚洲av男天堂| 国产乱来视频区| 国产白丝娇喘喷水9色精品| 国产av不卡久久| a级毛色黄片| 国产精品一区二区三区四区免费观看| 国产精品一及| 少妇 在线观看| 九草在线视频观看| 中文精品一卡2卡3卡4更新| 国产视频内射| 夫妻性生交免费视频一级片| 黑人高潮一二区| 国产黄色视频一区二区在线观看| 在线精品无人区一区二区三 | 亚洲天堂av无毛| 丰满少妇做爰视频| 午夜免费观看性视频| 精品国产乱码久久久久久小说| 最近手机中文字幕大全| 欧美高清成人免费视频www| 国内揄拍国产精品人妻在线| 国产免费一区二区三区四区乱码| 精品久久久噜噜| 国产真实伦视频高清在线观看| 一本久久精品| 国产精品不卡视频一区二区| 亚洲怡红院男人天堂| 亚洲人与动物交配视频| 女人久久www免费人成看片| xxx大片免费视频| 久久精品久久久久久久性| 亚洲av二区三区四区| 一边亲一边摸免费视频| 免费看av在线观看网站| 99视频精品全部免费 在线| 在线观看国产h片| 99久久人妻综合| 亚洲精品乱码久久久久久按摩| av在线天堂中文字幕| 精品亚洲乱码少妇综合久久| 亚洲精品乱码久久久久久按摩| 卡戴珊不雅视频在线播放| 美女被艹到高潮喷水动态| 黄片wwwwww| 老司机影院成人| 国产成人freesex在线| xxx大片免费视频| 欧美成人精品欧美一级黄| 亚洲欧美一区二区三区黑人 | 晚上一个人看的免费电影| 国内精品美女久久久久久| 亚洲色图综合在线观看| 精品视频人人做人人爽| av免费观看日本| 久久久久国产精品人妻一区二区| av天堂中文字幕网| 亚洲精品国产成人久久av| 高清在线视频一区二区三区| 深夜a级毛片| 在线免费十八禁| 网址你懂的国产日韩在线| 国国产精品蜜臀av免费| 欧美高清性xxxxhd video| 自拍偷自拍亚洲精品老妇| 国产人妻一区二区三区在| 国产精品一区二区三区四区免费观看| 亚洲丝袜综合中文字幕| 久久国产乱子免费精品| 久久久色成人| 亚洲av二区三区四区| 亚洲精品久久午夜乱码| 久久精品熟女亚洲av麻豆精品| 最新中文字幕久久久久| 狂野欧美激情性bbbbbb| 大陆偷拍与自拍| 欧美日韩视频高清一区二区三区二| 99热这里只有是精品50| 日韩欧美精品v在线| 国产精品熟女久久久久浪| 日日摸夜夜添夜夜添av毛片| 97超视频在线观看视频| 国产69精品久久久久777片| 亚洲电影在线观看av| 听说在线观看完整版免费高清| 国产 一区 欧美 日韩| 日本色播在线视频| 中文乱码字字幕精品一区二区三区| 免费看光身美女| 国产黄a三级三级三级人| 久久久久久久久久久丰满| 国产精品偷伦视频观看了| 国产片特级美女逼逼视频| 国产白丝娇喘喷水9色精品| 舔av片在线| 黄色欧美视频在线观看| 久久国产乱子免费精品| 水蜜桃什么品种好| 久久久久久久久久人人人人人人| 亚洲精品国产色婷婷电影| 高清在线视频一区二区三区| 街头女战士在线观看网站| 国产片特级美女逼逼视频| 女人久久www免费人成看片| av在线天堂中文字幕| 亚洲av成人精品一区久久| 亚洲av成人精品一二三区| 成人二区视频| 国产黄色免费在线视频| 下体分泌物呈黄色| 欧美三级亚洲精品| 亚洲高清免费不卡视频| 天天一区二区日本电影三级| 成人特级av手机在线观看| 男女无遮挡免费网站观看| 高清日韩中文字幕在线| 国产一级毛片在线| 男女边摸边吃奶| 毛片女人毛片| 你懂的网址亚洲精品在线观看| 免费观看性生交大片5| 亚洲欧美成人精品一区二区| 麻豆国产97在线/欧美| videos熟女内射| 一区二区av电影网| 国产精品久久久久久久久免| 日日啪夜夜撸| 国产精品久久久久久精品电影小说 | 啦啦啦啦在线视频资源| 91久久精品电影网| 2021少妇久久久久久久久久久| 免费人成在线观看视频色| 久久久久久久午夜电影| 校园人妻丝袜中文字幕| 国产欧美日韩精品一区二区| 七月丁香在线播放| 国产精品久久久久久久久免| 午夜福利在线在线| 亚洲国产精品成人久久小说| 亚洲色图av天堂| 免费大片18禁| 看黄色毛片网站| 亚洲av福利一区| 尤物成人国产欧美一区二区三区| 久久国产乱子免费精品| 51国产日韩欧美| 1000部很黄的大片| 丰满少妇做爰视频| 久久鲁丝午夜福利片| 舔av片在线| 久久这里有精品视频免费| 七月丁香在线播放| 亚洲久久久久久中文字幕| 国产精品无大码| 亚洲欧美日韩另类电影网站 | 一级毛片aaaaaa免费看小| 亚洲av.av天堂| 亚洲精品乱码久久久v下载方式| 97人妻精品一区二区三区麻豆| 国产中年淑女户外野战色| 国内少妇人妻偷人精品xxx网站| 能在线免费看毛片的网站| 色综合色国产| 欧美一区二区亚洲| 日日摸夜夜添夜夜添av毛片| 激情五月婷婷亚洲| 午夜免费观看性视频| 亚洲内射少妇av| 免费少妇av软件| 97超视频在线观看视频| 高清在线视频一区二区三区| 少妇人妻 视频| 成年av动漫网址| 精品久久久久久久久亚洲| 久久99热6这里只有精品| 亚洲精品久久久久久婷婷小说| 人妻少妇偷人精品九色| 1000部很黄的大片| 老司机影院成人| 国内精品美女久久久久久| 日本欧美国产在线视频| 全区人妻精品视频| 插阴视频在线观看视频| 三级男女做爰猛烈吃奶摸视频| 欧美成人a在线观看| 白带黄色成豆腐渣| 久久6这里有精品| www.av在线官网国产| 国产黄片视频在线免费观看| 一个人看视频在线观看www免费| 超碰av人人做人人爽久久| 久久亚洲国产成人精品v| av一本久久久久| 午夜免费男女啪啪视频观看| 久久久精品94久久精品| 精品久久久久久久人妻蜜臀av| 一级a做视频免费观看| 国产欧美日韩精品一区二区| 一级片'在线观看视频| 久久精品熟女亚洲av麻豆精品| 国产男女内射视频| 午夜视频国产福利| 国产午夜精品一二区理论片| 欧美精品国产亚洲| 青春草视频在线免费观看| 国产男人的电影天堂91| 黄色欧美视频在线观看| 高清av免费在线| 成人午夜精彩视频在线观看| 成人特级av手机在线观看| 少妇的逼水好多| av一本久久久久| 日韩成人伦理影院| 国产综合精华液| 亚洲欧美日韩东京热| 国精品久久久久久国模美| 成年版毛片免费区| 丰满少妇做爰视频| 你懂的网址亚洲精品在线观看| 男插女下体视频免费在线播放| 精品熟女少妇av免费看| 2021少妇久久久久久久久久久| av在线蜜桃| 狂野欧美白嫩少妇大欣赏| 日韩av不卡免费在线播放| av女优亚洲男人天堂| 欧美精品人与动牲交sv欧美| 欧美xxxx性猛交bbbb| 2021天堂中文幕一二区在线观| 一级av片app| 视频区图区小说| 伊人久久国产一区二区| 国产成人免费观看mmmm| 国产高清三级在线| 一级片'在线观看视频| 午夜免费男女啪啪视频观看| 美女xxoo啪啪120秒动态图| 天天一区二区日本电影三级| 国产成人免费无遮挡视频| 成年版毛片免费区| 毛片一级片免费看久久久久| 欧美日韩综合久久久久久| 热99国产精品久久久久久7| 国产爱豆传媒在线观看| 亚洲精品第二区| 日本色播在线视频| 蜜桃久久精品国产亚洲av| 亚洲国产av新网站| 别揉我奶头 嗯啊视频| 国产欧美另类精品又又久久亚洲欧美| 欧美一级a爱片免费观看看| 一边亲一边摸免费视频| 另类亚洲欧美激情| 美女xxoo啪啪120秒动态图| 久久久久国产网址| 欧美成人a在线观看| 国产有黄有色有爽视频| 在现免费观看毛片| 亚洲精品自拍成人| 国产精品伦人一区二区| 亚洲欧美成人综合另类久久久| 久久久a久久爽久久v久久| 在线观看三级黄色| 国产午夜精品一二区理论片| 免费大片18禁| h日本视频在线播放| 大香蕉97超碰在线| 日韩人妻高清精品专区| 啦啦啦啦在线视频资源| 精品人妻视频免费看| 尤物成人国产欧美一区二区三区| 国产男人的电影天堂91| 日韩在线高清观看一区二区三区| 91在线精品国自产拍蜜月| 亚洲成人av在线免费| 久久久久精品性色| 蜜臀久久99精品久久宅男| 欧美成人精品欧美一级黄| 九九久久精品国产亚洲av麻豆| 国产日韩欧美亚洲二区| 亚洲国产欧美在线一区| 国产在线男女| 一区二区三区四区激情视频| 国产老妇女一区| 麻豆成人午夜福利视频| 日本与韩国留学比较| 99久久人妻综合|