• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The complete plastid genome provides insight into maternal plastid inheritance mode of the living fossil plant Ginkgo biloba

    2024-01-06 01:53:24MengxueFengHnghuiKongMeixiuLinRongjingZhngWeiGong
    植物多樣性 2023年6期

    Mengxue Feng ,Hnghui Kong ,Meixiu Lin ,Rongjing Zhng ,** ,Wei Gong ,*

    a College of Life Sciences,South China Agricultural University,Guangzhou 510614,China

    b Key Laboratory of Plant Resources Conservation and Sustainable Utilization,South China Botanical Garden,Chinese Academy of Sciences,Guangzhou 510650,China

    The plastid is widely present in algae and plants with important functions in the process of photosynthesis,carbon fixation,and stress response (Shi et al.,2022).Despite the consistency between plastid genomes in plants,size variation of the plastid genome,gene loss,structure changes,and pseudogenes have been frequently observed (Ivanova et al.,2017).Plastid genome has currently shown a wide application in research of phylogeny,populations and biogeography in combination with nucleus genome (Wang et al.,2021).As is known,the plastid originates from cyanobacteria through two independent secondary endosymbiosis and has its own genetic replication mechanism (Howe et al.,2003).Thus,plastids have been suggested not to be transmitted according to the rules of Mendelian genetics,but generally demonstrate uniparental inheritance mode (Birky,1995).Concerning the uniparental inheritance of plastids,research have been mainly conducted on species of angiosperms,but few on gymnosperms or ferns (Kita et al.,2005;Li et al.,2013).

    Uniparental inheritance potentially evolved from relaxed organelle inheritance patterns because it mitigates the spread of cytoplasmic components.Three possible patterns were suggested for plastid inheritance,including maternally,paternally and biparentally (Reboud and Zeyl,1994;Kormutak et al.,2018).Angiosperms seem to display mainly a maternal transmission of its plastids (Greiner et al.,2015).In most gymnosperms,the plastid transmission is considered to occur exclusively by paternal inheritance.Cryptomeria japonicawas the first gymnosperm known to inherit its plastid genome from its male parent (Ohba et al.,1971).Most conifers exhibit exclusively or predominantly paternal inheritance of both plastids and mitochondrias (Mogensen,1996;Jansen and Ruhlman 2012;Lubna et al.,2021).However,there are a few exceptions.Several gymnosperms,includingGinkgo,are supposed to probably exhibit maternal inheritance of both plastids and mitochondrias.A few of studies have been carried out for plastid inheritance of gymnosperm species,most of which are based on cytological analysis(Mogensen,1996;Guo et al.,2005;Zhong et al.,2011).So far,the information seems to be fragmentary and no strong evidence is available specifically forGinkgo.

    Ginkgo bilobaL.is a sole representative of Ginkgoales-one of the eight extant gymnosperm orders (Yang et al.,2022).This species shows a geographical distribution range in broadleaved forest of both subtropical and temperate zones in Eastern Asia.It is widely cultivated all over the world due to its highly horticultural,medicinal and ecological values.Several glacial refugial ofG.bilobawere identified in subtropical evergreen broad forest in China(Gong et al.,2008;Zhao et al.,2019).This species is a dioecious tree plant,with separate male and female individuals.The characteristics of separate male and female individuals produced by dioecy could rule out the possibility of self-pollination and show advantages in studying plastid genetic research(Zhai and Sun,2015).During genetic crosses,different parents were selected for artificial pollination to produce hybrid offsprings,then genetic similarities and differences between the parents and offsprings were compared to explore their organelle inheritance more distinctively.A few of research have been conducted onG.bilobasince its first plastid genome was assembled and annotated (Lin et al.,2012;Zhou et al.,2020;Yang et al.,2021).However,previous research only focused on structural comparison and gene composition of the plastid genome,which aimed to develop molecular markers,analyze plant phylogeny,or compare genomics.So far,no molecular evidence is available to reveal the inheritance mode of the plastid genome ofG.biloba.

    Traditional methods to investigate organelle inheritance involve hybridization experiment,using electron microscopy or DAPI fluorescence microscopy,as well as molecular markers,such as restriction fragment length polymorphism (RFLPs),and simple sequence repeats (SSRs) (Zhong et al.,2011).Most recently,the development of next-generation sequencing technologies has stimulated a rapid and successful achievement in the database of plastid genomes (Wang et al.,2018).Thus,genomic data demonstrates a strong potentiality to explore the molecular mechanism of organelle inheritance mode(Villanueva-Corrales et al.,2021).In the current study,we conducted artificial pollination for three crosses ofGinkgo biloba.Using next generation sequencing,plastid genomes of all the parents and offsprings were investigated and compared,showing strong genomic evidence on maternal inheritance mode.

    Two female and three male trees ofGinkgo bilobawere selected as candidates for genetic crosses.Artificial pollinations were conducted in the county of Pingtian,Nanxiong,Guangdong Province,in southern China,which is suggested as one of the glacial refugia with a large population ofGinkgotrees (Zhao et al.,2019).Two femaleGinkgotrees over 100 years,showing an average diameter at breast height (DBH) more than 80 cm and an average height of~20 m,are recorded to possess high seed production.Thus,they were chosen as maternal origin.Three old maleGinkgotrees,estimated to be over 100 years,showing an average DBH more than 80 cm and an average height of~20 m,were selected as paternal origin.In April,2016,the branches of the female trees were wrapped with parchment paper and the male flowers from the nearby male trees were all removed before flowering in order to avoid any pollen pollution.Artificial pollinations were conducted for three crosses.For each cross,seeds were collected and germinated.The accession information for each cross and the corresponding offsprings in the current study were listed in Table S1.

    Fresh leaves were collected from the seedlings in the spring.Leaf tissue was ground in tubes with glass beads with the tissue homogenizer Tissuelyser-96 (Shanghai Jingxin Industrial Development Co.,Ltd).Total genomic DNA was extracted with modified cetyl trimethyl ammonium bromide (CTAB) method (Doyle and Doyle,1987).An Illumina HiSeq2000 sequencer was used to sequence paired-end(PE)sequencing libraries with an average 300 bp insert length.Over 10 million clean reads were passed through quality control with a 150 bp each read length.

    We assembled the plastid genome using GetOrganelle pipeline(https://github.com/Kinggerm/GetOrganelle) and editingde novoassembly graph using Bandage (Coil et al.,2015).The plastid genome ofGinkgo biloba(MN443423.1) (Yang et al.,2021) was downloaded from NCBI and used as the reference sequence.PGA(https://github.com/quxiaojian/PGA) (Qu et al.,2019),Geneious 9.1.4 (Biomatters Ltd.,Auckland,New Zealand),and ARAGORN program were jointly used for annotating the plastid genome in comparison with references.The circular genome map ofG.bilobawas illustrated with the Organellar Genome DRAW tool(OGDRAW,available online:http://ogdraw.mpimp-golm.mpg.de/)(Lohse et al.,2013).

    The plastid genome sequences from the finalized data set of all parents and F1 individuals were aligned with MAFFT v.7.0.0(Katoh and Standley,2013) with manual adjustment when necessary.Using DnaSP 6(Rozas et al.al.,2017),we determined the substitutions numbers and types of the sequences,and also performed comparative analyses of the nucleotide diversity (Pi) among the complete plastid genomes of the parents and offsprings based on a sliding window analysis.All the protein coding genes (PCGs) were extracted and aligned using MAFFT v.7.0.0.Using DnaSP 6 and MEGA v.11.0 (Tamura et al.,2021),we estimated the genetic distance between the parents and offsprings based on Kimura 2-parameter (K2-P’s) model.

    The original reads were mapped to plastid genome references using BWA-0.7.17-R1188 (Li,2013) to detect the SNPs between the parents and the offsprings.The generated bam files were sorted and variant calls were performed by Samtools-1.7 and Bcftools v.1.9,respectively (Danecek et al.,2021;Li,2009,2011).Sequence similarities between the parents and offsprings were used as reference indicators.To identify SNPs among parents and F1 individuals,we inspected the alignment results in Geneious and generated haplotype files using DnaSP 6.All the SNPs were statistic to identify the polymorphism between the parents and offsprings.

    All parents and F1 individuals were used to reconstruct phylogenetic relationships in order to trace plastid genome inheritance.Cycas revoluta(JN867588) was used as outgroup.Maximum parsimony (MP) method was applied for phylogenetic analyses by PAUP* v.4.0 (Swofford,2002).Bootstrap values were calculated in PAUP* with 1000 bootstrap replicates.Neighbor-Joining (NJ)method was also used to conduct phylogenetic analysis among all parents and F1 individuals by MEGA v.11.0 (Tamura et al.,2021).Additionally,using GetOrganelle pipeline,we assembled nuclear ribosomal RNA sequences (18S-ITS1-5.8S-ITS2-26S) and extracted the ITS regions,which were further used to reconstruct phylogenetic trees as a control.

    A total number of 2 × 150 bp pair-end reads of 6,504,575-35,285,882 were produced with 1.95-10.59 Gb of clean data.All reads data were deposited in the NCBI Sequence Read Archive(SRA)(Table S3).The size of the complete plastid genome is from 156,970 bp to 156,999 bp,which is supposed to be smaller than cycads ranging from 161,815 to 166,341 bp (Wu and Chaw,2015).The plastid genome displays a typical quadripartite structure,including a pair of IRs of 17,733 bp each in length,separated by LSC region ranging from 99,248 bp to 99,267 bp and SSC region from 22,257 bp to 22,266 bp(Fig.1 and Table S2).The GC content of the plastid genome is 39.6%,within that range of gymnosperms from 34.3% to 40.11% (Wu and Chaw,2015).The plastid genome encodes 134 predicted functional genes when duplicated genes in the IR regions were only counted once.A total of 85 PCGs,41 tRNA genes and eight rRNA genes are identified among all the individuals(Table S2).The remaining non-coding regions include introns,intergenic spacers,and pseudogenes.Each of the four genes (two PCGs and two tRNA genes)contains only one intron.

    Fig.1.Phylogenomic analysis for all parents and F1 offsprings in three genetic crosses(G1,G2 and G3)of Ginkgo bilboa based on Maximum Parsimony(MP)method.Cycas revoluta was used as an outgroup.Numbers above the branches represent bootstrap values.

    The IRs can be normally identified by a central unit of eight rRNA genes includingrrn4.5,rrn5,rrn16 andrrn23.InGinkgo biloba,the IRs were detected to be composed of 13 genes,including three PCGs,six tRNA genes,and four rRNA genes.In comparison with other gymnosperms,the length of IRs inG.bilobais shorter thanCycas revoluta(25,066 bp;JN867588),Nothotsuga longibracteata(25,918 bp) andEphedra sinica(20,743 bp),but longer thanCycas taitungensis(15,830 bp)and some conifers that lost IRs.Due to the lack ofycf2 gene,the IRs inG.bilobaare relatively shorter than that of the most angiosperms.Consequently,the LSC/IR junction region,which is supposed to retain the completeycf2 gene and the adjoiningpsbA orrpl23-rps3 gene cluster in order,has been changed and produces a pseudolized Ψrpl23 gene.

    The average nucleotide variability(Pi)value was estimated to be 0.75 × 10-5among parents and offsprings based on the comparative analysis with DnaSP 6(Fig.S2).The nucleotide variability(Pi)is overall low with only eight genes displaying relatively high values(Pi>0.0001),which arepsbK-I,trnG-R,infA-rps8,ycf2,trnL-ndhB,ndhAintron,ycf1,andndhB-trnL.The first four loci are present in the LSC,while two genesndhAintron andycf1 in SSC.Therefore,the highest variation was found in the LSC region withPiranging from 0.0001 to 0.0014,followed by the SSC region(Fig.S2).The IRs had much lower nucleotide diversity,each of which possesses only one gene showingPi>0.0001.Those eight highly variable loci are thus suggested as phylogenetic informative markers for population research ofGinkgo biloba.

    Based on theK2-P’sparameter model,we calculated the genetic distance among the parents and offsprings using 86 PCGs.TheK2-P’sgenetic distance is major generated by that between male parent and offsprings,with the value of(0.06-1.27)×10-4among the three genetic crosses (Table 1).TheK2-P’sgenetic distance between female parent and offsprings is extremely weak with overall values to be 0.We aligned the plastid genome sequences for allGinkgoparents and off springs to detect the SNPs and check the numbers of offsprings that are consistent with female or male parent.Notably,all offsprings show SNPs identical to their female parent (Table 1).Consequently,all offsprings possess the same haplotypes with female parent based on three genetic crosses(Table S4).

    Table 1 K2-P’s genetic distance and the number of SNPs among all parents and offsprings.

    We performed phylogenetic analyses for each cross,in order to detect the evolutionary relationship of the parent and offsprings based on MP and NJ trees (Figs.1,S3 and S4).In each cross,all F1 individuals grouped with their female parent,forming a monophyly with a high bootstrap value,while the male parent was divergent from them based on MP and NJ analysis(Fig.1).As for the control based on ITS data in G1 and G2 crosses,some individuals of the F1 individuals grouped with female parent,while others with male parents.No result was shown for G3 cross as there is no variation detected in ITS among the individuals.

    The plastid genome ofGinkgo bilobais revealed to be a circular molecule about 156,978 bp with a pair of IRs(35,466 bp)separated by large single-copy (LSC: 99,254 bp) and small single-copy (SSC:22,258 bp) regions with GC content 39.6% (Fig.S1),which is consistent with the result given by Lin et al.(2012)and Lubna et al.(2021),although the total lengths differ slightly.The plastid genome ofG.bilobais characterized by the shortened IR region due to the complete loss ofycf2,which is about 7,269 bp in length(Lin et al.,2012;Lubna et al.,2021).This gene is detected to be informative at population level with relatively high nucleotide diversity(Pi>0.0001).It is also suggested to be an information phylogenetic marker for ferns and gymnosperms,as it shows two copies in the IR regions inCycasandGenetum,but only one copy in LSC or SSC region inG.bilobaandPinus,respectively(Lin et al.,2012).Therefore,the evolution ofycf2 gene demonstrates to be potential in phylogenetic analysis and speciation of plant species.

    In the current study,altogether 134 genes were identified including 85 PCGs,41 tRNAs and four rRNAs.The total number of the genes is consistent with the previous research(Lin et al.,2012).However,when we compared with the data set in GenBank deposited by Lin et al.(2012),about ten genes were missing in the annotations of the plastid genome.After annotations for all genes,the generpl23 was also revealed to be pseudolized.This gene is detected to be pseudo due to the truncated 5’ region as in comparison withCycas(Lin et al.,2012;Lubna et al.,2021).The generpl23 is commonly found in angiosperms,but lost in some gymnosperms,therefore,the pseudorpl23 demonstrates strong evolutionary implications in plant species as well.

    As is known,the inheritance of plastid genome differs from that of the nuclear genome.Maternal inheritance,which is the most common form of seed plant organelle transmission,demonstrates the transfer of chloroplasts from the female parent to the progeny.Maternal inheritance of chloroplast occurs when the organelles are only present in the cytoplasm of the egg cells during the fertilization of eggs in seed plants (Vaughn et al.,1980).Though paternal inheritance of plastid genome is widely distributed in gymnosperms,several species have been reported to show maternalinheritance,includingGinkgo,Gnetum,andCycas(Neale et al.,1989;Mogensen,1996).However,the evidence for uniparental inheritance of gymnosperms is mostly based on cytological method previously.The current study is further confirmed plastid genome inheritance inGinkgobased on genomic data using next generation sequencing.

    Concerning the investigations of organelle inheritance of plant species,traditional methods including hybridization experiment,electron microscopy,DAPI fluorescence microscopy or genetic markers demonstrate several disadvantages.First,the cytological methods only show the process of the transfer of chloroplasts without any further investigation in the offsprings.No molecular evidence is available to prove the phylogenetic relationship among the parents and offsprings.Second,the traditional molecular markers,such as PCR-RFLP or SSRs,are less informative and effective than SNPs based on genomic data.With the development of next-generation sequencing technologies,a rapid and successful achievement has been promoted in the database of genomic data,among which is plastid genome(Wang et al.,2018).Genomic data shows a strong potentiality to be applied in the exploration of molecular mechanism of organelle inheritance (Villanueva-Corrales et al.,2021).Additionally,artificial crosses help to control the origins of male and female parents,which make possible to compare the genomic constituent among parents and offsprings.The combination of manually genetic crosses and chloroplast genomic data is an efficient way to investigate the inheritance mode of the chloroplasts in land plants.In our study,strong molecular evidence has been provided for maternal inheritance mode of its plastid genomes.Therefore,we suggested artificial crosses together with subsequent verification of SNPs among parents and progenies to be a recommendable way to directly infer organelle genome inheritance in land plants.

    Data availability

    The high-quality sequencing data of current study were deposited in the NCBI under Bioproject accession number PRJNA866875.Other supporting data were provided within the article.

    Author contributions

    W.G.was the principal investigator and wrote the manuscript.R.Z.contributed mainly to field work,including sample collections and artificial pollinations.M.F.and H.K.contributed equally to lab work,data analysis,and figures.M.F.edited the manuscript and had discussion with H.K.and M.L.

    Declaration of competing interest

    The authors declared no conflict of interest.

    Acknowledgements

    We are very grateful to Miss Juan Zhou and Dr.Wanzhen Liu for their assistance in field work.This work is supported by the National Natural Science Foundation of China (32270218 and 31970231).

    Appendix A.Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.pld.2023.09.001.

    亚洲av美国av| 在线观看舔阴道视频| 国产视频一区二区在线看| 人人妻,人人澡人人爽秒播| 午夜福利,免费看| 欧美精品一区二区大全| 老司机福利观看| 美国免费a级毛片| 欧美+亚洲+日韩+国产| 人妻 亚洲 视频| 性色av乱码一区二区三区2| 久久九九热精品免费| www.熟女人妻精品国产| 国产视频一区二区在线看| 国产精品香港三级国产av潘金莲| 久久99一区二区三区| 国产精品秋霞免费鲁丝片| 免费在线观看日本一区| 国产高清视频在线播放一区 | e午夜精品久久久久久久| 久久久久久久精品精品| 欧美日韩亚洲高清精品| 国产免费现黄频在线看| 精品久久久久久电影网| 王馨瑶露胸无遮挡在线观看| 12—13女人毛片做爰片一| 日韩视频在线欧美| 电影成人av| 亚洲欧美成人综合另类久久久| 各种免费的搞黄视频| 日本vs欧美在线观看视频| 亚洲成国产人片在线观看| 亚洲国产欧美在线一区| 制服人妻中文乱码| 男男h啪啪无遮挡| 下体分泌物呈黄色| 老司机靠b影院| 国产亚洲精品第一综合不卡| 午夜福利一区二区在线看| 亚洲精品国产精品久久久不卡| 最近最新中文字幕大全免费视频| 免费人妻精品一区二区三区视频| 色婷婷av一区二区三区视频| 91精品国产国语对白视频| 91精品伊人久久大香线蕉| 亚洲国产欧美日韩在线播放| 久久精品人人爽人人爽视色| 爱豆传媒免费全集在线观看| 曰老女人黄片| h视频一区二区三区| 久久99一区二区三区| 欧美一级毛片孕妇| 国产精品免费视频内射| 人妻一区二区av| 欧美日韩成人在线一区二区| 啦啦啦中文免费视频观看日本| 国产无遮挡羞羞视频在线观看| 久久av网站| 青草久久国产| 天堂8中文在线网| 韩国高清视频一区二区三区| 国产一卡二卡三卡精品| 男人操女人黄网站| 久久青草综合色| 悠悠久久av| 精品人妻熟女毛片av久久网站| 欧美日韩视频精品一区| 亚洲中文日韩欧美视频| 少妇精品久久久久久久| 久久免费观看电影| 亚洲精品久久午夜乱码| 亚洲少妇的诱惑av| 叶爱在线成人免费视频播放| 夫妻午夜视频| 婷婷色av中文字幕| 老司机影院毛片| 日韩制服骚丝袜av| 男人爽女人下面视频在线观看| 巨乳人妻的诱惑在线观看| 在线看a的网站| 自拍欧美九色日韩亚洲蝌蚪91| 色婷婷久久久亚洲欧美| 午夜免费观看性视频| 亚洲精品自拍成人| av国产精品久久久久影院| 飞空精品影院首页| 欧美激情高清一区二区三区| 欧美少妇被猛烈插入视频| 久久久久国产精品人妻一区二区| 精品人妻熟女毛片av久久网站| 最黄视频免费看| 少妇猛男粗大的猛烈进出视频| 伊人久久大香线蕉亚洲五| 国产免费现黄频在线看| 高清av免费在线| 欧美精品亚洲一区二区| 91精品三级在线观看| 后天国语完整版免费观看| 亚洲精品久久午夜乱码| 亚洲国产毛片av蜜桃av| 久久免费观看电影| 日日摸夜夜添夜夜添小说| av线在线观看网站| 欧美精品人与动牲交sv欧美| 精品国产乱子伦一区二区三区 | 首页视频小说图片口味搜索| 又紧又爽又黄一区二区| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲精品第二区| 成年女人毛片免费观看观看9 | 美女国产高潮福利片在线看| 人人妻,人人澡人人爽秒播| 在线观看人妻少妇| avwww免费| 久久久水蜜桃国产精品网| 美女大奶头黄色视频| 日韩有码中文字幕| 欧美日韩亚洲国产一区二区在线观看 | 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲成国产人片在线观看| 欧美大码av| 正在播放国产对白刺激| 少妇 在线观看| 国产亚洲av片在线观看秒播厂| 久久av网站| 桃红色精品国产亚洲av| av天堂久久9| 久久久久久免费高清国产稀缺| 久久久久精品人妻al黑| 国产欧美日韩综合在线一区二区| 丝袜美足系列| videos熟女内射| 中文字幕另类日韩欧美亚洲嫩草| 一本色道久久久久久精品综合| 欧美国产精品va在线观看不卡| 日韩精品免费视频一区二区三区| 久久久久久久久久久久大奶| 搡老乐熟女国产| 久久久精品区二区三区| 在线精品无人区一区二区三| 国产欧美日韩综合在线一区二区| 9191精品国产免费久久| 男人舔女人的私密视频| 亚洲精品一二三| 纵有疾风起免费观看全集完整版| 一区在线观看完整版| 日韩大片免费观看网站| 91精品伊人久久大香线蕉| 欧美日韩黄片免| 宅男免费午夜| 国产精品九九99| 这个男人来自地球电影免费观看| 少妇的丰满在线观看| 91精品伊人久久大香线蕉| 国产日韩欧美视频二区| 久久国产精品影院| 最新在线观看一区二区三区| 亚洲欧洲日产国产| 搡老熟女国产l中国老女人| 久久久精品区二区三区| 精品少妇一区二区三区视频日本电影| 高潮久久久久久久久久久不卡| 97精品久久久久久久久久精品| 欧美在线黄色| 99国产精品一区二区蜜桃av | 一区在线观看完整版| 另类亚洲欧美激情| 久久99一区二区三区| 亚洲av电影在线观看一区二区三区| 成年动漫av网址| 丰满少妇做爰视频| 欧美人与性动交α欧美精品济南到| 国产亚洲精品一区二区www | 交换朋友夫妻互换小说| 精品人妻在线不人妻| 97精品久久久久久久久久精品| 国产精品欧美亚洲77777| 日韩视频一区二区在线观看| 人人妻,人人澡人人爽秒播| 国产精品欧美亚洲77777| 51午夜福利影视在线观看| 蜜桃国产av成人99| av一本久久久久| 免费人妻精品一区二区三区视频| 99re6热这里在线精品视频| 妹子高潮喷水视频| 国产高清国产精品国产三级| 国产精品偷伦视频观看了| 亚洲精品成人av观看孕妇| 国产区一区二久久| 欧美激情高清一区二区三区| 老司机深夜福利视频在线观看 | 免费久久久久久久精品成人欧美视频| 午夜福利视频精品| 日韩熟女老妇一区二区性免费视频| 丁香六月欧美| 国产男人的电影天堂91| 国产色视频综合| 99re6热这里在线精品视频| 亚洲国产毛片av蜜桃av| 午夜两性在线视频| 人妻人人澡人人爽人人| 久久午夜综合久久蜜桃| 性少妇av在线| 国产欧美日韩一区二区精品| 亚洲中文日韩欧美视频| 人妻 亚洲 视频| 欧美成狂野欧美在线观看| 久久精品国产综合久久久| 无遮挡黄片免费观看| 日韩人妻精品一区2区三区| 国产高清videossex| 成人av一区二区三区在线看 | 在线十欧美十亚洲十日本专区| 国产一卡二卡三卡精品| 色婷婷av一区二区三区视频| 亚洲欧美日韩另类电影网站| 亚洲中文av在线| 可以免费在线观看a视频的电影网站| 精品福利观看| 久久精品人人爽人人爽视色| 欧美另类一区| 涩涩av久久男人的天堂| 亚洲色图 男人天堂 中文字幕| 午夜福利影视在线免费观看| 91麻豆精品激情在线观看国产 | 搡老岳熟女国产| 国产精品 国内视频| 黑人欧美特级aaaaaa片| 在线观看一区二区三区激情| 免费观看a级毛片全部| 美国免费a级毛片| av视频免费观看在线观看| 免费观看a级毛片全部| 不卡av一区二区三区| 久久亚洲国产成人精品v| 国产精品秋霞免费鲁丝片| 亚洲一区中文字幕在线| 女性生殖器流出的白浆| 正在播放国产对白刺激| 精品亚洲成a人片在线观看| 亚洲人成电影观看| 我要看黄色一级片免费的| 少妇被粗大的猛进出69影院| 夜夜夜夜夜久久久久| 亚洲成人免费电影在线观看| 大型av网站在线播放| av国产精品久久久久影院| 国产又爽黄色视频| 国产麻豆69| 一边摸一边做爽爽视频免费| 国产福利在线免费观看视频| 亚洲av片天天在线观看| 国产精品九九99| 国产精品欧美亚洲77777| 99国产极品粉嫩在线观看| 最新的欧美精品一区二区| 搡老熟女国产l中国老女人| 久久亚洲国产成人精品v| 成年女人毛片免费观看观看9 | 男男h啪啪无遮挡| 亚洲第一青青草原| 午夜久久久在线观看| 嫩草影视91久久| 这个男人来自地球电影免费观看| 夜夜骑夜夜射夜夜干| 日本精品一区二区三区蜜桃| √禁漫天堂资源中文www| 日韩欧美国产一区二区入口| 一区在线观看完整版| 狂野欧美激情性bbbbbb| 久久精品国产亚洲av高清一级| 中文字幕av电影在线播放| 两个人免费观看高清视频| 极品人妻少妇av视频| 亚洲精品国产区一区二| 亚洲五月婷婷丁香| 国产精品熟女久久久久浪| 国产伦理片在线播放av一区| 国产成人影院久久av| 亚洲av成人一区二区三| 欧美日本中文国产一区发布| 久久午夜综合久久蜜桃| 久久久欧美国产精品| 各种免费的搞黄视频| 少妇粗大呻吟视频| 两性夫妻黄色片| 曰老女人黄片| 日本a在线网址| 99国产精品99久久久久| 日本黄色日本黄色录像| 国产一区二区 视频在线| 亚洲成人免费av在线播放| 国产欧美日韩一区二区精品| 亚洲精品国产区一区二| 亚洲美女黄色视频免费看| 老熟妇乱子伦视频在线观看 | 国产99久久九九免费精品| 人妻 亚洲 视频| 精品久久蜜臀av无| 国产亚洲av片在线观看秒播厂| 亚洲一卡2卡3卡4卡5卡精品中文| 激情视频va一区二区三区| 纵有疾风起免费观看全集完整版| 老司机深夜福利视频在线观看 | 国产精品一区二区精品视频观看| 国产免费福利视频在线观看| 国产在视频线精品| 成在线人永久免费视频| 亚洲中文日韩欧美视频| 91成年电影在线观看| 淫妇啪啪啪对白视频 | 美女扒开内裤让男人捅视频| 天天影视国产精品| 爱豆传媒免费全集在线观看| 涩涩av久久男人的天堂| 久久久久久亚洲精品国产蜜桃av| 精品人妻1区二区| 欧美日韩福利视频一区二区| 国产精品久久久久久精品古装| 最近最新免费中文字幕在线| 精品福利观看| 亚洲激情五月婷婷啪啪| 国产精品1区2区在线观看. | 热99久久久久精品小说推荐| 亚洲欧洲日产国产| av视频免费观看在线观看| 欧美日韩亚洲国产一区二区在线观看 | 成年动漫av网址| 可以免费在线观看a视频的电影网站| av天堂在线播放| 黄色片一级片一级黄色片| 不卡一级毛片| 国产av又大| 国产日韩欧美视频二区| 汤姆久久久久久久影院中文字幕| 亚洲熟女毛片儿| 国产精品 国内视频| 手机成人av网站| 黄频高清免费视频| 国产精品久久久久成人av| 亚洲av电影在线进入| 看免费av毛片| 女人久久www免费人成看片| 日日夜夜操网爽| 国产一区二区三区综合在线观看| 脱女人内裤的视频| 国产亚洲欧美在线一区二区| 亚洲成人手机| 老司机影院毛片| 久久国产亚洲av麻豆专区| 国产在线免费精品| 精品卡一卡二卡四卡免费| 国产一区二区激情短视频 | 香蕉丝袜av| 亚洲av片天天在线观看| 叶爱在线成人免费视频播放| 亚洲av成人一区二区三| 久久人妻福利社区极品人妻图片| 国产亚洲精品一区二区www | 国内毛片毛片毛片毛片毛片| 99久久综合免费| 国产精品九九99| 久久 成人 亚洲| 欧美日本中文国产一区发布| 看免费av毛片| 午夜福利免费观看在线| 国产免费一区二区三区四区乱码| 亚洲精品粉嫩美女一区| 黄色毛片三级朝国网站| 美女高潮到喷水免费观看| 国产精品一区二区免费欧美 | 精品卡一卡二卡四卡免费| 视频区欧美日本亚洲| 一级毛片精品| 人人妻人人澡人人爽人人夜夜| 成人影院久久| 国产精品影院久久| 亚洲人成电影免费在线| 人人妻,人人澡人人爽秒播| 老司机午夜十八禁免费视频| 国产野战对白在线观看| 日韩中文字幕视频在线看片| 欧美97在线视频| 91麻豆av在线| 国产精品久久久人人做人人爽| 多毛熟女@视频| 久久毛片免费看一区二区三区| 正在播放国产对白刺激| 十八禁网站免费在线| 亚洲色图综合在线观看| 亚洲av日韩精品久久久久久密| 久久 成人 亚洲| 久久精品人人爽人人爽视色| 无限看片的www在线观看| 成年美女黄网站色视频大全免费| 色老头精品视频在线观看| 满18在线观看网站| 日韩 亚洲 欧美在线| 久久免费观看电影| 建设人人有责人人尽责人人享有的| 十八禁人妻一区二区| 亚洲欧美激情在线| av福利片在线| 亚洲精品一区蜜桃| 久久久久视频综合| 在线观看免费视频网站a站| 国产成人啪精品午夜网站| 亚洲精品久久成人aⅴ小说| 国产成人啪精品午夜网站| 欧美午夜高清在线| 我的亚洲天堂| 五月开心婷婷网| 91精品国产国语对白视频| 午夜福利一区二区在线看| 成人国产av品久久久| 另类精品久久| 麻豆国产av国片精品| 女人被躁到高潮嗷嗷叫费观| 亚洲av男天堂| 亚洲精品久久成人aⅴ小说| 正在播放国产对白刺激| 日韩,欧美,国产一区二区三区| 男男h啪啪无遮挡| 久久人妻福利社区极品人妻图片| 老司机在亚洲福利影院| 欧美成狂野欧美在线观看| 亚洲专区中文字幕在线| 国产区一区二久久| 精品人妻在线不人妻| 成人18禁高潮啪啪吃奶动态图| 99精品欧美一区二区三区四区| 精品一区在线观看国产| 久久久精品免费免费高清| 国产精品免费大片| 国产又色又爽无遮挡免| 久久99热这里只频精品6学生| 久久女婷五月综合色啪小说| 国产老妇伦熟女老妇高清| 久久久久国内视频| 国产精品国产三级国产专区5o| 国产一区二区三区av在线| 欧美+亚洲+日韩+国产| 两人在一起打扑克的视频| 国产xxxxx性猛交| a级片在线免费高清观看视频| 老司机午夜十八禁免费视频| 在线观看人妻少妇| 亚洲综合色网址| 亚洲第一av免费看| 午夜成年电影在线免费观看| 在线观看免费视频网站a站| 人妻久久中文字幕网| 日韩视频在线欧美| 国产激情久久老熟女| 亚洲精品久久成人aⅴ小说| 法律面前人人平等表现在哪些方面 | 纵有疾风起免费观看全集完整版| a级毛片黄视频| 久久天躁狠狠躁夜夜2o2o| 麻豆乱淫一区二区| 久久精品成人免费网站| 97精品久久久久久久久久精品| 这个男人来自地球电影免费观看| 超碰97精品在线观看| 亚洲色图 男人天堂 中文字幕| 成年av动漫网址| 日本vs欧美在线观看视频| 天天躁狠狠躁夜夜躁狠狠躁| 色综合欧美亚洲国产小说| 日韩 欧美 亚洲 中文字幕| 午夜成年电影在线免费观看| 中文字幕人妻丝袜一区二区| 国产99久久九九免费精品| 欧美日韩中文字幕国产精品一区二区三区 | 精品亚洲成国产av| 国产亚洲欧美精品永久| 日韩欧美一区视频在线观看| 成人影院久久| 国产一区二区三区综合在线观看| 人妻人人澡人人爽人人| 欧美日韩亚洲综合一区二区三区_| 热99国产精品久久久久久7| 日韩欧美免费精品| 777久久人妻少妇嫩草av网站| 18在线观看网站| 欧美日韩亚洲高清精品| 少妇的丰满在线观看| 80岁老熟妇乱子伦牲交| 久久国产亚洲av麻豆专区| 在线看a的网站| 又紧又爽又黄一区二区| 一区二区av电影网| avwww免费| 伦理电影免费视频| 久久中文看片网| 人人澡人人妻人| 人人妻人人澡人人爽人人夜夜| 一边摸一边抽搐一进一出视频| 一区二区三区精品91| 乱人伦中国视频| 午夜成年电影在线免费观看| 美女高潮到喷水免费观看| 国产老妇伦熟女老妇高清| 如日韩欧美国产精品一区二区三区| 乱人伦中国视频| 免费av中文字幕在线| 亚洲精品美女久久av网站| 欧美性长视频在线观看| 91国产中文字幕| 久久精品国产a三级三级三级| 法律面前人人平等表现在哪些方面 | 黑人猛操日本美女一级片| 日本黄色日本黄色录像| 五月天丁香电影| 国产精品偷伦视频观看了| 新久久久久国产一级毛片| 欧美精品av麻豆av| 色94色欧美一区二区| av免费在线观看网站| 99精品久久久久人妻精品| 欧美97在线视频| 国产99久久九九免费精品| 在线看a的网站| 欧美 日韩 精品 国产| 婷婷丁香在线五月| 在线天堂中文资源库| 亚洲自偷自拍图片 自拍| 中文欧美无线码| 精品亚洲成a人片在线观看| 制服人妻中文乱码| 久久国产精品大桥未久av| 狂野欧美激情性bbbbbb| 日韩一卡2卡3卡4卡2021年| 国产精品国产av在线观看| 亚洲av成人一区二区三| 免费高清在线观看视频在线观看| av天堂在线播放| 91大片在线观看| 久久人妻福利社区极品人妻图片| 国产无遮挡羞羞视频在线观看| 狂野欧美激情性xxxx| 亚洲国产精品999| 精品久久久精品久久久| 国产色视频综合| 亚洲第一av免费看| 一级毛片精品| 麻豆av在线久日| 成人国产一区最新在线观看| 伦理电影免费视频| 香蕉丝袜av| 欧美亚洲日本最大视频资源| 亚洲精品久久久久久婷婷小说| 国产精品久久久久久精品古装| 国产国语露脸激情在线看| www.自偷自拍.com| 亚洲天堂av无毛| 一区二区三区激情视频| 丝袜人妻中文字幕| www日本在线高清视频| 肉色欧美久久久久久久蜜桃| 美女国产高潮福利片在线看| 麻豆av在线久日| 欧美日韩黄片免| 午夜精品久久久久久毛片777| 婷婷成人精品国产| 欧美日韩一级在线毛片| 精品亚洲乱码少妇综合久久| 各种免费的搞黄视频| 一区福利在线观看| 正在播放国产对白刺激| 91精品三级在线观看| 少妇猛男粗大的猛烈进出视频| 国产精品自产拍在线观看55亚洲 | 两性夫妻黄色片| 久久人人97超碰香蕉20202| 成人国产av品久久久| 亚洲国产毛片av蜜桃av| 2018国产大陆天天弄谢| 18禁国产床啪视频网站| 高潮久久久久久久久久久不卡| 成在线人永久免费视频| 丝袜脚勾引网站| 又大又爽又粗| 涩涩av久久男人的天堂| 久久99热这里只频精品6学生| 老鸭窝网址在线观看| 新久久久久国产一级毛片| 午夜免费鲁丝| 电影成人av| 国产亚洲av片在线观看秒播厂| xxxhd国产人妻xxx| 中亚洲国语对白在线视频| 久久久国产欧美日韩av| 啦啦啦在线免费观看视频4| 电影成人av| 日本91视频免费播放| 啦啦啦在线免费观看视频4| 久久天躁狠狠躁夜夜2o2o| 嫩草影视91久久| 91麻豆av在线| 日韩 欧美 亚洲 中文字幕| 一本一本久久a久久精品综合妖精| 久久久久精品国产欧美久久久 | av网站免费在线观看视频| 亚洲va日本ⅴa欧美va伊人久久 | 国产高清国产精品国产三级| 美女高潮喷水抽搐中文字幕| 精品久久蜜臀av无| 国产精品国产av在线观看| 亚洲精品av麻豆狂野| 精品久久久久久久毛片微露脸 | 久久精品aⅴ一区二区三区四区| 国产片内射在线| 亚洲精品粉嫩美女一区|