收稿日期:2024-01-07" " "第一作者簡(jiǎn)介:邱深(1997―),男,博士研究生,qiushen1997@163.com。" *通信作者:ygzh9999@mail.hzau.edu.cn
基金項(xiàng)目:湖北洪山實(shí)驗(yàn)室項(xiàng)目(2021hszd006)
摘要:【目的】探究氮鉀肥施用次數(shù)對(duì)棉花的影響,為進(jìn)一步提高長(zhǎng)江流域棉區(qū)夏直播棉花產(chǎn)量提供參考?!痉椒ā坑?021―2022年開(kāi)展大田試驗(yàn),采用裂區(qū)設(shè)計(jì),主區(qū)為鉀肥(210 kg·hm-2)施用次數(shù):K1[播種前(PP)100%]和K2[PP 50%+見(jiàn)花(FF)0 d 50%];副區(qū)為氮肥(210 kg·hm-2)施用次數(shù):N2[PP 20%+FF 0 d 80%]、N3[PP 20%+FF 0 d 60%+FF 21 d 20%]和N4[PP 10%+FF 0 d 50%+FF 7 d 30%+FF 21 d 10%]。分析不同處理對(duì)棉花干物質(zhì)積累與分配、氮鉀積累與分配、產(chǎn)量及其構(gòu)成因素和養(yǎng)分利用率的影響?!窘Y(jié)果】K2N3處理下棉株和源、流、庫(kù)器官拔稈期的干物質(zhì)質(zhì)量和氮、鉀積累量以及干物質(zhì)快速積累期的持續(xù)時(shí)間和平均積累速率均低于K2N4處理,但干物質(zhì)以及氮鉀向庫(kù)器官的分配比例較K2N4處理高。K2N3處理可獲得較高的籽棉產(chǎn)量和皮棉產(chǎn)量,較K1N2處理(產(chǎn)量最低)分別顯著提高31.4%和31.9%,進(jìn)一步增加施氮次數(shù)(K2N4處理)沒(méi)有顯著提高棉花產(chǎn)量。K2N3和K2N4處理的氮肥和鉀肥偏生產(chǎn)力無(wú)顯著差異,但二者均顯著高于其他處理。主成分分析結(jié)果顯示棉花產(chǎn)量的差異主要來(lái)源于鈴數(shù),促進(jìn)干物質(zhì)和氮鉀養(yǎng)分向庫(kù)器官分配有利于提高棉花產(chǎn)量。【結(jié)論】長(zhǎng)江流域棉區(qū)麥后直播棉花,2次施鉀配合3次施氮能促進(jìn)棉株對(duì)氮鉀的吸收,促進(jìn)干物質(zhì)和氮鉀養(yǎng)分向庫(kù)器官分配,增加鈴數(shù),提高棉花產(chǎn)量。
關(guān)鍵詞:棉花;氮肥;鉀肥;施肥次數(shù);產(chǎn)量;干物質(zhì);養(yǎng)分利用
Effects of nitrogen and potassium application frequency on dry matter accumulation, yield and nutrient utilization of cotton under summer direct seeding
Qiu Shen, Yao Xiaofen, Zhang Zhao, Ma Xuefeng, Li Xian’en, Peng Jie, Xie Xiaoqi, Jiang Yichi, Yang Guozheng*
(College of Plant Science amp; Technology of Huazhong Agricultural University/Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China)
Abstract: [Objective] To improve the yield of summer direct seeding cotton in the Yangtze River basin, this study focuses on the effects of nitrogen (N) and potassium (K) application frequency on cotton. [Methods] Field experiment was conducted in 2021 and 2022 under a randomized complete block design in a split-plot arrangement, where K fertilizer (210 kg·hm-2) application frequency K1 [pre-plant fertilizer (PP) 100%] and K2 [PP 50% + first flowering fertilizer (FF) 0 d 50%] were kept in the main plot, and the sub-plots were allocated with N fertilizer (210 kg·hm-2)" application frequency: N2 [PP 20% + FF 0 d 80%], N3 [PP 20% + FF 0 d 60% + FF 21 d 20%], and N4[PP 10% + FF 0 d 50% + FF 7 d 30% + FF 21 d 10%]. The effects of different treatments on cotton dry matter accumulation and allocation, N and K accumulation and allocation, yield and yield components, and nutrient utilization efficiency were studied. [Results] The dry matter mass and the accumulation of N and K at plant removal stage, and the duration and average accumulation rate of the rapid accumulation period of dry matter in cotton plant, source, flow, and sink organs under K2N3 treatment were lower than those of K2N4 treatment, but the distribution ratio of dry matter, N, and K in the sink organs were higher than those of K2N4 treatment. K2N3 resulted in higher seed cotton yield and lint cotton yield, which were 31.4% and 31.9% significantly higher than the lowest yield treatment K1N2, respectively. However, further increase of N application times (K2N4 treatment) did not result in significantly higher cotton yield. There is no significant difference in the partial productivity of N and K between K2N3 and K2N4 treatments, but both are significantly higher than the other treatments. Principal component analysis showed that the main difference in cotton yield comes from the number of bolls, and promoting the allocation of biomass, N and K nutrients to sink organs is beneficial for improving yield. [Conclusion] For the direct seeding cotton after wheat in the Yangtze River basin, two times of K application combined with three times of N application can increase the absorption of N and K, promote dry matter as well as N and P distribution to sink organs, thus increase the number of bolls, and improve cotton yield.
Keywords: cotton; nitrogen fertilizer; potassium fertilizer; fertilizer application frequency; yield; dry matter; nutrient utilization
棉花是重要的纖維作物。長(zhǎng)江流域棉區(qū)是中國(guó)傳統(tǒng)的三大棉區(qū)之一,主要采用育苗移栽種植模式。但該棉區(qū)種植密度小,施肥量大,肥料利用率低[1],又因棉花產(chǎn)量在低位徘徊[2-3],植棉效益差[4]。前人探索出了夏直播種植模式[1-3],這種模式播種晚,在保證了前茬作物小麥生產(chǎn)的同時(shí),通過(guò)“晚播、增密、減肥、見(jiàn)花施肥”技術(shù)[5],保證了棉花產(chǎn)量不下降[6-7],但棉花產(chǎn)量仍不能滿足日益發(fā)展的市場(chǎng)需求。為走出這一困境,需要進(jìn)一步提高以肥料為主的資源利用率,探索高產(chǎn)高效的生產(chǎn)路徑,進(jìn)一步增強(qiáng)夏直播植棉模式的優(yōu)勢(shì)。
氮和鉀是棉花生長(zhǎng)發(fā)育過(guò)程中需求量最大的礦質(zhì)營(yíng)養(yǎng)元素,所以氮鉀肥管理策略與產(chǎn)量密切相關(guān)[8-9]。研究表明,開(kāi)花期棉花對(duì)氮鉀的需求相對(duì)集中[5],充足的氮鉀養(yǎng)分供應(yīng)能促進(jìn)棉花生殖生長(zhǎng)。初花期施用的氮肥吸收率最高,可達(dá)70%,其次是盛花期,氮肥吸收率為56%[6-7]。因而提高初花期和盛花期的施肥比例利于促進(jìn)棉株對(duì)養(yǎng)分的吸收,增加干物質(zhì)積累量,進(jìn)而提高棉花產(chǎn)量[10]。進(jìn)一步研究發(fā)現(xiàn),見(jiàn)花1次施肥通過(guò)促進(jìn)養(yǎng)分吸收以及干物質(zhì)向生殖器官分配,實(shí)現(xiàn)減少施氮量但不會(huì)損失產(chǎn)量[7],但是棉花產(chǎn)量有待進(jìn)一步提高[11]。張釗[12]發(fā)現(xiàn),與見(jiàn)花1次施肥相比,見(jiàn)花2次施氮(施入土壤)或葉面噴施氮肥,均能通過(guò)提高光合速率和肥料利用率,增加棉花產(chǎn)量。Tian等[13-14]在3個(gè)時(shí)期施用不同比例的氮肥,發(fā)現(xiàn)花鈴期施用更多的氮肥能促進(jìn)氮素和干物質(zhì)向生殖器官分配,提高棉花產(chǎn)量和氮肥利用效率。澳大利亞提倡氮肥多次追施,認(rèn)為這是提高棉花產(chǎn)量的有效方法[15-16]。因此開(kāi)花期多次施氮有望進(jìn)一步提高棉花產(chǎn)量。研究發(fā)現(xiàn)鉀肥在播種前和花期分2次施用效果最好,可減少因降水和農(nóng)田灌溉導(dǎo)致的鉀肥淋溶損失,防止棉花生育后期缺鉀,提高鉀肥利用效率和棉花產(chǎn)量[17-22]。更重要的是,氮鉀肥存在協(xié)同作用,增加植株鉀含量能促進(jìn)其對(duì)氮肥的主動(dòng)吸收,并協(xié)同氮在木質(zhì)部中的運(yùn)輸,提高氮的吸收和利用效率,能促進(jìn)作物產(chǎn)量的形成[23]。Hafeez等[24]研究發(fā)現(xiàn),適宜的氮鉀肥施用比例能提高棉花產(chǎn)量。因此制定合理的氮鉀肥施用措施,增強(qiáng)氮鉀肥的協(xié)同作用效果是生產(chǎn)中需要解決的問(wèn)題之一[23]。另一方面,近年來(lái),棉花生產(chǎn)機(jī)械化水平不斷提高,通過(guò)先進(jìn)的技術(shù)手段進(jìn)行多次施肥是可行的,并不會(huì)增加太多成本投入[12]。多次施肥能及時(shí)滿足棉花對(duì)肥料的需求,減少肥料淋失,提高肥料利用率,更符合綠色發(fā)展的要求。因此需要探索出更適宜的肥料施用方法,在機(jī)械化背景下實(shí)現(xiàn)棉花的綠色高效生產(chǎn)。
目前的棉花氮鉀肥料運(yùn)籌研究主要集中于單獨(dú)施用氮肥或鉀肥方面,而二者協(xié)同作用的效果尚不明確。因此,本研究在夏直播種植模式下,研究氮鉀肥運(yùn)籌對(duì)華棉3097干物質(zhì)積累與分配、養(yǎng)分吸收利用效率及產(chǎn)量性狀的影響,探討提高氮鉀肥吸收利用效率和棉花產(chǎn)量的施肥方法,為當(dāng)?shù)孛藁ㄉa(chǎn)中制定合理的施肥措施提供理論依據(jù)。
1 材料與方法
1.1 試驗(yàn)地概況
于2021年和2022年在華中農(nóng)業(yè)大學(xué)試驗(yàn)農(nóng)場(chǎng)(30°27′N(xiāo), 114°21′E)同一地塊進(jìn)行定位試驗(yàn)。冬小麥?zhǔn)斋@后,直播棉花。試驗(yàn)田土壤為黃棕壤土,中等肥力水平。2021年耕層(0~20 cm)土壤含堿解氮59.1 mg·kg-1、速效磷36.6 mg·kg-1、速效鉀127.70 mg·kg-1。2年棉花生長(zhǎng)期間的溫度和降水量數(shù)據(jù)來(lái)自于自動(dòng)氣象站(CR800, Campbell, USA)。相比于2021年,2022年降水量減少,播種后70~140 d基本無(wú)降水;但播種后20 d內(nèi)雨日較多,導(dǎo)致升溫較慢、平均溫度較低(圖1)。
1.2 試驗(yàn)設(shè)計(jì)
選用湖北省推廣的陸地棉(Gossypium hirsutum L.)品種華棉3097,由華中農(nóng)業(yè)大學(xué)選育并提供。該品種屬轉(zhuǎn)蘇云金芽孢桿菌(Bacillus thuringiensis, Bt)基因常規(guī)抗蟲(chóng)棉[25],植株塔形,通透性較好,生長(zhǎng)勢(shì)較強(qiáng),整齊度較好,葉片中等大小,棉鈴卵圓形。
試驗(yàn)田為中等肥力水平,因此按當(dāng)?shù)叵闹辈ッ藁ㄖ械确柿ν寥赖某R?guī)施肥水平施肥:純氮210 kg·hm-2、P2O5 84 kg·hm-2、K2O 210 kg·hm-2。其中播種前施用620.0 kg·hm-2油菜籽餅(含3.4% N、1.3% P2O5、1.8% K2O)替代10.0%氮肥、9.6%磷肥和5.3%鉀肥。磷肥做底肥1次施用,氮肥和鉀肥按試驗(yàn)方案施用。另外,底肥中還包括15 kg·hm-2硼砂(B含量為10.0%)。氮肥為尿素(N含量為 46.3%),磷肥為過(guò)磷酸鈣(P2O5含量為12.0%),鉀肥為氯化鉀(K2O含量為59.0%)。施肥方式為開(kāi)溝施肥,施肥后覆土防止揮發(fā),第2天進(jìn)行灌溉,以促進(jìn)肥料溶解。
采用裂區(qū)試驗(yàn)設(shè)計(jì)。主區(qū)為鉀肥施用次數(shù):K1,播種前(PP)100%和K2,PP 50%+見(jiàn)花(FF)當(dāng)天(FF 0 d)50%。副區(qū)為氮肥施用次數(shù):N2,PP 20%+FF 0 d 80%;N3,PP 20%+FF 0 d 60%+FF 21 d 20%和N4,PP 10%+FF 0 d 50%+FF 7 d 30%+FF 21 d 10%。
2021年和2022年分別于6月4日和5月14日播種,每穴3粒,株距為16.45 cm,行距為76 cm,種植密度為8株·m-2。播種后噴施除草劑封閉雜草。出苗后噴施生石灰半量式波爾多液(硫酸銅∶生石灰∶水=1∶0.5∶100,體積比),3葉期定苗,不整枝,2021年和2022年分別于8月10日和8月3日打頂。2021年和2022年分別于10月14日和10月10日噴施40%的乙烯利3 L·hm-2催熟。其他田間管理按照當(dāng)?shù)爻R?guī)棉田管理措施。每個(gè)小區(qū)的面積為30.4 m2(10 m×3.04 m),4次重復(fù),共24個(gè)小區(qū),其中第4個(gè)重復(fù)小區(qū)用于破壞性取樣。
1.3 測(cè)定項(xiàng)目和方法
1.3.1 棉花干物質(zhì)積累。于蕾期、初花期、盛花期、結(jié)鈴期、吐絮期和拔稈期在第4重復(fù)小區(qū)取棉株樣6次,依次在同一行上連續(xù)選取生長(zhǎng)均勻一致的9株棉花,隨機(jī)分成3組(視為3次重復(fù)),將植株分成3個(gè)部分:源器官(葉片),庫(kù)器官(蕾、花、鈴)和流器官(根、莖、枝、柄)[1, 3-4],分別裝于牛皮紙袋。放入干燥箱(WGL-230B, 天津泰斯特)105 ℃殺青30 min,60 ℃烘干至質(zhì)量恒定后,測(cè)定各器官的干物質(zhì)質(zhì)量。
使用邏輯斯諦(logistic)模型擬合干物質(zhì)積累動(dòng)態(tài):
Y=" " " " " " " " " " " " " " "(1)
式中,a、b為常數(shù),t為出苗后時(shí)間(d),Y為出苗后t 天的單位面積干物質(zhì)積累量(kg·hm-2),K為干物質(zhì)積累量的理論最大值。
根據(jù)模型(1)計(jì)算干物質(zhì)快速累積期的特征值:
t1=(2)
t2=" " "(3)
△t=t2-t1" " "(4)
VT=" " " (5)
式中,t1和t2分別是干物質(zhì)快速積累期的起始時(shí)間和終止時(shí)間,△t是干物質(zhì)快速積累期的持續(xù)時(shí)間(d),VT(kg·hm-2·d-1)是干物質(zhì)快速積累期的平均干物質(zhì)積累速度,Y1和Y2分別是t1和t2時(shí)的干物質(zhì)質(zhì)量(kg·hm-2)。
1.3.2 棉花養(yǎng)分含量測(cè)定。將1.3.1的樣品粉碎,過(guò)100目篩,采用H2SO4-H2O2消煮法,稱(chēng)取0.2 g樣品放入消化管,加入濃硫酸(質(zhì)量分?jǐn)?shù)98%)5 mL,輕搖消化管,使樣品被濃硫酸完全浸潤(rùn)(放置過(guò)夜),加入l mL高氯酸(質(zhì)量分?jǐn)?shù)70%),用消煮爐(LWY84B, 中國(guó)SIPIN)消化,自然冷卻后,將消化液過(guò)濾并定容到50 mL容量瓶,待測(cè)。使用間斷化學(xué)分析儀(SmartChem 200, AMS Alliance, 意大利)測(cè)定總氮含量,用火焰光度計(jì)(FP6431, 上海儀電)測(cè)定總鉀含量。根據(jù)干物質(zhì)質(zhì)量和養(yǎng)分含量計(jì)算植株和各器官養(yǎng)分(氮、鉀)累積量。
養(yǎng)分含量(g·kg-1)=C×V×D×10-3/m (6)
養(yǎng)分積累量(kg·hm-2)=養(yǎng)分含量×干物質(zhì)質(zhì)量×10-3 (7)
式中,C為根據(jù)校準(zhǔn)曲線求得的測(cè)試液中養(yǎng)分的濃度(mg·L-1);V為消煮液定容體積(mL);D為分取倍數(shù);m為稱(chēng)樣質(zhì)量(g)。
1.3.3 棉花產(chǎn)量及其構(gòu)成因素。定苗后在每個(gè)小區(qū)連續(xù)選取15株棉花進(jìn)行標(biāo)記,2021年和2022年在10月31日調(diào)查單株鈴數(shù)。于2021年9月30日和10月31日,2022年8月29日、9月28日和10月31日分別人工收獲其余3個(gè)小區(qū)的吐絮棉鈴,曬干后稱(chēng)量,獲得實(shí)際籽棉產(chǎn)量。2021年第1次和2022年第2次收花時(shí)每小區(qū)收取正常吐絮棉鈴100個(gè),測(cè)定鈴重,軋花后計(jì)算衣分,根據(jù)實(shí)收籽棉產(chǎn)量和衣分計(jì)算皮棉產(chǎn)量。
1.3.4 肥料利用率。根據(jù)式(8)計(jì)算氮肥、鉀肥的偏生產(chǎn)力。
化肥偏生產(chǎn)力(kg·kg-1)=單位面積籽棉產(chǎn)量/單位面積化肥施用量 (8)
1.4 數(shù)據(jù)統(tǒng)計(jì)與分析
采用Microsoft Excel 2021整理數(shù)據(jù),用Statistix 9.1軟件進(jìn)行統(tǒng)計(jì)分析,用最小顯著差數(shù)法(least significance difference, LSD)比較處理間的差異顯著性。用MATLAB R2019a軟件擬合logistic模型,在Origin 2022b中進(jìn)行主成分分析(principal component analysis, PCA)和制圖。
2 結(jié)果與分析
2.1 氮鉀肥施用次數(shù)對(duì)棉花干物質(zhì)積累動(dòng)態(tài)及分配的影響
隨著生育進(jìn)程的推進(jìn),棉株干物質(zhì)積累量以及流器官和庫(kù)器官的干物質(zhì)積累量整體表現(xiàn)為“慢-快-慢”的“S”形變化趨勢(shì);源器官干物質(zhì)積累量呈先升高后降低的變化趨勢(shì),峰值出現(xiàn)在吐絮期(圖2)。
2021年和2022年的拔稈期,與1次施鉀(K1)相比,2次施鉀(K2)的棉株干物質(zhì)積累量分別顯著提高7.4%和9.4%(P<0.05)。吐絮期和拔稈期,K1和K2處理下,3~4次施氮的棉株干物質(zhì)積累量均高于2次施氮。在氮鉀肥施用次數(shù)的交互作用下,K2N4處理的棉株干物質(zhì)積累量最高,2021年和2022年的拔稈期分別比K1N2處理(最低)顯著提高34.8%和26.7%(P<0.05);K2N3處理分別比K1N2處理顯著提高15.0%和18.2%(P<0.05)。
通過(guò)logistic模型擬合棉株及各器官干物質(zhì)積累動(dòng)態(tài),結(jié)果顯示氮鉀肥施用次數(shù)影響棉株和各器官干物質(zhì)快速積累期的起始時(shí)間(t1)、終止時(shí)間(t2)、持續(xù)時(shí)間(△t)和平均積累速度(VT)。隨著氮鉀肥施用次數(shù)的增加,棉株和源、流、庫(kù)器官的t1和t2推后,△t延長(zhǎng),VT增加。K2N4處理下棉株和源、流、庫(kù)器官的△t最長(zhǎng)、VT最大,K2N3處理次之(流器官除外),K1N2處理的△t最短(流器官除外)、VT最?。ㄔ雌鞴俪猓?。與K1N2處理相比,K2N4和K2N3處理下庫(kù)器官的△t分別延長(zhǎng)1.7 d和1.4 d,VT分別增大24.1%和19.9%(表1)。
施氮次數(shù)和年份顯著影響拔稈期干物質(zhì)向各器官分配的比例,鉀肥施用次數(shù)對(duì)拔稈期干物質(zhì)分配比例無(wú)顯著影響(表2)。N4處理下干物質(zhì)向源器官、流器官分配最多,其分配比例分別比N3處理(最低)顯著提高2.5百分點(diǎn)和2.2百分點(diǎn);N3處理的庫(kù)器官干物質(zhì)分配比例最高,比N4(最低)顯著提高4.7百分點(diǎn)。K1N3處理的庫(kù)器官干物質(zhì)分配比例最高,顯著高于K1N2、K1N4和K2N4處理。
2.2 氮鉀肥施用次數(shù)對(duì)棉花氮、鉀積累與分配的影響
2021年和2022年的試驗(yàn)結(jié)果表明,增加氮鉀肥施用次數(shù)提高了中后期棉株和各器官(源、流、庫(kù))的氮積累量(圖3)。拔稈期棉株、源器官、流器官和庫(kù)器官的氮含量:K2處理顯著高于K1處理,2021年分別顯著提高22.6%、14.7%、20.2%和24.5%,2022年分別顯著提高14.0%、17.9%、9.3%和14.0%;N4和N3處理高于N2處理(2021年N3源器官除外),2021年分別提高45.7%和29.9%、57.6%和0%、62.2%和22.1%、54.8%和40.6%,2022年分別顯著提高22.4%和16.4%、33.1%和21.5%、20.1%和13.0%、18.9%和15.5%。在氮鉀肥施用次數(shù)的交互作用下,拔稈期K2N4處理的棉株氮含量最高,K2N3處理其次,K1N2處理最低。2021年和2022年拔稈期棉株平均氮含量:與K1N2處理相比,K2N4和K2N3處理分別顯著提高53.4%和40.3%。
增加氮鉀肥施用次數(shù)提高了中后期棉株和各器官的鉀積累量(圖4)。棉株、源器官、流器官和庫(kù)器官拔稈期的鉀積累量:K2處理顯著高于K1處理,其中在2021年分別顯著提高17.4%、31.7%、11.5%和19.4%,2022年分別顯著提高11.5%、24.6%、11.9%和8.7%。棉株、流器官和庫(kù)器官拔稈期的鉀積累量:N4和N3處理高于N2處理,2021年分別提高39.4%和13.9%、47.0%和10.2%、31.5%和19.8%,2022年分別提高13.2%和6.7%、14.2%和10.6%、12.4%和5.5%。拔稈期棉株鉀積累量:K2N4處理最高,K2N3處理其次,K1N2處理最低。與K1N2處理相比,K2N4和K2N3處理下2年拔稈期平均棉株鉀積累量分別顯著提高38.4%和22.4%。
施氮次數(shù)顯著影響拔稈期氮和鉀在源器官和庫(kù)器官中的分配比例,施鉀次數(shù)顯著影響拔稈期鉀在源器官中的分配比例。不同年份間源、流、庫(kù)器官中氮、鉀的分配比例有顯著差異,但年份與氮鉀肥施用次數(shù)的交互作用對(duì)氮鉀分配比例無(wú)顯著影響。不同處理下氮和鉀在流器官中的分配比例無(wú)顯著差異(表3)。
氮分配:N4處理向源器官分配最多,比N3處理(分配比例最低)顯著提高3.0百分點(diǎn);N3處理下向庫(kù)器官分配最多,比N4處理(分配比例最低)顯著提高4.7百分點(diǎn)。K1N3處理下源器官中氮分配比例最低,庫(kù)器官中氮分配比例最高,顯著高于K1N2和K1N4處理(表3)。
鉀分配:N4處理向源器官中的分配最多,比N3處理(分配比例最低)顯著提高2.2百分點(diǎn);N3處理向庫(kù)器官分配最多,比N4處理(分配比例最低)顯著提高3.4百分點(diǎn)。K1N3處理下,源器官中鉀分配比例最低,庫(kù)器官中鉀分配比例最高,顯著高于除K2N2外的其他4個(gè)處理(表3)。
2.3 氮鉀肥施用次數(shù)對(duì)棉花產(chǎn)量及其構(gòu)成因素的影響
氮鉀肥施用次數(shù)及其交互作用顯著影響棉花產(chǎn)量,受影響的產(chǎn)量構(gòu)成因子主要是單位面積鈴數(shù),對(duì)鈴重和衣分無(wú)顯著影響。年際產(chǎn)量及其構(gòu)成因素(鈴重除外)存在差異,這是由環(huán)境因素造成的,年份與氮鉀肥施用次數(shù)的交互作用對(duì)產(chǎn)量性狀無(wú)顯著影響(表4)。單位面積鈴數(shù):K2處理顯著高于K1處理,增幅為11.73%,N3、N4處理均顯著高于N2處理,K1N3和K1N4處理分別比K1N2處理顯著增加14.0%和26.1%,K2N3和K2N4處理分別比K2N2處理顯著增加18.1%和30.8%,K2N4處理顯著高于其他5個(gè)處理。籽棉產(chǎn)量和皮棉產(chǎn)量:K2處理顯著高于K1處理,增幅分別為8.5%和8.8%;N4與N3處理的籽棉產(chǎn)量、皮棉產(chǎn)量均無(wú)顯著差異,但顯著高于N2處理;在氮鉀肥施用次數(shù)的交互作用下,K2N3、K2N4處理的籽棉產(chǎn)量和皮棉產(chǎn)量較高且二者差異不顯著,比K1N2處理(產(chǎn)量最低)的籽棉產(chǎn)量分別顯著提高31.4%、33.6%,皮棉產(chǎn)量分別顯著提高31.9%、33.2%。
2.4 氮鉀肥施用次數(shù)對(duì)棉花肥料利用率的影響
適宜的氮鉀肥施用次數(shù)顯著提高了棉花的氮肥偏生產(chǎn)力和鉀肥偏生產(chǎn)力,K2處理較K1處理分別顯著提高9.0%和8.1%;無(wú)論是K1還是K2處理下,N4與N3處理的氮肥和鉀肥偏生產(chǎn)力均無(wú)顯著差異,但均顯著高于N2處理,氮肥偏生產(chǎn)力分別比N2處理顯著提高21.2%和19.4%,鉀肥偏生產(chǎn)力分別比N2處理顯著提高21.6和20.2%。在氮鉀肥施用次數(shù)的交互作用下,K2N3和K2N4處理的氮肥偏生產(chǎn)力和鉀肥偏生產(chǎn)力均較高,但這2個(gè)處理間沒(méi)有顯著差異,分別比K1N2處理(氮鉀肥偏生產(chǎn)力最低)的氮肥偏生產(chǎn)力顯著提高34.4%和32.8%,鉀肥偏生產(chǎn)力顯著提高33.6%和31.9%(圖5)。
2.5 主成分分析
PCA闡明了棉花產(chǎn)量及其構(gòu)成因素、干物質(zhì)積累與分配和氮鉀肥利用率之間的統(tǒng)計(jì)關(guān)系,以揭示在相同維度下棉花產(chǎn)量存在差異的原因。由圖6可知,鈴數(shù)對(duì)棉花產(chǎn)量的貢獻(xiàn)最大。增加氮鉀肥施用次數(shù),通過(guò)提高各器官干物質(zhì)積累量、氮鉀積累量和干物質(zhì)向庫(kù)器官的分配比例來(lái)提高棉花產(chǎn)量。增加氮和鉀向庫(kù)器官中的分配比例利于提高棉花產(chǎn)量。
3 討論
3.1 氮鉀肥施用次數(shù)與棉花產(chǎn)量的關(guān)系
氮鉀肥協(xié)同作用可以增加結(jié)鈴數(shù)并且減少蕾鈴脫落,從而提高棉花產(chǎn)量[26-28]。而衣分和鈴重主要由品種的遺傳特性決定[29],不易受環(huán)境條件的影響,本研究的結(jié)果與前人研究一致。本試驗(yàn)發(fā)現(xiàn)2次施鉀處理下氮鉀肥的協(xié)同作用增強(qiáng),棉花產(chǎn)量更高。開(kāi)花期棉花對(duì)養(yǎng)分的需求集中且持續(xù),見(jiàn)花后施氮鉀肥能保證蕾鈴的養(yǎng)分需求[24],增強(qiáng)棉花自我補(bǔ)償能力[10, 30-31],可以避免營(yíng)養(yǎng)供給不足造成的蕾鈴脫落[32-33],從而增加有效鈴數(shù)[6],提高產(chǎn)量?;谇捌谘芯刻岢龅摹巴聿?、增密、減氮、見(jiàn)花施肥、秸稈還田”夏直播植棉模式[26-27, 29],本研究通過(guò)調(diào)整氮鉀肥施用次數(shù),增加了肥料利用率,進(jìn)一步提高了棉花產(chǎn)量,有利于解決長(zhǎng)江流域棉區(qū)產(chǎn)量低的困境。以見(jiàn)花施肥為主,施用2次鉀肥配合3次氮肥(K2N3處理)可通過(guò)增加鈴數(shù),獲得更高的籽棉產(chǎn)量和皮棉產(chǎn)量,比施用1次鉀肥配合2次氮肥(K1N2處理)分別提高31.4%和31.9%。而進(jìn)一步增加氮肥施用次數(shù)(K2N4處理),棉花產(chǎn)量并未顯著增加。因此推薦當(dāng)?shù)刂裁迏^(qū)采取2次施鉀配合3次施氮的施肥方式。長(zhǎng)江流域棉區(qū)的棉花產(chǎn)量普遍低于新疆棉區(qū)和黃河流域棉區(qū)[34],這可能與長(zhǎng)江流域棉區(qū)多雨的氣候條件有關(guān)[29]。本研究中2021年的棉花產(chǎn)量低于2022年。分析發(fā)現(xiàn)可能是因?yàn)?021年棉花生長(zhǎng)季降水量過(guò)多,棉田多次積水,棉花生長(zhǎng)相對(duì)緩慢,蕾鈴脫落增多,降低了棉花產(chǎn)量。因此在長(zhǎng)江流域棉區(qū)棉花生產(chǎn)中應(yīng)格外注意棉田排水,防止?jié)碀n脅迫影響棉花生產(chǎn)[12]。
3.2 氮鉀肥施用次數(shù)與棉花干物質(zhì)積累的關(guān)系
干物質(zhì)積累是產(chǎn)量形成的基礎(chǔ),合理施用氮鉀肥可增加干物質(zhì)積累量,從而提高棉花產(chǎn)量[4, 35]。但氮鉀肥施用不當(dāng),會(huì)導(dǎo)致干物質(zhì)積累減少,或營(yíng)養(yǎng)生長(zhǎng)過(guò)旺,不利于產(chǎn)量形成[36]。棉花干物質(zhì)積累進(jìn)程符合logistic函數(shù),通過(guò)方程模擬可計(jì)算干物質(zhì)積累的動(dòng)態(tài)特征值[37]。本研究發(fā)現(xiàn),優(yōu)化氮鉀肥施用次數(shù)(K2N3和K2N4處理)提高了棉株和源、流、庫(kù)器官干物質(zhì)快速積累期的平均積累速率(VT),延長(zhǎng)快速積累期的持續(xù)時(shí)間(△t),從而增加干物質(zhì)質(zhì)量,這與Liu等[4]的研究結(jié)果類(lèi)似。缺氮、缺鉀會(huì)導(dǎo)致棉花生殖生長(zhǎng)終止時(shí)間提前[17-18],而花鈴期補(bǔ)充氮鉀肥可以延長(zhǎng)生殖生長(zhǎng)期[29, 38]。本試驗(yàn)條件下,施用2次鉀肥配合3次氮肥(K2N3處理),協(xié)調(diào)了各生育時(shí)期的養(yǎng)分供應(yīng),延長(zhǎng)了花鈴期,增加了棉株干物質(zhì)質(zhì)量,促進(jìn)干物質(zhì)向生殖(庫(kù))器官分配,最終提高棉花產(chǎn)量;但繼續(xù)增加氮肥施用次數(shù)(K2N4處理),干物質(zhì)更多分配至營(yíng)養(yǎng)(源)器官,導(dǎo)致?tīng)I(yíng)養(yǎng)生長(zhǎng)過(guò)旺,沒(méi)有顯著提高棉花產(chǎn)量。這也表明在一定的氮鉀肥施用次數(shù)范圍內(nèi),棉花產(chǎn)量相對(duì)穩(wěn)定,這主要通過(guò)協(xié)調(diào)干物質(zhì)積累及其向各器官的分配比例來(lái)實(shí)現(xiàn)[4]。
3.3 氮鉀肥施用次數(shù)與棉花養(yǎng)分利用率的關(guān)系
氮鉀肥的高效利用是棉花產(chǎn)量形成的重要保證。研究發(fā)現(xiàn),棉花生育前期對(duì)養(yǎng)分的需求量少[5, 32],因此播種前化肥施用量可適當(dāng)減少;生育后期肥料需求量大[28],尤其是初花到盛花期,養(yǎng)分吸收量占總量的50%以上,見(jiàn)花后施肥能提高花鈴期土壤養(yǎng)分含量[36],保證養(yǎng)分吸收高峰期的氮鉀供給[5-7],促進(jìn)養(yǎng)分向生殖器官分配,增加棉花產(chǎn)量。因此,本研究?jī)?yōu)化了氮鉀肥運(yùn)籌策略,發(fā)現(xiàn)施用2次鉀肥配合3次氮肥(K2N3處理)可以增強(qiáng)土壤供氮、供鉀的能力[7],促進(jìn)棉花對(duì)養(yǎng)分的吸收,同時(shí)養(yǎng)分更多向庫(kù)(生殖)器官分配[39-40],提高了氮肥和鉀肥的偏生產(chǎn)力。而進(jìn)一步增加氮肥施用次數(shù)(K2N4處理)沒(méi)有明顯提高氮鉀肥偏生產(chǎn)力,因?yàn)轲B(yǎng)分更多向源(葉)器官分配,導(dǎo)致?tīng)I(yíng)養(yǎng)生長(zhǎng)過(guò)旺,不利于生殖生長(zhǎng)。另一方面,菜籽餅肥(有機(jī)肥)的肥效穩(wěn)定、長(zhǎng)久,還可以改善土壤的理化性質(zhì)[41-42]。本試驗(yàn)在播種前施用了菜籽餅替代部分化肥,不僅減少了化肥投入,還能改善土壤理化性質(zhì),為提高肥料利用效率打好基礎(chǔ)[43]。
4 結(jié)論
長(zhǎng)江流域夏直播棉花,播種前施用50%鉀肥和20%氮肥,見(jiàn)花當(dāng)天施用50%鉀肥和60%氮肥,見(jiàn)花后21 d施用20%氮肥,可以促進(jìn)棉株對(duì)氮、鉀的吸收,提高棉株和庫(kù)器官干物質(zhì)快速積累期的持續(xù)時(shí)間和平均積累速率,促進(jìn)養(yǎng)分(氮、鉀)和干物質(zhì)向庫(kù)器官分配,增加鈴數(shù),最終獲得較高的籽棉產(chǎn)量和皮棉產(chǎn)量。
參考文獻(xiàn):
[1] Zhang Z, Chattha M S, Ahmed S, et al. Nitrogen reduction in high plant density cotton is feasible due to quicker biomass accumulation[J/OL]. Industrial Crops and Products, 2021, 172: 114070[2024-01-05]. https://doi.org/10.1016/j.indcrop.2021.
114070.
[2] 國(guó)家發(fā)展和改革委員會(huì)價(jià)格司, 價(jià)格成本調(diào)查中心. 全國(guó)農(nóng)產(chǎn)品成本收益資料匯編2021[M]. 北京: 中國(guó)統(tǒng)計(jì)出版社, 2021.
Price Department and Price Cost Investigation Center of the National Development and Reform Commission. National compilation of cost and income data of agricultural products in 2021[M]. Beijing: China Statistics Press, 2021.
[3] Yang G Z, Tang H Y, Nie Y C, et al. Responses of cotton growth, yield, and biomass to nitrogen split application ratio[J/OL]. European Journal of Agronomy, 2011, 35(3): 164-170[2024-01-
05]. https://doi.org/10.1016/j.eja.2011.06.001.
[4] Liu A D, Ma X F, Zhang Z, et al. Single dose fertilization at reduced nitrogen rate improves nitrogen utilization without yield reduction in late-planted cotton under a wheat-cotton cropping system[J/OL]. Industrial Crops and Products, 2022, 176: 114346[2024-01-05]. https://doi.org/10.1016/j.indcrop.2021.114346.
[5] Zhang Z, Ahmed S, Chattha M S, et al. Managing plant density and nitrogen fertilizer to reduce nitrogen input without yield reduction of late-sown cotton after wheat by improving light interception and sink nitrogen partitioning in a double cropping system[J/OL]. Field Crops Research, 2023, 295: 108875[2024-
01-05]. https://doi.org/10.1016/j.fcr.2023.108875.
[6] Song X H, Huang Y, Yuan Y, et al. Cotton N rate could be reduced further under the planting model of late sowing and high-density in the Yangtze River valley[J/OL]. Journal of Cotton Research, 2020, 3: 28[2024-01-05]. https://doi.org/10.1186/
s42397-020-00065-1.
[7] Yang G Z, Tang H Y, Tong J, et al. Effect of fertilization frequency on cotton yield and biomass accumulation[J/OL]. Field Crops Research, 2012, 125: 161-166[2024-01-05]. https://
doi.org/10.1016/j.fcr.2011.08.008.
[8] Yang X Y, Geng J B, Li C L, et al. Combined application of polymer coated potassium chloride and urea improved fertilizer use efficiencies, yield and leaf photosynthesis of cotton on saline soil[J/OL]. Field Crops Research, 2016, 197: 63-73[2024-01-05]. https://doi.org/10.1016/j.fcr.2016.08.009.
[9] 蘇陽(yáng), 劉德林. 提高氮肥利用率方法的研究進(jìn)展[J/OL]. 湖南農(nóng)業(yè)科學(xué), 2005(6): 38-40[2024-01-05]. https://doi.org/10.16498/
j.cnki.hnnykx.2005.06.016.
Su Yang, Liu Delin. Research progress on methods to improve nitrogen fertilizer utilization efficiency[J/OL]. Hunan Agricultural Science, 2005(6): 38-40[2024-01-05]. https://doi.org/10.16498/
j.cnki.hnnykx.2005.06.016.
[10] 代健敏, 何慶雨, 謝玲, 等. 氮肥后移對(duì)花鈴期水分虧缺棉花產(chǎn)量的補(bǔ)償效應(yīng)研究[J/OL]. 干旱區(qū)研究, 2022, 39(3): 986-
995[2024-01-05]. https://doi.org/10.13866/j.azr.2022.03.32.
Dai Jianmin, He Qingyu, Xie Ling, et al. Compensation effect of nitrogen fertilizer post-shift on water-deficient cotton yield at different stages[J/OL]. Arid Zone Research, 2022, 39(3): 986-
995[2024-01-05]. https://doi.org/10.13866/j.azr.2022.03.32.
[11] 馬曉蕾. 棉花產(chǎn)量形成和養(yǎng)分利用對(duì)鉀氮肥比例的響應(yīng)機(jī)制[D]. 武漢: 華中農(nóng)業(yè)大學(xué), 2020.
Ma Xiaolei. Cotton yield formation and nutrients utilization response mechanism to K to N ratio[D]. Wuhan: Huazhong Agricultural University, 2020.
[12] 張釗. 夏直播棉花氮肥高效利用的農(nóng)藝措施與生理機(jī)制[D]. 武漢: 華中農(nóng)業(yè)大學(xué), 2023.
Zhang Zhao. Crop management and physiological mechanism for efficient nitrogen utilization in summer direct-sown cotton[D]. Wuhan: Huazhong Agricultural University, 2023.
[13] Tian Y, Tian L W, Wang F Y, et al. Optimizing nitrogen application improves its efficiency by higher allocation in bolls of cotton under drip fertigation[J/OL]. Field Crops Research, 2023, 298: 108968[2024-01-05]. https://doi.org/10.1016/j.fcr.2023.
108968.
[14] Tian Y, Wang F Y, Shi X, et al. Late nitrogen fertilization improves cotton yield through optimizing dry matter accumulation and partitioning[J/OL]. Annals of Agricultural Sciences, 2023, 68(1): 75-86[2024-01-05]. https://doi.org/10.1016/j.aoas.2023.06.001.
[15] Macdonald B C T, Latimer J O, Schwenke G D, et al. The current status of nitrogen fertilizer use efficiency and future research directions for the Australian cotton industry[J/OL]. Journal of Cotton Research, 2018, 1: 15[2024-01-05]. https://
doi.org/10.1186/s42397-018-0015-9.
[16] Schwenke G, Baird J, Nachimuthu G, et al. Dressed for success. Are crop N uptake, N loss and lint yield of irrigated cotton affected by how in-crop N fertilizer is applied? [J/OL]. Field Crops Research, 2022, 287: 108659[2024-01-05]. https://doi.org/
10.1016/j.fcr.2022.108659.
[17] 王圣力, 朱保玉, 李煌, 等. 不同施鉀方式對(duì)抗蟲(chóng)雜交棉產(chǎn)量形成的影響[J]. 中國(guó)棉花, 2007(10): 16.
Wang Shengli, Zhu Baoyu, Li Huang, et al. The effect of different potassium application methods on the yield formation of insect resistant hybrid cotton[J]. China Cotton, 2007(10): 16.
[18] Read J J, Reddy K R, Jenkins J N. Yield and fiber quality of upland cotton as influenced by nitrogen and potassium nutrition[J/OL]. European Journal of Agronomy, 2006, 24(3): 282-290[2024-01-05]. https://doi.org/10.1016/j.eja.2005.10.004.
[19] 郭英, 孫學(xué)振, 宋憲亮, 等. 鉀營(yíng)養(yǎng)對(duì)棉花苗期生長(zhǎng)和葉片生理特性的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2006, 12(3): 363-368.
Guo Ying, Sun Xuezhen, Song Xianliang, et al. Effects of potassium nutrition on growth and leaf physiological characteristics at seedling stage of cotton[J]. Plant Nutrition and Fertilizer Science, 2006, 12(3): 363-368.
[20] 宋美珍,楊惠元,蔣國(guó)柱. 黃淮海棉區(qū)鉀肥效應(yīng)研究[J]. 棉花學(xué)報(bào), 1993, 5(1): 73-78.
Song Meizhen, Yang Huiyuan, Jiang Guozhu. Studies on the effect of potassium fertilizer in the Huang-huai-hai cotton growing district of China[J]. Cotton Science, 1993, 5(1): 73-78.
[21] 楊振明, 閆飛, 韓麗梅, 等. 我國(guó)主要土壤不同粒級(jí)的礦物組成及供鉀特點(diǎn)[J]. 土壤通報(bào), 1999, 30(4): 163-167.
Yang Zhenming, Yan Fei, Han Limei, et al. Mineral composition and potassium supply characteristics of different particle sizes in major soils in China[J]. Chinese Journal of Soil Science, 1999, 30(4): 163-167.
[22] Z?觟rb C, Senbayram M, Peiter E. Potassium in agriculture—status and perspectives[J/OL]. Journal of Plant Physiology, 2014, 171(9): 656-669[2024-01-05]. https://doi.org/10.1016/j.jplph.2013.
08.008.
[23] 雷之萌, 韓上, 武際, 等. 淮北砂姜黑土區(qū)氮鉀配施對(duì)小麥產(chǎn)量及氮、鉀養(yǎng)分吸收利用的影響[J/OL]. 農(nóng)業(yè)資源與環(huán)境學(xué)報(bào), 2017, 34: 161-167[2024-01-05]. https://doi.org/10.13254/j.jare.2016.0248.
Lei Zhimeng, Han Shang, Wu Ji, et al. Effects of combined application of nitrogen and potassium on yield and nutrient accumulation of wheat in Huaibei lime concretion black soil area, China[J/OL]. Journal of Agricultural Resources and Environment, 2017, 34: 161-167[2024-01-05]. https://doi.org/10.13254/j.jare.2016.0248.
[24] Hafeez A, Ali S, Ma X, et al. Potassium to nitrogen ratio favors photosynthesis in late-planted cotton at high planting density[J/OL]. Industrial Crops and Products, 2018, 124: 369-381[2024-
01-05]. https://doi.org/10.1016/j.indcrop.2018.08.006.
[25] 種業(yè)商務(wù)網(wǎng). 華棉3097[EB/OL]. (2017-06-08)[2024-01-05]. https://www.chinaseed114.com/seed/12/seed_57726.html.
Seed Business Network. Huamian 3097[EB/OL]. (2017-06-08)[2024-01-05]. https://www.chinaseed114.com/seed/12/seed_
57726.html.
[26] 張杰錕. 棉花氮代謝對(duì)一次施肥時(shí)間的響應(yīng)特性[D]. 武漢: 華中農(nóng)業(yè)大學(xué), 2014.
Zhang Jiekun. Response of cotton nitrogen metabolism to once fertilization time[D]. Wuhan: Huazhong Agricultural University, 2014.
[27] Yang G Z, Chu K Y, Tang H Y, et al. Fertilizer 15N accumulation, recovery and distribution in cotton plant as affected by N rate and split[J/OL]. Journal of Integrative Agriculture, 2013, 12(6): 999-1007[2024-01-05]. https://doi.org/10.1016/S2095-
3119(13)60477-3.
[28] 張祥, 馬愛(ài)麗, 房靜, 等. 氮肥運(yùn)籌對(duì)穴盤(pán)育苗移栽棉花吸肥特性的影響[J/OL]. 中國(guó)棉花, 2010, 37(10): 4-6[2024-01-05]. https://doi.org/10.11963/issn.1000-632X.20101002.
Zhang Xiang, Ma Aili, Fang Jing, et al. The effect of nitrogen fertilizer management on the absorption characteristics of cotton seedlings transplanted in hole trays[J/OL]. China Cotton, 2010, 37(10): 4-6[2024-01-05]. https://doi.org/10.11963/issn.
1000-632X.20101002.
[29] 馬學(xué)峰. 夏直播棉花產(chǎn)量形成的空間特異性[D]. 武漢: 華中農(nóng)業(yè)大學(xué), 2022.
Ma Xuefeng. Spatial specificity of cotton yield formation directly-sown in summer[D]. Wuhan: Huazhong Agricultural University, 2022.
[30] Luo H H, Qiang W, Zhang J K, et al. One-time fertilization at first flowering improves lint yield and dry matter partitioning in late planted short-season cotton[J/OL]. Journal of Integrative Agriculture, 2020, 19(2): 509-517[2024-01-05]. https://doi.org/10.1016/S2095-3119(19)62623-7.
[31] Grundy P R, Yeates S J, Bell K L. Cotton production during the tropical monsoon season. I-The influence of variable radiation on boll loss, compensation and yield[J/OL]. Field Crops Research, 2020, 254: 107790[2024-01-05]. https://doi.org/10.1016/j.fcr.2020.107790.
[32] Geng J B, Ma Q, Chen J G, et al. Effects of polymer coated urea and sulfur fertilization on yield, nitrogen use efficiency and leaf senescence of cotton[J/OL]. Field Crops Research, 2016, 187: 87-95[2024-01-05]. https://doi.org/10.1016/j.fcr.2015.12.010.
[33] Li P C, Dong H L, Liu A Z, et al. Effects of nitrogen rate and split application ratio on nitrogen use and soil nitrogen balance in cotton fields[J/OL]. Pedosphere, 2017, 27(4): 769-777[2024-01-05]. https://doi.org/10.1016/S1002-0160(17)60303-5.
[34] 國(guó)家發(fā)展和改革委員會(huì)價(jià)格司, 價(jià)格成本調(diào)查中心. 全國(guó)農(nóng)產(chǎn)品成本收益資料匯編—2022[M]. 北京: 中國(guó)統(tǒng)計(jì)出版社, 2022.
Price Department and Price Cost Investigation Center of the National Development and Reform Commission. National compilation of cost and income data of agricultural products in 2022[M]. Beijing: China Statistics Press, 2022.
[35] 李飛, 郭莉莉, 趙瑞元, 等. 氮肥減量深施對(duì)油后直播棉花干物質(zhì)與氮素積累、分配及產(chǎn)量的影響[J/OL]. 棉花學(xué)報(bào), 2022, 34(3): 198-214[2024-01-05]. https://doi.org/10.11963/cs20210072.Li Fei, Guo Lili, Zhao Ruiyuan, et al. Effects of increasing application depth and decreasing nitrogen rate on dry matter, nitrogen accumulation and distribution, and yield of direct seeding cotton after rape harvest[J/OL]. Cotton Science, 2022, 34(3): 198-214[2024-01-05]. https://doi.org/10.11963/cs20210072.
[36] 白玲, 李俊華, 褚貴新, 等. 有機(jī)無(wú)機(jī)肥配施對(duì)棉花養(yǎng)分吸收及氮素效率的影響[J]. 干旱地區(qū)農(nóng)業(yè)研究, 2014, 32(5): 143-
148.
Bai Ling, Li Junhua, Chu Guixin, et al. Effects of organic manure application combined with chemical fertilizers on nutrients absorption and nitrogen efficiency of cotton in Xinjiang, China[J]. Agricultural Research in the Arid Areas, 2014, 32(5): 143-148.
[37] 李顯恩, 馬學(xué)峰, 張釗, 等. 夏直播棉成鈴時(shí)間分布與產(chǎn)量的關(guān)系[J/OL]. 棉花學(xué)報(bào), 2022, 34(5): 416-429[2024-01-05]. https://doi.org/10.11963/cs20210074.
Li Xian'en, Ma Xuefeng, Zhang Zhao, et al. Relationship between boll temporal distribution and cotton yield under summer direct seeding[J/OL]. Cotton Science, 2022, 34(5): 416-429[2024-01-05]. https://doi.org/10.11963/cs20210074.
[38] 馬宗斌, 房衛(wèi)平, 謝德意, 等. 氮肥基追比對(duì)抗蟲(chóng)雜交棉葉片衰老和產(chǎn)量的影響[J]. 西北植物學(xué)報(bào), 2008, 28(10): 2062-
2066.
Ma Zongbin, Fang Weiping, Xie Deyi, et al. Effects of different ratios of base and topdressing nitrogen fertilizer on the leaf senescence and yield of insect-resistant hybrid cotton[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2008, 28(10): 2062-
2066.
[39] Liu A D, Li Z H, Zhang D M, et al. One-off basal application of nitrogen fertilizer increases the biological yield but not the economic yield of cotton in moderate fertility soil[J/OL]. Field Crops Research, 2022, 288: 108702[2024-01-05]. https://doi.org/
10.1016/j.fcr.2022.108702.
[40] Niu J, Gui H P, Iqbal A, et al. N-use efficiency and yield of cotton (G. hirsutumn L.) are improved through the combination of N-fertilizer reduction and N-efficient cultivar[J/OL]. Agronomy, 2020, 11(1): 55[2024-01-05]. https://doi.org/10.3390/
agronomy11010055.
[41] 孫桂蘭, 馮克云, 趙欣欣, 等. 有機(jī)肥替代化肥對(duì)棉花生長(zhǎng)發(fā)育和產(chǎn)量的影響[J/OL]. 新疆農(nóng)業(yè)科學(xué), 2020, 57(4): 762-769[2024-01-05]. https://doi.org/10.6048/j.issn.1001-4330.2020.
04.023.
Sun Guilan, Feng Keyun, Zhao Xinxin. Effects of organic manure replacing chemical fertilizer on cotton growth, development and yield[J/OL]. Xinjiang Agricultural Science, 2020, 57(4): 762-769[2024-01-05]. https://doi.org/10.6048/j.issn.1001-
4330.2020.04.023.
[42] 汪蘇潔, 貴會(huì)平, 董強(qiáng), 等. 有機(jī)肥替代對(duì)棉花養(yǎng)分積累、產(chǎn)量及土壤肥力的影響[J/OL]. 棉花學(xué)報(bào), 2021, 33(1): 54-65[2024-
01-05]. https://doi.org/10.11963/1002-7807.wsjsmz.20201104.
Wang Sujie, Gui Huiping, Dong Qiang, et al. Effects of organic fertilizer substitution on cotton nutrient accumulation, yield and soil fertility[J/OL]. Cotton Science, 2021, 33(1): 54-65[2024-
01-05]. https://doi.org/10.11963/1002-7807.wsjsmz.20201104.
[43] Saikia P, Bhattacharya S S, Baruah K K. Organic substitution in fertilizer schedule: Impacts on soil health, photosynthetic efficiency, yield and assimilation in wheat grown in alluvial soil[J/OL]. Agriculture, Ecosystems amp; Environment, 2015, 203: 102-109[2024-01-05]. https://doi.org/10.1016/j.agee.2015.02.
003.
(責(zé)任編輯:王小璐 責(zé)任校對(duì):王國(guó)鑫) ●