摘要:將自適應(yīng)聚焦束拓展到彈性介質(zhì)中,基于彈性格林函數(shù)的構(gòu)建,結(jié)合自適應(yīng)聚焦束的優(yōu)勢(shì),并考慮黏滯性對(duì)高斯束的影響,發(fā)展基于衰減補(bǔ)償?shù)亩喾至孔赃m應(yīng)聚焦束偏移方法。模型測(cè)試驗(yàn)證了本文方法的正確性和適應(yīng)性。結(jié)果表明,新方法能夠適應(yīng)強(qiáng)橫向速度變化,壓制噪音對(duì)成像結(jié)果造成的影響,使成像剖面更加干凈清晰。
關(guān)鍵詞:高斯束; 偏移成像; 自適應(yīng)聚焦束; 多分量; 衰減補(bǔ)償; 彈性介質(zhì); 格林函數(shù)
中圖分類(lèi)號(hào):P 631"" 文獻(xiàn)標(biāo)志碼:A
引用格式:陳超,李振春,黃建平.基于衰減補(bǔ)償?shù)亩喾至孔赃m應(yīng)聚焦束偏移[J].中國(guó)石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2024,48(4):80-91.
CHEN Chao, LI Zhenchun, HUANG Jianping. Multicomponent adaptive focused beam migration based on attenuation compensation[J].Journal of China University of Petroleum (Edition of Natural Science),2024,48(4):80-91.
Multicomponent adaptive focused beam migration based on
attenuation compensation
CHEN Chao1,2, LI Zhenchun1,2, HUANG Jianping1,2
(1.School of Geosciences in China University of Petroleum(East China), Qingdao 266580, China;
2.State Key Laboratory of Deep Oil and Gas, China University of Petroleum(East China), Qingdao 266580, China)
Abstract:This paper extends the adaptive focused beam technique to elastic media. By constructing elastic Greens function and incorporating the advantages of adaptive focused beams while accounting for the influence of viscosity on Gaussian beams, we develop a multi-component adaptive focused beam migration method based on attenuation compensation. Model tests verify the correctness and adaptability of this method, demonstrating its ability to handle strong lateral velocity variations, reduce noise impact on imaging results, and produce cleaner, clearer images.
Keywords: Gaussian beam; migration imaging; adaptive focused beam; multi component; attenuation compensation; elastic medium; Greens function
自適應(yīng)聚焦束是在高斯束的基礎(chǔ)上發(fā)展的,考慮了局部速度的變化,將高斯束的能量限制到一個(gè)波場(chǎng)內(nèi),避免了高斯束能量的擴(kuò)散,有助于提高成像質(zhì)量。傳統(tǒng)的多分量數(shù)據(jù)成像方法中,首先將地震數(shù)據(jù)分離為P波波場(chǎng)和S波波場(chǎng),然后利用傳統(tǒng)的聲波偏移方法分別成像,但該方法不能利用彈性波場(chǎng)的矢量特點(diǎn),而且地震波場(chǎng)的分離不徹底也會(huì)導(dǎo)致成像結(jié)果存在噪聲串?dāng)_,影響成像精度。同時(shí),黏滯性的存在會(huì)造成能量損失和相位畸變,對(duì)最終的成像結(jié)果造成影響,高斯束偏移方法兼具了Kirchhoff偏移方法的計(jì)算效率和波動(dòng)方程偏移的成像精度,同時(shí)具有高效、靈活的特點(diǎn),對(duì)地震波傳播成像有較強(qiáng)的適應(yīng)性[1]。Cˇerven等[2]提出了使用高斯束在非均勻介質(zhì)中計(jì)算波場(chǎng)的方法;Hill[3-4]首先提出了高斯束偏移,研究了高斯束偏移中的一些相關(guān)參數(shù),并且考慮鞍點(diǎn)積分提高計(jì)算效率;Hale[5-6]介紹了Kirchhoff偏移、傾斜疊加和高斯束偏移,并指出了高斯束偏移的優(yōu)勢(shì),提出了一些提高計(jì)算效率的方法;Nowack[7]提出了基于稀疏共炮點(diǎn)道集和共接收點(diǎn)道集數(shù)據(jù)的高斯束偏移;Gray[8]得到了一種真振幅高斯束疊前偏移成像方法,對(duì)成像精度有較高的提升。李振春等[9-10]研究了保幅高斯束偏移方法,提高了成像質(zhì)量;徐少波等[11]研究了多分量地震成像方法,提出了彈性波高斯束疊前深度偏移;韓建光等[12-13]基于各向異性介質(zhì)射線追蹤理論,實(shí)現(xiàn)了各向異性介質(zhì)高斯束成像方法;黃建平等[14-15]對(duì)起伏地表高斯束偏移成像進(jìn)行了研究,該方法對(duì)起伏地表有較好的適應(yīng)性;Hu等[16]基于線性反演,發(fā)展了最小二乘高斯束偏移成像方法。近年來(lái),新的波束控制方法得到了極大發(fā)展。Gao等[17]實(shí)現(xiàn)了快速束算法,提高了成像精度和計(jì)算效率;Nowack[18-19]為了提高成像精度,提出了聚焦束和動(dòng)態(tài)聚焦束,將波束傳播限制在較窄的范圍內(nèi);Wang[20]等在Nowack基礎(chǔ)上提出了自適應(yīng)聚焦束偏移,不僅提高了深反射層的成像質(zhì)量,而且能夠?qū)\層小尺度地質(zhì)構(gòu)造進(jìn)行精確成像;李勝雅等[21]將自適應(yīng)聚焦束應(yīng)用到VTI介質(zhì)中,使得繞射波收斂,提高了VTI介質(zhì)成像質(zhì)量;高雪等[22]引入傅里葉和Hilbert變換,將自適應(yīng)聚焦束拓展到黏聲VTI介質(zhì),實(shí)現(xiàn)了一種計(jì)算效率較高的時(shí)間域黏聲VTI介質(zhì)自適應(yīng)聚焦束偏移。早在1985年,Bickel等[23]將地震波的傳播效應(yīng)使用衰減和頻散的常數(shù)Q(與頻率無(wú)關(guān))模型進(jìn)行近似,并提出了一種時(shí)變逆濾波器消除了地震帶內(nèi)的相位畸變,減少了地震波之間的干擾。Hargreaves等[24]將反Q濾波方法用于一維模型,該方法不能適用于Q橫向變化的模型。Traynin等[25]提出一種計(jì)算頻率相關(guān)旅行時(shí)的有效方法,發(fā)展了基于衰減補(bǔ)償?shù)腒irchhoff偏移方法。筆者將自適應(yīng)聚焦束由聲波介質(zhì)拓展到彈性波介質(zhì),結(jié)合彈性介質(zhì)中的格林函數(shù)和波場(chǎng)延拓公式,考慮黏滯性對(duì)高斯束傳播走時(shí)的影響,發(fā)展一種適用于彈性介質(zhì)的基于衰減補(bǔ)償?shù)亩喾至孔赃m應(yīng)聚焦束方法。
ω2T′P(x)和增益函數(shù)φ(η),本文中設(shè)定G=3000,圖4展示了兩個(gè)函數(shù)的形態(tài)??梢钥闯?,當(dāng)η增加時(shí),φ(η)不會(huì)無(wú)限增加,但會(huì)接近常數(shù),也就是說(shuō),φ(η)會(huì)遵循式(38)的指數(shù)增益增長(zhǎng),直至接近預(yù)設(shè)定的最大增益,然后平穩(wěn)地過(guò)渡到最大增益。這樣限制了高頻補(bǔ)償算子的指數(shù)的無(wú)限增長(zhǎng),解決了穩(wěn)定性問(wèn)題。
2 模型測(cè)試
2.1 簡(jiǎn)單多層模型
首先,使用一個(gè)簡(jiǎn)單的五層模型來(lái)測(cè)試該方法的正確性。該模型有450×301個(gè)網(wǎng)格點(diǎn),水平網(wǎng)格間距為10 m,垂直網(wǎng)格間距為10 m。圖5顯示了模型參數(shù),包括P波速度場(chǎng)(圖5(a))、S波速度場(chǎng)(圖5(b))、P波品質(zhì)因子(圖5(c))和S波品質(zhì)因子(圖5(d))。在自由表面激發(fā)主頻為40 Hz的雷克子波構(gòu)建的爆炸P波震源。炮點(diǎn)間距為70 m,每個(gè)炮點(diǎn)有450個(gè)接收點(diǎn),接收點(diǎn)間距為10 m。采樣時(shí)間為4 s,時(shí)間間隔為0.8 ms。對(duì)于正演模擬,使用彈性波和黏彈性高階交錯(cuò)網(wǎng)格有限差分正演模擬方法生成65炮記錄。圖6展示了彈性波正演模擬和黏彈正演模擬方法第33炮水平x分量和垂直z分量。圖7為彈性波正演炮記錄彈性波高斯束偏移方法(參考剖面)、黏彈正演炮記錄傳統(tǒng)高斯束方法和黏彈正演炮記錄本文方法偏移結(jié)果對(duì)比,可以看出傳統(tǒng)高斯束方法和本文方法都能夠?qū)χ猩顚诱穹M(jìn)行很好的恢復(fù)。為了更好地說(shuō)明該方法在能夠?qū)φ穹M(jìn)行較好的恢復(fù),從圖7抽取的單道能量比較如圖8所示??梢园l(fā)現(xiàn)本文方法(綠線)與參考剖面(藍(lán)線)、傳統(tǒng)高斯束方法(紅線)的曲線接近,說(shuō)明了本文方法能夠?qū)ξ账p造成的能量損失進(jìn)行很好的恢復(fù)。模型測(cè)試結(jié)果表明了本文方法可以恢復(fù)振幅能量,有利于提高成像分辨率。
2.2 Seg/eage模型
為了更好地顯示黏彈介質(zhì)自適應(yīng)聚焦束對(duì)復(fù)雜構(gòu)造的適應(yīng)性,使用一個(gè)復(fù)雜的Seg/eage模型來(lái)測(cè)試該方法,該模型有676×225個(gè)網(wǎng)格點(diǎn),水平網(wǎng)格間距為10 m,垂直網(wǎng)格間距為10 m。圖9展示了模型參數(shù)。在自由表面激發(fā)主頻為15 Hz的雷克子波構(gòu)建的爆炸P波震源。炮點(diǎn)間距為120 m,每個(gè)炮點(diǎn)有676個(gè)接收點(diǎn),接收點(diǎn)間距為10 m。采樣時(shí)間為4 s,時(shí)間間隔為1.0 ms。使用彈性和黏彈性高階交錯(cuò)網(wǎng)格有限差分正演模擬方法生成57炮記錄。
圖10分別展示了兩種正演模擬方法第29炮水平x分量和垂直z分量。圖11為彈性波正演炮記錄彈性波高斯束偏移方法(參考剖面)、黏彈正演炮記錄傳統(tǒng)高斯束方法和黏彈正演炮記錄本文方法偏移結(jié)果對(duì)比。可以發(fā)現(xiàn):①如圖11中紅色箭頭所示,在鹽丘頂部及附近斷層處,自適應(yīng)聚焦束可以適應(yīng)強(qiáng)速度的變化,成像結(jié)果較好,比較接近參考剖面,而常規(guī)的高斯束卻不能很好地處理這種速度的劇烈變化,成像效果差;②如圖11中藍(lán)色方框所示,補(bǔ)償高斯束方法考慮了黏滯性的影響,這會(huì)在成像過(guò)程中將噪音也補(bǔ)償放大,同時(shí),高斯束在傳播過(guò)程中束寬不斷增大,這也造成了高斯束方法偏移結(jié)果有大量噪音,而本文方法限制束能量在一個(gè)波長(zhǎng)內(nèi),能量聚焦,雖然不如參考剖面干凈清晰,但本文方法相比于傳統(tǒng)的高斯束方法具有一定的優(yōu)勢(shì)。圖12是圖11對(duì)應(yīng)的歸一化后的平均波數(shù)譜,從中也可以看出傳統(tǒng)高斯束方法和本文方法都能夠?qū)φ穹M(jìn)行很好的恢復(fù),對(duì)提高成像質(zhì)量有很大幫助。為了驗(yàn)證噪聲對(duì)本文方法的影響,在黏彈正演得到的炮記錄上加入高頻噪聲,同樣提取第29炮如圖13所示,可以看出炮記錄中存在大量的噪聲。圖14是未加入噪聲和加入噪聲后的本文方法偏移成像結(jié)果。對(duì)比發(fā)現(xiàn),加入噪聲后的偏移結(jié)果中存在大量噪聲,但是主要層位同相軸仍然清晰可見(jiàn),噪聲對(duì)偏移結(jié)果影響較小,說(shuō)明了本文算法穩(wěn)定。模型測(cè)試表明了該方法能夠處理強(qiáng)速度變化的復(fù)雜模型,對(duì)存在噪聲的復(fù)雜模型有較強(qiáng)的適應(yīng)性。
3 結(jié)束語(yǔ)
針對(duì)黏滯性造成的地震波傳播過(guò)程中的能量損失和相位畸變的問(wèn)題以及高斯束擴(kuò)散造成的能量發(fā)散問(wèn)題,本文中修改了高斯束傳播算子得到自適應(yīng)聚焦束算子,同時(shí)考慮黏滯性對(duì)高斯束復(fù)制走時(shí)的影響,補(bǔ)償了黏滯性造成的波場(chǎng)衰減,提出了一種基于衰減補(bǔ)償?shù)亩喾至孔赃m應(yīng)聚焦束方法。該方法能夠處理多分量地震記錄,充分利用了對(duì)油氣資源更加敏感的S波,同時(shí)能夠消除黏滯性造成的負(fù)面影響,提高了成像精度;而自適應(yīng)聚焦束算子的使用能夠使成像剖面干凈清晰,壓制噪音對(duì)成像結(jié)果造成的影響。簡(jiǎn)單斷層模型和復(fù)雜Seg/eage模型的測(cè)試表明,本文方法能夠限制高斯束能量傳播擴(kuò)散,補(bǔ)償黏滯性造成的衰減,更好地恢復(fù)中深層的振幅,對(duì)復(fù)雜構(gòu)造適應(yīng)性好,能夠提高成像質(zhì)量。
參考文獻(xiàn):
[1] 黃建平,張晴,張凱,等.格林函數(shù)高斯束逆時(shí)偏移[J].石油地球物理勘探,2014,49(1):101-106.
HUANG Jianping, ZHANG Qing, ZHANG Kai, et al. Greens function Gaussian beam inverse time migration[J].Oil Geophysical Prospecting,2014,49(1):101-106.
[2] CˇERVEN V, POPOV M M, PSˇEBCˇIK I. Computation of wave fields in inhomogeneous media- Gaussian beam approach[J]. Geophysical Journal International, 1982,70(1):109-128.
[3] HILL N R. Gaussian beam migration[J]. Geophysics, 1990,55(11):1416-1428.
[4] HILL N R. Prestack Gaussian-beam depth migration[J]. Geophysics, 2001,66(4):1240-1250.
[5] HALE D. Migration by the Kirchhoff, slant stack, and Gaussian beam methods[R]. Golden, CO:Colorado School of Mines, Center for Wave Phenomena, 1992.
[6] HALE D. Computational aspects of Gaussian beam migration[R]. Golden, CO :Colorado School of Mines, Center for Wave Phenomena, 1992.
[7] NOWACK R L, SEN M K, STOFFA P L. Gaussian beam migration for sparse common-shot and common-receiver data[C/OL].SEG Technical Program Expanded Abstracts, 2003[2022-01-03]. https://library.seg.org/doi/epdfplus/10.1190/1.1817470.
[8] GRAY S H, BLEISTEIN N. True-amplitude Gaussian-beam migration[J]. Geophysics, 2009,74(2):S11-S23.
[9] 李振春,岳玉波,郭朝斌,等.高斯波束共角度保幅深度偏移[J].石油地球物理勘探,2010(3):360-365.
LI Zhenchun, YUE Yubo, GUO Chaobin, et al. Amplitude preserved common angle Guassian beam depth migration[J].Oil Geophysical Prospecting, 2010(3):360-365.
[10] 岳玉波,李振春,劉偉,等.保幅炮域高斯波束偏移[J].中國(guó)石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2011,35(1):52-55.
YUE Yubo, LI Zhenchun, LIU Wei, et al. Preserved amplitude shot domain Gaussian beam migration[J].Journal of China University of Petroleum (Edition of Natural Sciences),2011,35(1):52-55.
[11] 徐少波,岳玉波,王仕儉.彈性波高斯束疊前深度偏移[J].石油地球物理勘探,2014,49(2):259-265.
XU Shaobo, YUE Yubo, WANG Shijian, et al. Elastic Gaussian beam pre-stack depth migration[J]. Oil Geophysical Prospecting, 2014,49(2):259-265.
[12] 韓建光,王赟,張曉波,等.VTI介質(zhì)高斯束疊前深度偏移[J].石油地球物理勘探,2015,50(2):267-273.
HAN Jianguang, WANG Yun, ZHANG Xiaobo, et al. Gaussian beam prestack depth migration in VTI media[J]. Oil Geophysical Prospecting,2015,50(2):267-273.
[13] 段新意,李振春,黃建平,等.各向異性介質(zhì)共炮域高斯束疊前深度偏移[J].石油物探,2014,53(5):579-586.
DUAN Xinyi, LI Zhenchun, HUANG Jianping, et al. A prestack Gaussian beam depth migration in common-shot domain for anisotropic media[J].Geophysical Prospecting for Petroleum, 2014,53(5):579-586.
[14] 黃建平,袁茂林,段新意,等.一種解耦的起伏地表彈性波高斯束偏移方法[J].石油地球物理勘探,2015,50(3):460-468.
HUANG Jianping, YUAN Maolin, DUAN Xinyi, et al. Decoupled elastic Gaussian beam migration for rugged topography[J]. Oil Geophysical Prospecting, 2015,50(3):460-468.
[15] 黃建平,楊繼東,李振春,等.基于有效鄰域波場(chǎng)近似的起伏地表保幅高斯束偏移[J].地球物理學(xué)報(bào),2016,59(6):2245-2256.
HUANG Jianping, YANG Jidong, LI Zhenchun, et al. An amplitude-preserved Gaussian beam migration based on wave field approximation in effective vicinity under irregular topographical conditions[J].Chinese Journal of Geophysics, 2016,59(6):2245-2256.
[16] HU H, LIU Y, ZHENG Y, et al. Least-squares Gaussian beam migration[J]. Geophysics, 2016,81(3):S87-S100.
[17] GAO F, ZHANG P, WANG B, et al. Fast beam migration—a step toward interactive imaging[C/OL]. SEG Technical Program Expanded Abstracts,2006[2022-01-06].https://library.seg.org/doi/epdfplus/10.1190/1.2370032.
[18] NOWACK R L. Focused Gaussian beams for seismic imaging[C/OL]. SEG Technical Program Expanded Abstracts, 2008[2022-01-15].https://library.seg.org/doi/epdfplus/10.1190/1.3059356.
[19] NOWACK R L. Dynamically focused Gaussian beams for seismic imaging[J]. International Journal of Geophysics, 2011,2011:1-8.
[20] WANG X, YANG J. Prestack depth migration using adaptive focused beams[C/OL]. SEG Technical Program Expanded Abstracts, 2015[2022-01-19].https://library.seg.org/doi/epdfplus/10.1190/segam2015-5801751.1.
[21] 李勝雅,呂慶達(dá),黃建平,等.VTI介質(zhì)自適應(yīng)聚焦束偏移[J].石油地球物理勘探,2020,55(1):92-100.
LI Shengya, L Qingda, HUANG Jianping, et al. Adaptive focused beam migration in VTI media[J]. Oil Geophysical Prospecting, 2020,55(1):92-100.
[22] 高雪,黃建平,李振春,等.時(shí)間域黏聲VTI介質(zhì)自適應(yīng)聚焦束偏移[J].石油地球物理勘探,2021,56(4):771-781.
GAO Xue, HUANG Jianping, LI Zhenchun, et al. Time-domain adaptive focused beam migration for viscous and VTI media[J]. Oil Geophysical Prospecting, 2021,56(4):771-781.
[23] BICKEL S H, NATARAJAN R R. Plane-wave Q deconvolution[J]. Geophysics, 1985,50(9):1426-1439.
[24] HARGREAVES N D, CALVERT A J. Inverse Q filtering by Fourier transform[J]. Geophysics,1991,56(4):519-527.
[25] TRAYNIN P, LIU J, REILLY J M. Amplitude and bandwidth recovery beneath gas zones using Kirchhoff prestack depth Q-migration[C/OL]. SEG Technical Program Expanded Abstracts,2008[2022-02-15]. https://library.seg.org/doi/epdfplus/10.1190/1.3059363.
[26] CˇERVEN V, PSˇENCˇIK I.Gaussian beams and paraxial ray approximation in three-dimensional elastic inhomogeneous media[J]. Journal of Geophysics, 1983,53(1):1-15.
[27] CˇERVEN V, PSˇENCˇIK I. Gaussian beams in two-dimensional elastic inhomogeneous media[J]. Geophysical Journal International, 1983,72(2):417-433.
[28] CˇERVEN V, PSˇENCˇIK I. Gaussian beams in elastic 2-D laterally varying layered structures[J]. Geophysical Journal International, 1984,78(1):65-91.
[29] SENA A G, TOKSOZ M N. Kirchhoff migration and velocity analysis for converted and nonconverted waves in anisotropic media[J]. Geophysics, 1993,58(2):265-276.
[30] HOKSTAD K. Multicomponent kirchhoff migration[J]. Geophysics, 2000,65(3):861-873.
[31] CLAERBOUT J F. Toward a unified theory of reflector mapping[J]. Geophysics, 1971,36(3):467.
[32] KAELIN B, GUITTON A. Imaging condition for reverse time migration[C/OL]. SEG Technical Program Expanded Abstracts,2006[2022-01-6]. https://library.seg.org/doi/epdfplus/10.1190/1.2370059.
[33] LEE D, MASON I M, JACKSON G M. Split-step Fourier shot-record migration with deconvolution imaging[J]. Geophysics, 1991,56(11):1786-1793.
[34] DU Q, ZHU Y, BA J. Polarity reversal correction for elastic reverse time migration[J]. Geophysics, 2012,77(2):S31-S41.
[35] KEERS H, VASCO D W, JOHNSON L R. Viscoacoustic crosswell imaging using asymptotic wave forms[J]. Geophysics, 2001,66(3):861-870.
[36] ZHANG J, WU J, LI X. Compensation for absorption and dispersion in prestack migration: an effective Q approach[J]. Geophysics, 2013,78(1):S1-S14.
(編輯 修榮榮)
收稿日期:2023-06-05
基金項(xiàng)目:國(guó)家自然科學(xué)基金項(xiàng)目(42074133);中石油重大科技合作項(xiàng)目(ZD2019-183-003)
第一作者及通信作者:陳超(1994-),男,博士,研究方向?yàn)榈卣鸩▊鞑ヅc成像。 E-mail:B19010033@s.upc.edu.cn。
文章編號(hào):1673-5005(2024)04-0080-12"" doi:10.3969/j.issn.1673-5005.2024.04.008