摘 要:以廢白土資源化利用為出發(fā)點,將SBE通過缺氧高溫煅燒制備成廢白土炭(SBE@C)吸附劑,探究多染料競爭吸附的關(guān)系??疾觳煌瑹峤鉁囟葘BE@C吸附印染廢水中三種染料(甲基橙、曙紅Y和茜素紅)的影響,并對熱解前后的材料進(jìn)行SEM、EDAX、BET、XRD、FTIR和XPS表征分析。結(jié)果表明,高溫?zé)峤夥ㄊ筍BE表面殘油被炭化,增大了比表面積和孔體積,從而提升了吸附容量;熱解溫度為800℃時,SBE@C對染料的吸附效能最佳;多元競爭吸附實驗表明,三種染料之間均存在一定程度的競爭吸附,且多元污染過程均由化學(xué)吸附?jīng)Q定,符合顆粒內(nèi)擴(kuò)散模型;用NaOH溶液對SBE@C進(jìn)行再生,四次循環(huán)后SBE@C對三種染料仍具有良好的吸附能力。
關(guān)鍵詞:廢白土炭;多元競爭吸附;去除效能;甲基橙;曙紅Y;茜素紅
中圖分類號:X703 文獻(xiàn)標(biāo)志碼:A 文章編號:1673-9655(2024)05-00-07
0 引" 言
活性白土是以膨潤土為原料經(jīng)處理加工而成的高活性吸附劑,廣泛應(yīng)用于油脂工業(yè)脫色環(huán)節(jié)[1],對油脂脫色后失去活性即成為廢白土(SBE)。SBE含有SiO2、Al2O3等無機(jī)成分和油脂、磷脂、脂肪酸等有機(jī)成分,其中油脂含量占SBE總量的20%~30%[2]。作為一種可回收利用的固廢,大部分油脂廠采用填埋方式處理SBE,未使其資源合理利用,造成資源浪費(fèi)[3]。廢白土是《國家危險廢物名錄》中明文列出的危險固體廢棄物,若處置不當(dāng)暴露于空氣中,因其高油脂含量及黏土催化的自動氧化反應(yīng),會引發(fā)SBE自燃,造成火災(zāi),污染環(huán)境[4]。
目前,大部分研究致力于回收廢白土中的油脂,并對油脂回收后的廢白土進(jìn)行再利用[5]。Thivya K等[6]將從廢白土中提取的殘油用于合成生物柴油;Nugraha[7]等將再生廢白土用于粗棕櫚油的脫色;Aulia R等[8]探究了將廢白土廢料作為低成本陶瓷膜材料的可行性。除上述用途外,還可將SBE制備為水處理吸附劑,去除廢水中的污染物。Ning Z等[9]利用SBE的性質(zhì)合成具有二維類石墨烯結(jié)構(gòu)的礦物碳材料吸附劑,用于去除四環(huán)素,吸附容量可達(dá)96.48 mg/g;Yuxin K等[10]將SBE轉(zhuǎn)化為凹凸棒土amp;碳復(fù)合材料新型吸附劑,用于協(xié)同去除水中的銅和四環(huán)素;Tang J等[11]采用水熱法對SBE改性,對亞甲基藍(lán)、Pb(II)和鹽酸四環(huán)素的吸附容量分別為271.28、180.90和308.21 mg/g。
雖然SBE能夠通過改性轉(zhuǎn)化為水處理吸附劑,但水熱法、酸堿及表面活性劑改性等方法存在二次污染、產(chǎn)量低、不易操作等問題,而本研究采用缺氧熱解方法將SBE制備成廢白土炭(SBE@C)吸附材料,節(jié)能且易工程推廣。
印染廢水含有大量染料,具有色度高、污染物成分復(fù)雜、化學(xué)穩(wěn)定性強(qiáng)、毒性高、可生化性差、難降解等特點[12],排入水體會降低水體透光度,減弱水生植物的光合作用,影響動植物生存[13],
易通過食物鏈積累進(jìn)入人體[14],對人體健康構(gòu)成威脅。根據(jù)化學(xué)結(jié)構(gòu)不同,染料可分為苯甲烷類染料、偶氮類染料和蒽醌類染料等[13]。甲基橙(MO)屬于偶氮型陰離子染料,會降解為芳香胺族,對人類健康具有“三致”效應(yīng)[15];曙紅Y(EY)屬于水溶性山叮類陰離子染料,接觸眼睛會損害角膜[16],攝入人體會對肝腎等重要器官產(chǎn)生不良影響;茜素紅(AR)屬于水溶性蒽醌類陰離子染料,具有劇毒性、誘變性、致癌性,攝入人體可引起呼吸系統(tǒng)疾病、肺氣腫或塵肺病,還可能引起胃炎和高鐵血紅蛋白癥[17-19]。
目前去除印染廢水中染料污染物的方法可分為物理法、化學(xué)法和生物法三大類。與其他技術(shù)相比,本研究采用的吸附法具有設(shè)計簡單、易于操作、吸附劑來源廣泛、投資成本和運(yùn)營成本低等優(yōu)點[20],廣泛應(yīng)用于印染廢水的處理。
因此,本研究從SBE自身特點出發(fā),通過缺氧熱解將其制備成SBE@C吸附劑,選取印染廢水中三種不同類型的染料——甲基橙(偶氮類),曙紅Y(山叮類)和茜素紅(蒽醌類)為目標(biāo)污染物,考察SBE@C對多染料競爭吸附的去除效能。
1 材料和方法
1.1 實驗儀器及藥劑
本實驗采用的主要試劑有甲基橙(C14H14N3NaO3S)、曙紅Y(C20H6Br4Na2O5)、茜素紅(C14H7NaO7S)和NaOH溶液,均購于上海麥克林生化科技有限公司(分析純)。
實驗采用的儀器見表1。
1.2 材料制備
SBE由河南陽光油脂集團(tuán)提供。將SBE置于烘箱在105℃下干燥24 h,使用研缽研磨粉碎,過100目篩使其粒徑<150 μm。放入管式爐在氮?dú)鈿夥障聼峤猓刂频獨(dú)饬魉贋?50 mL/min。熱解溫度分別為400℃、600℃、800℃、1000℃,升溫速率為8℃/min,恒溫保持2 h。降至室溫,取出晾干,并標(biāo)記為SBE@C-400、SBE@C-600、SBE@C-800和SBE@C-1000。
1.3 吸附實驗
1.3.1 不同熱解溫度的影響
分別配置100 mL濃度為20 mg/L的甲基橙、曙紅Y
和茜素紅溶液,置于錐形瓶,將SBE@C(1 g/L)
投入錐形瓶中。在恒溫水浴振蕩器上振蕩24 h,轉(zhuǎn)速150 r/min,溫度25℃。反應(yīng)結(jié)束取上清液,經(jīng)0.45 μm濾膜過濾,測定吸光度。
1.3.2 多元競爭吸附
在500 mL錐形瓶中加入兩種或三種初始濃度均為20 mg/L的染料溶液,加入一定量SBE@C(1 g/L),
室溫下置于磁力攪拌器上,轉(zhuǎn)速150 r/min。測定不同時間點的吸附量,記為qt(mg/g)。吸附容量根據(jù)公式(1)計算:
(1)
式中:qt—吸附劑在t時刻的吸附容量,mg/g;V—溶液的體積,L;C0—溶液的初始濃度,mg/L;Ct—t時刻的溶液濃度,mg/L;m—吸附劑的投加量,g。
1.3.3 SBE@C的再生
為考察吸附材料的可重復(fù)利用性,用0.1 mol/L
的NaOH溶液對反應(yīng)后SBE@C進(jìn)行解吸。配制
0.1 mol/L的NaOH溶液,加入反應(yīng)后的SBE@C(1 g/L),
在恒溫水浴振蕩器上振蕩24 h,轉(zhuǎn)速150 r/min,溫度25℃。將再生的SBE@C加入至混合染料溶液,再次進(jìn)行吸附實驗,測量平衡時的吸附容量。
1.3.4 分析和表征方法
利用掃描電子顯微鏡(SEM)和X射線能譜(EDAX,Zeiss Merlin Compact)對SBE@C進(jìn)行表征,分析材料的表面形貌和元素含量;采用BET法測定SBE@C的比表面積、孔徑和平均孔隙體積;利用X射線衍射(Smart lab)、傅里葉變換紅外光譜(Nicolet IS50-Continuum)和X射線光電子能譜(Thermo Escalab 250XI)對SBE及反應(yīng)后材料的晶體結(jié)構(gòu)、化學(xué)成分進(jìn)行研究;使用雙光束紫外可見分光光度計(TU-1900)測定溶液吸光度。
2 結(jié)果與分析
2.1 表征分析
2.1.1 SEM和EDAX分析
圖1為SBE、不同熱解溫度所得SBE@C、吸附后SBE@C(SBE@C-800-A)和用NaOH溶液解吸后SBE@C(SBE@C-de.)的SEM圖和EDAX分析。
由SEM圖譜可觀察到SBE表面粗糙致密且無明顯結(jié)構(gòu)特征,而熱解后SBE@C表面存在大量孔隙,總體呈現(xiàn)出相對蓬松的結(jié)構(gòu),這可能是SBE@C
比SBE具有更大吸附容量的原因之一。吸附后SBE@C表面粗糙且多孔,再生后材料呈片狀結(jié)構(gòu)。對SBE和SBE@C進(jìn)行EDAX分析,結(jié)果表明兩者均含有C、O、Al、Si、Fe五種元素,且熱解后(溫度>800℃)C含量明顯降低,表明SBE表面有機(jī)質(zhì)被炭化。吸附后SBE@C的C含量升高,而再生后C含量降低,表明堿洗可將污染物成功洗脫。
2.1.2 BET分析
為了解SBE@C的孔隙結(jié)構(gòu)特征,對其進(jìn)行BET分析,結(jié)果如圖2所示。氮?dú)馕矫摳角€(圖2a)評估材料的結(jié)構(gòu)性質(zhì),其形狀與固體孔隙度的類型有關(guān)[21]。根據(jù)IUPAC制定的分類標(biāo)準(zhǔn),SBE和不同熱解溫度制備的SBE@C均屬于IV型等溫線,H3型滯后環(huán),表明裂縫孔是由層狀顆粒堆積形成[22]。從圖2b可觀察到,SBE和SBE@C均為介孔材料。
如表2所示,SBE比表面積、孔體積分別為12.31 m2/g和3.94×10-2 cm3/g,SBE@C-400較SBE分別提高至38.50 m2/g和1.02×10-1 cm3/g,而平均孔徑由SBE的12.80 nm降至10.58 nm,表明熱解可增大SBE@C的比表面積及孔體積,提高吸附能力,平均孔徑的減小可能是高溫?zé)峤庀掠袡C(jī)物不完全炭化,材料結(jié)構(gòu)塌陷,使部分孔隙通道被堵塞所致[23]。此外,SBE@C-600的比表面積最大(53.19 m2/g),而800℃和1000℃下熱解的SBE@C比表面積降低,可能是由于熱解溫度過高,使材料結(jié)構(gòu)坍塌。
2.1.3 X射線衍射(XRD)分析
如圖3所示,2θ為21.00°、26.72°、37.50°、41.24°、45.07°、50.62°、60.02°和67.61°處特征峰均代表石英[24],高溫?zé)峤夂骃BE@C也含此特征峰,表明高溫?zé)峤馕锤淖僑BE的結(jié)構(gòu)。29.44°和31.08°處的峰代表正長石的特征峰。此外,在2θ為19.84°和35.47°處發(fā)現(xiàn)微量蒙脫石的存在[25]??傮w上看,所有材料呈現(xiàn)出相似的特征峰,表明吸附和解吸并未改變材料的物相組成。
2.1.4 紅外光譜(FTIR)分析
如圖4所示,3431 cm-1處特征峰為層間水與羥基基團(tuán)的-OH彎曲振動[26];在2931 cm-1和2855 cm-1特征峰處,觀測到有機(jī)質(zhì)的C-H拉伸振動[27],該特征峰只出現(xiàn)在SBE中,表明高溫?zé)峤饪墒筍BE表面的有機(jī)質(zhì)炭化[28]。1747 cm-1處特征峰代表C=O伸縮振動[29],該特征峰在SBE中較為明顯,在SBE@C中不明顯,可能是其含量較低[30]所致。1624 cm-1和875 cm-1處為材料表面芳香基團(tuán)的C-H拉伸振動[31]。1035 cm-1、789 cm-1和469 cm-1處分別代表Si-O-Si拉伸和Si-O彎曲振動[32]。1447 cm-1和726 cm-1處分別代表CO32-振蕩和彎曲振動[31]。相較SBE@C,吸附后(SBE@C-800-A)及解吸后(SBE@C.de)的FTIR圖譜未發(fā)生明顯的變化。
2.1.5 X射線光電子能譜(XPS)分析
圖5為SBE@C-800、SBE@C吸附后(SBE@C-800-A)及解吸后(SBE@C-de.)的XPS圖譜。
如圖5a所示,SBE@C吸附前后及解吸后均存在C1s、O1s、Si2s、Al2p四個特征峰,表明吸附未改變SBE@C的元素組成。圖5b~d為C1s分峰擬合結(jié)果,結(jié)果顯示,在283.9,284.9,286.3和289.2 eV處的峰分別代表C=O,C-C,C-O(酚,醇或醚),-COOR(酯基)[33, 34]。相較SBE@C-800,SBE@C-800-A在284.9eV處C-C特征峰強(qiáng)度明顯升高,這可能是SBE@C與有機(jī)污染物相結(jié)合所致。
2.2 不同熱解溫度對吸附性能的影響
考察不同熱解溫度對SBE@C吸附三種染料的影響。如圖6所示,SBE對甲基橙、曙紅Y和茜素紅三種染料的吸附效率分別為4.25%,4.48%和11.59%,表明未經(jīng)處理的SBE仍具有一定的吸附能力,但效果并不顯著;當(dāng)熱解溫度為400℃,SBE@C
與SBE的處理效果基本一致;當(dāng)熱解溫度提高至600℃,SBE@C對三種染料的吸附效率均有大幅提高,尤其對茜素紅,吸附效率可達(dá)90.05%;當(dāng)熱解溫度達(dá)800℃,SBE@C對三種染料的吸附效率達(dá)最佳,分別為66.29%、44.14%和99.46%;隨溫度繼續(xù)升高至1000℃,吸附效率大幅下降,可能是因為過高的溫度使SBE@C的內(nèi)部孔隙結(jié)構(gòu)遭到破壞,導(dǎo)致其吸附能力下降。因此,后續(xù)研究均選取SBE@C-800(簡稱“SBE@C”)。
2.3 多元競爭吸附對吸附性能的影響
構(gòu)建二元或三元復(fù)合染料體系,考察多元競爭吸附對SBE@C吸附性能的影響。采用一級動力學(xué)模型[35](式2)、偽二級動力學(xué)模型[36](式3)和顆粒內(nèi)擴(kuò)散模型[37](式4)對實驗數(shù)據(jù)進(jìn)行擬合。
(2)
(3)
(4)
式中:k1— 一級動力學(xué)模型的速率常數(shù),/min;k2—偽二級動力學(xué)模型的速率常數(shù),g/(mg·min);k3—顆粒內(nèi)擴(kuò)散模型的速率常數(shù),mg/(g·min1/2)。
單一染料吸附實驗結(jié)果表明,甲基橙、曙紅Y和茜素紅濃度為20 mg/L時,投加量1 g/L的SBE@C對三者的吸附容量在180 min時分別為12.53,7.16和18.29 mg/g。如圖7a所示,與單一染料吸附相比,甲基橙的吸附容量由12.53 mg/g下降至6.51 mg/g,曙紅Y的吸附容量由7.16 mg/g下降至4.73 mg/g,表明甲基橙和曙紅Y在SBE@C上的吸附存在競爭關(guān)系。SBE@C對甲基橙-茜素紅復(fù)合污染物(圖7b)和曙紅Y-茜素紅復(fù)合污染物
(圖7c)的競爭吸附曲線顯示,SBE@C對復(fù)合污染物的吸附容量與單元吸附相比,均有所下降,表明三種染料在兩兩混合時,SBE@C對不同染料的吸附皆存在一定競爭關(guān)系。圖7d為SBE@C對甲基橙、曙紅Y和茜素紅三種復(fù)合染料溶液的吸附性能研究,SBE@C對三者的吸附容量在180 min時分別為3.40、3.73和4.63 mg/g,相較單一染料吸附,其吸附容量也有不同程度的降低。動力學(xué)擬合結(jié)果顯示,上述四種多元污染物均由化學(xué)吸附?jīng)Q定,且符合顆粒內(nèi)擴(kuò)散模型,表明競爭吸附并未改變其吸附機(jī)理和過程。
2.4 SBE@C的再生
如圖8所示,第一次再生后,SBE@C對三種染料的吸附效率降低幅度較小,說明堿洗可實現(xiàn)SBE@C再生。隨再生次數(shù)的增加,SBE@C對染料的吸附效率逐漸下降。第一次再生后,SBE@C對甲基橙、曙紅Y和茜素紅的吸附效率分別為59.87%、69.63%和76.64%;經(jīng)過四次再生后,吸附效率分別降至32.95%、41.20%和63.38%。再生后吸附容量的下降可能是因為SBE@C表面未完全解吸的污染物的積累,以及SBE@C長期暴露在氫氧化鈉溶液中導(dǎo)致表面結(jié)構(gòu)改變。總體而言,SBE@C具有一定的重復(fù)利用性,應(yīng)用潛力大。
3 結(jié)" 論
(1)通過高溫缺氧熱解法制備SBE@C吸附劑,對比不同熱解溫度下制備SBE@C的吸附性能,得出800℃下SBE@C吸附性能最優(yōu)。
(2)多元競爭吸附表明:與單一污染吸附相比,多元競爭中各染料的吸附容量均不同程度降低,表明三種染料之間皆存在競爭吸附關(guān)系;多元競爭吸附動力學(xué)過程由化學(xué)吸附?jīng)Q定,符合顆粒內(nèi)擴(kuò)散模型,競爭吸附不改變其吸附機(jī)理。
(3)再生實驗表明:SBE@C再生四次后,對甲基橙、曙紅Y和茜素紅仍具有一定吸附效率,表明SBE@C重復(fù)利用性能良好。
參考文獻(xiàn):
[1] 倪武松,周藝,鄧麗,等. 再生白土對大豆油脫色效果的研究[J]. 武漢工業(yè)學(xué)院學(xué)報,2007(3):6-8.
[2] 譚傳波. 食用油脂脫色廢白土高效綜合利用新技術(shù)研究[D]. 長沙:長沙理工大學(xué), 2016.
[3] 王月華,劉玉蘭,李超群,等. 油脂脫色廢白土二次煅燒再生工藝的研究[J]. 中國油脂, 2019, 44(11):116-117.
[4] Pollard S, Sollars C J, Perry R. The reuse of spent bleaching earth: A feasibility study in waste minimisation for the edible oil industry[J]. Bioresource Technology, 1993, 45(1):53-58.
[5] 宣超, 高麗, 孔令裕等. 煉油廢白土的綜合利用[J]. 山東化工, 2018, 47(6):163-164.
[6] Thivya K, Kheang S L, Farhana N J, et al.Synthesis of biodiesel from residual oil extracted from spent bleaching earthusing spent bleaching earth-supported catalyst[J].Chemical Engineering Research and Design,2023(200):716-728.
[7] Nugraha, Iriany ,E M. Regeneration of spent bleaching earth using microwave assisted extraction method with hexane as solvent for the bleaching of crude palm oil[J].Journal of Physics: Conference Series,2023,2421(1).
[8] Aulia R, Muthia E, Muhammad B R, et al.Novel spent bleaching earth industrial waste as low-cost ceramic membranes material: elaboration and characterization[J].Materials Today: Proceedings,2023,87(P2):136-140.
[9] Ning Z, Qiyi M, Baifa Z, et al.New insight into removal of tetracycline by a two-dimensional graphene-like carbon adsorbent prepared using one-step pyrolysis of spent bleaching earth: Adsorption behaviors, mechanisms and cost analysis[J].Separation and Purification Technology,2023(327).
[10] Yuxin K, Xiaoli Z, Shaocheng S, et al. A Novel Adsorbent of Attapulgite Carbon Composites Derived from Spent Bleaching Earth for Synergistic Removal of Copper and Tetracycline in Water[J]. International Journal of Environmental Research and Public Health,2023,20(2): 1573-1573.
[11] Tang J, Mu B, Zong L, et al. One-step synthesis of magnetic attapulgite/carbon supported NiFe-LDHs by hydrothermal process of spent bleaching earth for pollutants removal[J]. Journal of Cleaner Production, 2018(172):673-85.
[12] 左小梅, 傅丹婷. 印染廢水處理技術(shù)淺析[J]. 資源節(jié)約與環(huán)保, 2023 (8):67-70.
[13] 麻榮福, 韓英杰, 李海山,等. 不同指標(biāo)新疆煤基活性炭吸附水中茜素紅的試驗研究[J]. 環(huán)境工程,2023, 41(S1):267-272.
[14] 張事成, 李思敏, 朱佳. CuO/g-C_3N_4活化過二硫酸鹽降解甲基橙[J]. 環(huán)境工程, 2022, 40(10):40-48.
[15] Saratale R G, Saratale G D, Chang J-S, et al. Bacterial Decolorization and Degradation of Azo Dyes: A Review[J]. Journal of the Taiwan Institute of Chemical Engineers, 2011(42):138-57.
[16] Mittal A, Jhare D, Mittal J. Adsorption of hazardous dye Eosin Yellow from aqueous solution onto waste material De-oiled Soya: Isotherm, kinetics and bulk removal[J]. Journal of Molecular Liquids, 2013(179).
[17] Venkatesh S, Arutchelavn V. Biosorption of Alizarin Red dye onto immobilized biomass of Canna indica: isotherm, kinetics, and thermodynamic studies[J]. Desalination and Water Treatment, 2020(196):409-21.
[18] Sujitha R, Ravindhranath K. Extraction of anionic dye, Alizarin Red S, from industrial waste waters using active carbon derived from the stems of Achyranthes Aspera plant as bio-adsorbent[J]. 2016(8):63-73.
[19] Yagub M, Sen T, Afroze S, et al. Dye and Its Removal from Aqueous Solution by Adsorption: A Review[J]. Advances in colloid and interface science, 2014, 209.
[20] Uddin M K. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade[J]. Chemical Engineering Journal, 2017(308):438-462.
[21] Silva T L, Ronix A, Pezoti O, et al. Mesoporous activated carbon from industrial laundry sewage sludge: Adsorption studies of reactive dye Remazol Brilliant Blue R[J]. Chemical Engineering Journal, 2016(303):467-76.
[22] Shi Y H, Cheng X F, Wan D J, et al. Construction of the micro-electrolysis system by Fe0 and clay-carbon derived from oil refining for the removal of ozone disinfection by-products[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2022(637):12.
[23] Liu Y, Li J, Wu L,et al. Synergetic adsorption and Fenton-like degradation of tetracycline hydrochloride by magnetic spent bleaching earth carbon:Insights into performance and reaction mechanism[J]. Science of The Total Environment, 2021(761):143956.
[24] Zhou H M, Qiao X C, Yu J G. Influences of quartz and muscovite on the formation of mullite from kaolinite[J]. Applied Clay Science, 2013(80-81):176-81.
[25] Zhang Z, Wang W, Tian G, et al. Solvothermal evolution of red palygorskite in dimethyl sulfoxide/water[J]. Applied Clay Science, 2018(159):16-24.
[26] Ulibarri M A, Pavlovic I, Barriga C, et al. Adsorption of anionic species on hydrotalcite-like compounds:effect of interlayer anion and crystallinity[J]. Applied Clay Science, 2001, 18(1):17-27.
[27] Marrakchi F, Bouaziz M, Hameed B H. Activated carbon–clay composite as an effective adsorbent from the spent bleaching sorbent of olive pomace oil: Process optimization and adsorption of acid blue 29 and methylene blue[J]. Chemical Engineering Research and Design, 2017(128):221-30.
[28] Chen H, Wang X, Li J, et al. Cotton derived carbonaceous aerogels for efficient removal of organic pollutants and heavy metal ions[J]. J Mater Chem A, 2015(3).
[29] Mana M, Ouali M S, Lindheimer M, et al. Removal of lead from aqueous solutions with a treated spent bleaching earth[J]. J Hazard Mater, 2008, 159(2):358-64.
[30] Wan D, Cheng X, Shi Y, et al. Insights into lead removal in water using a novel carbonized material derived from the by-product of oil refining: action mechanism and performance optimization[J]. Journal of Chemical Technology amp; Biotechnology, 2021, 96(11):3224-36.
[31] Saiah F B D, Su B-L, Bettahar N. Nickel–iron layered double hydroxide (LDH): Textural properties upon hydrothermal treatments and application on dye sorption[J]. J Hazard Mater, 2009, 165(1):206-17.
[32] Christidis G E,Scott P W, Dunham A C. Acid activation and bleaching capacity of bentonites from the islands of Milos and Chios, Aegean, Greece[J]. Applied Clay Science, 1997, 12(4):329-47.
[33] Xie Y, Yuan X, Wu Z, et al. Adsorption behavior and mechanism of Mg/Fe layered double hydroxide with Fe3O4-carbon spheres on the removal of Pb(II) and Cu(II)[J]. Journal of Colloid and Interface Science, 2019(536):440-55.
[34] Wu Z, Yuan X, Zhong H, et al. Highly efficient adsorption of Congo red in single and binary water with cationic dyes by reduced graphene oxide decorated NH2MIL68(Al)[J]. Journal of Molecular Liquids, 2017(247):215-29.
[35] Zhang S, Li X-Y, Chen J P. Preparation and evaluation of a magnetite-doped activated carbon fiber for enhanced arsenic removal[J]. Carbon, 2010, 48(1):60-7.
[36] Zehra T, Priyantha N, Lim L, et al. Sorption Characteristics of peat of Brunei Darussalam V: removal of Congo red dye from aqueous solution by peat[J]. Desalination and water treatment, 2014.
[37] Song W, Gao B, Wang H, et al. The rapid adsorption-microbial reduction of perchlorate from aqueous solution by novel amine-crosslinked magnetic biopolymer resin[J]. Bioresource Technology, 2017(240):68-76.
Study on Competitive Adsorption of Multiple Dyes in the Process of Removing Printing and Dyeing Wastewater by Spent Bleaching Earth Carbon
LUO Jiang-nan, ZHANG Ren-guo, CAO Chu-xuan, SHI Ya-hui, WAN Dong-jin, WANG Yang-yang
(School of Environmental Engineering, Henan University of Technology, Zhengzhou Henan 450001,China)
Abstract: Spent bleaching earth (SBE) is a solid waste produced in the process of oil refining. The improper disposal of SBE would cause environmental pollution and waste of resources. Considering the resource utilization of SBE, SBE was anoxically calcined to prepare spent bleaching earth carbon (SBE@C) adsorbent at high temperature, and the study of competitive adsorption of multiple dyes by"SBE@C was performed. The effect of different pyrolysis temperatures on the adsorption of three dyes (i.e., methyl orange, eosin Y, alizarin red) by SBE@C in printing and dyeing wastewater was studied. SEM, EDAX, BET, XRD, FTIR and XPS characterization analysis of the materials before and after pyrolysis were carried out. The results showed that the high temperature pyrolysis carbonized the residual oil on the surface of SBE, which increased the specific surface area and pore volume, thereby increasing the adsorption capacity. When the pyrolysis temperature was 800℃, SBE@C had the best adsorption performance for dyes. Multiple competitive adsorption experiment showed that there was a certain degree of competitive adsorption among the three dyes. Also, the multiple competitive adsorption process was determined by chemisorption, and fitted well with the intra- particle diffusion model. SBE@C was regenerated with NaOH solution, and SBE@C still had a great adsorption performance for the three dyes after four cycles.
Key words: spent bleaching earth carbon; multicomponent competitive adsorption; removal performance; methyl orange; eosin Y; alizarin red
基金項目:河南工業(yè)大學(xué)高層次人才項目(2020BS005);鄭州市科技協(xié)同創(chuàng)新專項重點項目(21ZZXTCX05)。
作者簡介:羅江楠(2002- ),女,本科,研究方向為水處理與新型材料。
通信作者:史亞慧(1991- ),女,博士,碩士生導(dǎo)師。研究方向為水處理與新型材料。