摘 要:以聚氯乙烯和聚乙烯為微塑料代表,探究這兩種微塑料對(duì)磺胺甲惡唑的吸附動(dòng)力學(xué)及熱力學(xué)特性。結(jié)果表明,聚氯乙烯對(duì)磺胺甲惡唑的吸附量較大,準(zhǔn)二級(jí)模型更適合用于描述兩種微塑料對(duì)磺胺甲惡唑的吸附動(dòng)力學(xué)過程;聚氯乙烯和聚乙烯對(duì)磺胺甲惡唑的吸附熱力學(xué)過程用Langmuir模型擬合較好,說明吸附過程是單層吸附;兩種微塑料對(duì)磺胺甲惡唑的吸附過程是一個(gè)自發(fā)進(jìn)行,吸熱并且熵增的過程。
關(guān)鍵詞:聚氯乙烯;聚乙烯;磺胺甲惡唑;吸附
中圖分類號(hào):X13 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1673-9655(2024)05-00-06
0 引言
塑料因其生產(chǎn)成本低、用途廣泛、耐用與便于攜帶等優(yōu)點(diǎn)成為日常生活中必不可少的一種材料[1, 2],每年全球產(chǎn)量超過3.5億t[3, 4]。全球每天產(chǎn)生160萬t塑料廢物,相當(dāng)于人均每年產(chǎn)生75 kg的塑料垃圾[5]。當(dāng)廢棄塑料進(jìn)入到環(huán)境后,進(jìn)一步通過物理化學(xué)作用與微生物降解等過程被分解碎裂成小碎片,其中粒徑<5 mm的被稱為微塑料(microplastics,MPs)[6],而這些微塑料廣泛存在于河流[7, 8]、湖泊[9, 10]與海洋[11]等水環(huán)境中。微塑料難降解,可長期存在于水環(huán)境中,且微塑料比表面積大,疏水性強(qiáng),是眾多污染物的理想載體,包括多氯聯(lián)苯[12]、多環(huán)芳烴[13]、抗生素[14, 15]和重金
屬[16, 17]等,進(jìn)而影響污染物在水環(huán)境中的遷移轉(zhuǎn)化過程。Yu[18]等人調(diào)查發(fā)現(xiàn)多氯聯(lián)苯在微塑料上的分布系數(shù)隨疏水性的增加而增加,即疏水相互作用和表面積在微塑料與多氯聯(lián)苯之間的吸附行為中起著重要作用。此外,由于生物可以攝入微塑料,受污染的微塑料可能會(huì)成為生物體污染物的攜帶者,并可能對(duì)它們?cè)斐山】碉L(fēng)險(xiǎn)[19]。
抗生素可用于改善人類和畜禽的健康狀況,但仍有超過一半的抗生素因?yàn)椴荒鼙幌者M(jìn)而通過糞便和尿液等方式排入到環(huán)境中[20]?;前奉惪股匾蚱湫再|(zhì)穩(wěn)定、使用簡便及價(jià)格低廉被廣泛使用,磺胺甲惡唑(Sulfamethoxazole, SMX)是磺胺類抗生素的典型代表,在大部分水環(huán)境中都被檢測存在,在地表水中的濃度達(dá)到了納克至微克的水平[21, 22]?;前芳讗哼蛟谙喈?dāng)?shù)偷臐舛确秶鷥?nèi),也可能對(duì)水生生物構(gòu)成重大的生態(tài)毒理風(fēng)險(xiǎn)。這些抗生素在生物體內(nèi)累積,最終通過食物鏈對(duì)人體及生態(tài)系統(tǒng)帶來潛在風(fēng)險(xiǎn)和危害[23]。
近年來,微塑料和抗生素的研究越來越受到關(guān)注,微塑料載體在水生環(huán)境中運(yùn)輸抗生素中的作用及其綜合毒性作用,使得研究微塑料與抗生素之間的吸附行為至關(guān)重要[24]。微塑料的分子結(jié)構(gòu)、結(jié)晶度和極性等物理化學(xué)性質(zhì)會(huì)顯著影響其對(duì)抗生素的吸附能力[25]。聚氯乙烯(Polyvinyl chloride,PVC)和低密度聚乙烯(Low density polyethylene, LDPE)是日常生活中廣泛使用的微塑料。PVC表面積
為0.595[26],無定形聚合物[27],屬于C-C 骨架聚合物,具有耐水解和生物降解性,且在骨架的每兩個(gè)碳上都存在一個(gè)氯原子,猜測這可能是其生物降解性極低的原因[28];此外,與聚丙烯(PP)、聚乙烯(PE)、聚苯乙烯(PS)相比,PVC 具有更松散的凸起表面,并包含更多的折疊結(jié)構(gòu),從而提供更多的吸附位點(diǎn)[29]。LDPE表面積為0.043±0.001[30],半結(jié)晶性聚合物[27],具有相對(duì)較低的結(jié)晶度[31],主要由碳?xì)滏I組成的支鏈結(jié)構(gòu)組成,具有高度的穩(wěn)定性和惰性[32]。Fries等人研究發(fā)現(xiàn)多環(huán)芳烴在高密度聚乙烯(HDPE)中的擴(kuò)散系數(shù)遠(yuǎn)小于LDPE中的擴(kuò)散系數(shù)[33]。微塑料可通過污水排放和生物攝食等不同的途徑進(jìn)入到水環(huán)境中,進(jìn)而與水環(huán)境中的抗生素發(fā)生作用。研究發(fā)現(xiàn),微塑料可與抗生素的抗性基因相互作用進(jìn)一步影響水產(chǎn)養(yǎng)殖環(huán)境[34]??股嘏c微塑料相互作用的機(jī)制有四種,分別是范德華吸附、靜電吸附、氫鍵吸附和微孔填充機(jī)制[25]。Li等[15]研究了聚乙烯、聚苯乙烯、聚丙烯、聚酰胺和聚氯乙烯五種微塑料對(duì)包括磺胺嘧啶等五種抗生素的吸附特性,結(jié)果表明,磺胺嘧啶在聚乙烯、聚苯乙烯、聚丙烯和聚氯乙烯上的吸附量較小,KF與辛醇-水分配系數(shù)呈正相關(guān)。Guo等[35]研究了磺胺二甲嘧啶在包括聚乙烯和聚氯乙烯等6種微塑料上的吸附,發(fā)現(xiàn)吸附可在16 h內(nèi)達(dá)到平衡,吸附的主要機(jī)制是靜電相互作用和范德華力。此外,特定的官能團(tuán),如酰胺基團(tuán)通過質(zhì)子供體與受體之間形成的氫鍵顯著影響著微塑料對(duì)抗生素的吸附[15]。Li[36]等人研究發(fā)現(xiàn)微塑料會(huì)增強(qiáng)磺胺甲惡唑?qū)醚躅w粒污泥的毒性作用,并富集抗生素耐藥基因。因此,了解磺胺類抗生素和不同的微塑料之間可能的反應(yīng)對(duì)于評(píng)估它們的環(huán)境風(fēng)險(xiǎn)是必要的。
以往對(duì)于微塑料與抗生素之間的相互作用主要集中在四環(huán)素類抗生素上[37-39]。微塑料與磺胺甲惡唑作為水環(huán)境中較為常見的污染物,明確兩者在水環(huán)境中的環(huán)境行為,有助于更好了解微塑料與抗生素之間的相互作用。因此,該研究選擇低密度聚乙烯和聚氯乙烯兩種微塑料為代表,選擇磺胺甲惡唑作為典型的抗生素,探究微塑料對(duì)水環(huán)境中磺胺甲惡唑的吸附行為,為實(shí)際環(huán)境中微塑料與抗生素共存的情況下二者的環(huán)境行為提供一定的理論支持。
1 材料與方法
1.1 實(shí)驗(yàn)儀器與材料
高效液相色譜(Agilent 1200series,USA),恒溫振蕩器(HZQ-X300C,上海一恒),定時(shí)恒溫磁力攪拌器(90-2型,上海滬西)。
研究采用聚氯乙烯和低密度聚乙烯兩種微塑料購買于東菀市華創(chuàng)塑化有限公司,經(jīng)100~120目篩分后備用。實(shí)驗(yàn)所用磺胺甲惡唑購買于Sigma Aldrich,氯化鈣購買于科隆,為分析純。實(shí)驗(yàn)用水為Milli-Q純水系統(tǒng)制備的超純水。
1.2 實(shí)驗(yàn)方法
1.2.1 吸附動(dòng)力學(xué)實(shí)驗(yàn)
以0.01 mol/LCaCl2和200 mg/L NaN3為背景溶液,使其有一定的離子濃度和減少微生物的影響,反應(yīng)溶液包含10 μmol/LSMX,并且用鹽酸調(diào)節(jié)pH=6,按照10 mg:5 mL的固液比投加微塑料PVC或LDPE,溶液體積為5 mL。在恒溫振蕩器中以200 rpm和25°C下進(jìn)行處理,分別于0.5、1、1.5、2、3、4、5、12、24、36、48、60、72 h后取樣后通過0.45 μm的濾膜,通過高效液相色譜測定SMX的濃度。
1.2.2 吸附等溫線實(shí)驗(yàn)
配置5 mL溶液,使溶液包含0.01 mol/LCaCl2、200 mg/L NaN3和不同濃度的SMX,其中SMX濃度分別設(shè)置為1、3、6、10、15、20、30、40 μmol/L,
調(diào)節(jié)pH=6,分別在15、25、35°C下200 rpm的恒溫振蕩器中振蕩24 h,0.45 μm濾膜過濾后,測定SMX的濃度。
1.3 數(shù)據(jù)分析
根據(jù)SMX的初始濃度和剩余濃度計(jì)算吸附量的公式見如下:
(1)
式中:Qt—t(h )時(shí)刻的吸附量,μg/g;C0和Ct—初始和t(h )時(shí)刻的吸附質(zhì)的濃度,μg/L;m—微塑料的質(zhì)量,g;V—溶液的體積,L。
采用準(zhǔn)一級(jí)動(dòng)力學(xué)和準(zhǔn)二級(jí)動(dòng)力學(xué)模型對(duì)動(dòng)力學(xué)實(shí)驗(yàn)數(shù)據(jù)進(jìn)行擬合,模型公式如下:
(2)
(3)
式中:Qe和Qt—吸附平衡時(shí)和吸附時(shí)間為t(h)時(shí)刻的吸附量,μg/g;k1和k2—準(zhǔn)一級(jí)動(dòng)力學(xué),/h和準(zhǔn)二級(jí)動(dòng)力學(xué)的反應(yīng)速率常數(shù),g/μg·h。
采用Langmuir模型和Freundlich模型對(duì)吸附熱力學(xué)過程進(jìn)行擬合,模型公式如下:
(4)
(5)
式中:Ce—吸附平衡時(shí)SMX的濃度,μg/L;Qe—吸附平衡時(shí)的吸附量,μg/g;Qmax—Langmuir模型中的理論最大吸附量,μg/g;KL—Langmuir模型的吸附平衡常數(shù),L/μg;KF和n—分別為Freundlich模型中的吸附能力(μg1-n·Ln/g)和吸附強(qiáng)度。
2 結(jié)果與討論
2.1 吸附動(dòng)力學(xué)
LDPE和PVC對(duì)SMX的吸附動(dòng)力學(xué)模型擬合如圖1所示。LDPE和PVC這兩種微塑料對(duì)SMX的吸附在24 h后達(dá)到吸附平衡。兩種微塑料隨時(shí)間的變化趨勢幾乎相似,但平衡吸附能力不同,吸附容量為PVC>LDPE。吸附的過程可分為2個(gè)階段,第一個(gè)階段,快速吸附的過程;第二個(gè)階段為慢速吸附的過程。在快速吸附階段,因?yàn)槲⑺芰媳砻嫔系奈近c(diǎn)位充足,SMX的濃度也比較大,能吸附更多的SMX,隨著吸附時(shí)間的增加,吸附點(diǎn)位減少,SMX的濃度也隨之減小,吸附速率逐漸變得緩慢并趨于平衡。
兩種微塑料對(duì)SMX的吸附動(dòng)力學(xué)擬合模型的擬合參數(shù)如表1所示。由圖1和表1可得出準(zhǔn)二級(jí)動(dòng)力學(xué)模型可以較好的擬合微塑料對(duì)SMX的吸附過程,兩種微塑料準(zhǔn)二級(jí)動(dòng)力學(xué)模型相關(guān)系數(shù)均大于準(zhǔn)一級(jí)動(dòng)力學(xué)模型的相關(guān)系數(shù)(LDPE:0.995>0.950;PVC:0.988>0.950);并且通過準(zhǔn)二級(jí)動(dòng)力學(xué)模型擬合兩種微塑料的最大吸附量與實(shí)驗(yàn)得出的最大吸附量更加接近,表明兩種微塑料對(duì)SMX的吸附過程以化學(xué)吸附為主。根據(jù)準(zhǔn)二級(jí)動(dòng)力學(xué)模型的理論,兩種微塑料對(duì)SMX的吸附不是單一因素作用的結(jié)果,而是包括范德華力、疏水作用、靜電作用和化學(xué)鍵等多因素共同作用的結(jié)果[35, 40, 41]。與此相同的是,Xu等[42]的研究發(fā)現(xiàn)準(zhǔn)二級(jí)動(dòng)力學(xué)模型對(duì)聚乙烯微塑料吸附SMX的過程擬合度更高,主要的吸附機(jī)理是范德華力。有研究證實(shí),PE對(duì)親水性SMX的吸附可能是因?yàn)榉兜氯A力[15, 43]。由于SMX的logKow<2.5,是一種親水化合物[44],而LDPE[45, 46]和PVC[47]表面都是疏水性的,親水性化合物SMX擴(kuò)散到疏水性的微塑料表面較為困難,說明疏水作用不是這兩種微塑料對(duì)SMX吸附的主要機(jī)理。吸附實(shí)驗(yàn)的pH為6,在吸附過程中SMX主要以中性分子以及陰離子形態(tài)存在,與PVC表面的負(fù)電荷相互排斥,所以靜電相互作用可能是主要的機(jī)制[48]。
2.2 吸附等溫線
通過Langmuir和Freundlich模型對(duì)LDPE和PVC對(duì)SMX的吸附進(jìn)行擬合,如圖2所示,擬合參數(shù)見表2。這兩種微塑料吸附SMX的等溫線變化趨勢相似,不論是LDPE(圖2a)或是PVC(圖2b),二者在溫度相對(duì)較高的情況下,反而不利于吸附SMX,但兩種微塑料對(duì)SMX的吸附量隨著SMX的濃度呈現(xiàn)出增加的趨勢。相比于LDPE,PVC對(duì)SMX的吸附量更大,說明不同種類微塑料對(duì)磺胺類抗生素的吸附效果有差異。相比于LDPE,PVC是一種具有強(qiáng)極性的微塑料,有利于吸附SMX。另一個(gè)潛在的機(jī)制是PE被認(rèn)為是橡膠塑料,而PS、PVC被認(rèn)為是玻璃塑料[49]。許多研究結(jié)果表明[27, 50, 51],有機(jī)污染物對(duì)橡膠塑料上的吸附比玻璃塑料具有更高的親和力。而本研究結(jié)果與此相反,說明抗生素的吸附程度與塑料的橡膠狀態(tài)幾乎沒有相關(guān)性。這與Li等人的研究是一致的[15]。此外,在不同溫度下,兩種微塑料對(duì)SMX呈現(xiàn)非線性的吸附過程,說明疏水分配作用不是主要的吸附機(jī)制。
根據(jù)表2的模型擬合參數(shù),Langmuir模型對(duì)微塑料吸附SMX的熱力學(xué)曲線的擬合程度更高,表明微塑料對(duì)SMX的吸附過程是單層吸附。但是在35°C下,兩種模型對(duì)微塑料吸附SMX的熱力學(xué)曲線的擬合程度較低,這可能是因?yàn)槲⑺芰献陨淼奈锢硖匦?,兩種微塑料表面的孔隙比較少,不利于后期SMX在微塑料中的內(nèi)部擴(kuò)散[52]。
2.3 吸附熱力學(xué)
為進(jìn)一步了解微塑料對(duì)SMX的吸附特性,以1/T為橫坐標(biāo)和lnK為縱坐標(biāo)作圖[53],擬合后得到熱力學(xué)參數(shù)如表3所示,ΔGθlt;0,而ΔHθ和ΔSθ的值均>0,說明LDPE和PVC對(duì)磺胺甲惡唑的吸附過程是自發(fā)進(jìn)行的吸熱過程,而且吸附過程中的混亂度增加。同時(shí),在兩種微塑料對(duì)SMX的吸附過程中,ΔGθ的絕對(duì)值隨溫度的增加呈現(xiàn)先增加后降低的趨勢,說明當(dāng)溫度從15°C增加至25°C,低溫有利于吸附的進(jìn)行,但是溫度25°C增加至35°C,相對(duì)來說反應(yīng)不利于進(jìn)行,與吸附等溫線的結(jié)果相同,在35°C時(shí)兩種微塑料對(duì)SMX的吸附量最小。ΔGθ的絕對(duì)值在15°C與25°C的變化較小,表明溫度對(duì)微塑料吸附SMX的影響較小。
3 結(jié)論
(1)兩種微塑料對(duì)磺胺甲惡唑的吸附在24 h達(dá)到平衡,準(zhǔn)二級(jí)動(dòng)力學(xué)模型能更好地?cái)M合動(dòng)力學(xué)過程,PVC對(duì)SMX的吸附量大于LDPE的吸附量。在吸附過程中范德華力和靜電作用起主要影響。
(2)PVC和LDPE對(duì)SMX的吸附熱力學(xué)過程用Langmuir模型擬合較好,兩種微塑料對(duì)SMX的吸附過程屬于單層吸附。
(3)LDPE和PVC對(duì)磺胺甲惡唑的吸附過程是自發(fā)進(jìn)行的吸熱過程,而且吸附過程中的混亂度增加。
參考文獻(xiàn):
[1] MENG Y,KELLY F J,WRIGHT S L.Advances and challenges of microplastic pollution in freshwater ecosystems:A UK perspective [J]. Environmental Pollution,2020(256):113445.
[2] WANG C,ZHAO J,XING B.Environmental source,fate,and toxicity of microplastics [J].Journal of Hazardous Materials, 2021(407):124357.
[3] HELLWEG H W Z W A S.Deep Dive into Plastic Monomers, Additives, and Processing Aids [J].Environmental science amp; technology,2021,55(13):9339-51.
[4] HARRIS P T,WESTERVELD L,NYBERG B,et al.Exposure of coastal environments to river-sourced plastic pollution [J].Science of the Total Environment,2021(769):145222.
[5] IGALAVITHANA A D,YUAN X,ATTANAYAKE C P,et al.Sustainable management of plastic wastes in COVID-19 pandemic:The biochar solution [J].Environmental Research,2022(212):113495.
[6] LI J,LIU H,PAUL CHEN J.Microplastics in freshwater systems A review on occurrence,environmental effects,and methods for microplastics detection [J].Water Research,2018(137):362-74.
[7] YUAN W,CHRISTIE-OLEZA J A,XU E G,et al.Environmental fate of microplastics in the world’s third-largest river:Basin-wide investigation and microplastic community analysis [J].Water Research,2022(210):118002.
[8] ADOMAT Y,GRISCHEK T. Sampling and processing methods of microplastics in river sediments - A review [J]. Science of the Total Environment, 2021(758):143691.
[9] MAO R, SONG J, YAN P, et al. Horizontal and vertical distribution of microplastics in the Wuliangsuhai Lake sediment, northern China [J]. Science of the Total Environment, 2021(754) 142426.
[10] YANG S, ZHOU M, CHEN X, et al. A comparative review of microplastics in lake systems from different countries and regions [J]. Chemosphere, 2022, 286(Pt 2): 131806.
[11] YUAN Z, NAG R, CUMMINS E. Human health concerns regarding microplastics in the aquatic environment - From marine to food systems [J]. Science of the Total Environment, 2022(823): 153730.
[12] PASCALL M A, ZABIK M E, ZABIK M J, et al. Uptake of Polychlorinated Biphenyls (PCBs) from an Aqueous Medium by Polyethylene, Polyvinyl Chloride, and Polystyrene Films [J]. Journal of Agricultural and Food Chemistry, 2005, 53(1): 164-9.
[13] BAO Z Z, CHEN Z F, ZHONG Y, et al. Adsorption of phenanthrene and its monohydroxy derivatives on polyvinyl chloride microplastics in aqueous solution: Model fitting and mechanism analysis [J]. Science of the Total Environment, 2021(764): 142889.
[14] YU F, LI Y, HUANG G, et al. Adsorption behavior of the antibiotic levofloxacin on microplastics in the presence of different heavy metals in an aqueous solution [J]. Chemosphere, 2020(260): 127650.
[15] LI J, ZHANG K, ZHANG H. Adsorption of antibiotics on microplastics [J]. Environmental Pollution, 2018(237): 460-7.
[16] MAO R, LANG M, YU X, et al. Aging mechanism of microplastics with UV irradiation and its effects on the adsorption of heavy metals [J]. Journal of Hazardous Materials, 2020(393): 122515.
[17] FU Q, TAN X, YE S, et al. Mechanism analysis of heavy metal lead captured by natural-aged microplastics [J]. Chemosphere, 2021(270): 128624.
[18] YU F, YANG C, ZHU Z, et al. Adsorption behavior of organic pollutants and metals on micro/nanoplastics in the aquatic environment [J]. Science of The Total Environment, 2019(694): 133643.
[19] GUO X, CHEN C, WANG J. Sorption of sulfamethoxazole onto six types of microplastics [J]. Chemosphere, 2019(228): 300-8.
[20] MA Y, YANG L, WU L, et al. Carbon nanotube supported sludge biochar as an efficient adsorbent for low concentrations of sulfamethoxazole removal [J]. Science of the Total Environment, 2020(718): 137299.
[21] LV Y, LI Y, LIU X, et al. The tolerance mechanism and accumulation characteristics of Phragmites australis to sulfamethoxazole and ofloxacin [J]. Chemosphere, 2020(253): 126695.
[22] DUAN W, CUI H, JIA X, et al. Occurrence and ecotoxicity of sulfonamides in the aquatic environment: A review [J]. Science of the Total Environment, 2022(820): 153178.
[23] WU Q, PAN C G, WANG Y H, et al. Antibiotics in a subtropical food web from the Beibu Gulf, South China: Occurrence, bioaccumulation and trophic transfer [J]. Science of the Total Environment, 2021(751): 141718.
[24] ZHUANG S, WANG J. Interaction between antibiotics and microplastics: Recent advances and perspective [J]. Science of The Total Environment, 2023(897): 165414.
[25] KUANG B, CHEN X, ZHAN J, et al. Interaction behaviors of sulfamethoxazole and microplastics in marine condition: Focusing on the synergistic effects of salinity and temperature [J]. Ecotoxicology and Environmental Safety, 2023(259): 115009.
[26] ABRAMOVA A V, ABRAMOV V O, FEDULOV I S, et al. Strong Antibacterial Properties of Cotton Fabrics Coated with Ceria Nanoparticles under High-Power Ultrasound [J/OL] 2021, 11(10):10.3390/nano11102704.
[27] GUO X, WANG J. The chemical behaviors of microplastics in marine environment: A review [J]. Marine Pollution Bulletin, 2019(142): 1-14.
[28] KRUEGER M C, HARMS H, SCHLOSSER D. Prospects for microbiological solutions to environmental pollution with plastics [J]. Applied Microbiology and Biotechnology, 2015, 99(21): 8857-74.
[29] GUO X, PANG J, CHEN S, et al. Sorption properties of tylosin on four different microplastics [J]. Chemosphere, 2018(209): 240-5.
[30] MA J, CHEN F, ZHU Y, et al. Joint effects of microplastics and ciprofloxacin on their toxicity and fates in wheat: A hydroponic study [J]. Chemosphere, 2022(303): 135023.
[31] KARAPANAGIOTI H K, WERNER D. Sorption of Hydrophobic Organic Compounds to Plastics in the Marine Environment: Sorption and Desorption Kinetics [M]//TAKADA H, KARAPANAGIOTI H K. Hazardous Chemicals Associated with Plastics in the Marine Environment. Cham; Springer International Publishing. 2019: 205-19.
[32] AHMED M, BASHAR I, ALAM S T, et al. An overview of Asian cement industry: Environmental impacts, research methodologies and mitigation measures [J]. Sustainable Production and Consumption, 2021(28): 1018-39.
[33] FRIES E, ZARFL C. Sorption of polycyclic aromatic hydrocarbons (PAHs) to low and high density polyethylene (PE) [J]. Environmental Science and Pollution Research, 2012, 19(4): 1296-304.
[34] DONG H, CHEN Y, WANG J, et al. Interactions of microplastics and antibiotic resistance genes and their effects on the aquaculture environments [J]. Journal of Hazardous Materials, 2021(403): 123961.
[35] XUAN GUO Y L, JIANLONG WANG. Sorption of sulfamethazine onto different types of microplastics: A combined experimental and molecular dynamics simulation study [J]. Marine Pollution Bulletin, 2019(145): 547-54.
[36] JI J, PENG L, GAO T, et al. Microplastics enhanced the toxic effects of sulfamethoxazole on aerobic granular sludge and enriched antibiotic resistance genes [J]. Chemical Engineering Journal, 2023(464): 142783.
[37] CHEN Y, LI J, WANG F, et al. Adsorption of tetracyclines onto polyethylene microplastics: A combined study of experiment and molecular dynamics simulation [J]. Chemosphere, 2021(265): 129133.
[38] SUN M, YANG Y, HUANG M, et al. Adsorption behaviors and mechanisms of antibiotic norfloxacin on degradable and nondegradable microplastics [J]. Science of The Total Environment, 2022(807): 151042.
[39] TONG F, LIU D, ZHANG Z, et al. Heavy metal-mediated adsorption of antibiotic tetracycline and ciprofloxacin on two microplastics: Insights into the role of complexation [J]. Environmental Research, 2023(216): 114716.
[40] RAZANAJATOVO R M, DING J, ZHANG S, et al. Sorption and desorption of selected pharmaceuticals by polyethylene microplastics [J]. Marine Pollution Bulletin, 2018(136): 516-23.
[41] GUO X, WANG J. Sorption of antibiotics onto aged microplastics in freshwater and seawater [J]. Marine Pollution Bulletin, 2019(149): 110511.
[42] XU B, LIU F, BROOKES P C, et al. The sorption kinetics and isotherms of sulfamethoxazole with polyethylene microplastics [J]. Marine pollution bulletin, 2018(131): 191-6.
[43] HUFFER T, HOFMANN T. Sorption of non-polar organic compounds by micro-sized plastic particles in aqueous solution [J]. Environmental Pollution, 2016(214): 194-201.
[44] SEUNG-WOO NAM D-J C, SEUNG-KYU KIM, NAMGUK HER, KYUNG-DUK ZOH. Adsorption characteristics of selected hydrophilic and hydrophobic micropollutants in water using activated carbon [J]. Journal of Hazardous Materials, 2014(270): 144-52.
[45] GONG M, YANG G, ZHUANG L, et al. Microbial biofilm formation and community structure on low-density polyethylene microparticles in lake water microcosms [J]. Environmental Pollution, 2019, 252(Pt A): 94-102.
[46] DELACUVELLERIE A, CYRIAQUE V, GOBERT S, et al. The plastisphere in marine ecosystem hosts potential specific microbial degraders including Alcanivorax borkumensis as a key player for the low-density polyethylene degradation [J]. Journal of Hazardous Materials 2019(380): 120899.
[47] XIA Y, ZHOU J J, GONG Y Y, et al. Strong influence of surfactants on virgin hydrophobic microplastics adsorbing ionic organic pollutants [J]. Environmental Pollution, 2020, 265(Pt B): 115061.
[48] BAO Z-Z, CHEN Z-F, LU S-Q, et al. Effects of hydroxyl group content on adsorption and desorption of anthracene and anthrol by polyvinyl chloride microplastics [J]. Science of the Total Environment, 2021(790): 148077.
[49] WANG F, SHIH K M, LI X Y. The partition behavior of perfluorooctanesulfonate (PFOS) and perfluorooctanesulfonamide (FOSA) on microplastics [J]. Chemosphere, 2015(119): 841-7.
[50] TEUTEN E L, ROWLAND S J, GALLOWAY T S, et al. Potential for Plastics to Transport Hydrophobic Contaminants [J]. Environmental Science amp; Technology, 2007, 41(22): 7759-64.
[51] ROCHMAN C M, HOH E, HENTSCHEL B T, et al. Long-Term Field Measurement of Sorption of Organic Contaminants to Five Types of Plastic Pellets: Implications for Plastic Marine Debris [J]. Environmental Science amp; Technology, 2013, 47(3): 1646-54.
[52] 蔣暉, 劉欣, 孫姣霞, 等. 17α-乙炔基雌二醇在微塑料上的吸附和解吸行為 [J] 中國環(huán)境科學(xué), 2021: 2258-67.
[53] ZHOU X, ZHOU X. The unit problem in the thermodynamic calculation of adsorption using the Langmuir equation [J]. Chemical Engineering Communications, 2014, 201(11): 1459-67.
Adsorption Properties of Sulfamethoxazole on Micro-plastics
YAN Xiao-na, LI Min, LUO Jing, LUO Wan-jun, LIU Juan, LIU Yan-mei
(Xihua Normal University, Nanchong Sichuan 637000,China)
Abstract: In this study, polyvinyl chloride and polyethylene were used as micro-plastics to investigate the adsorptionkinetics and thermodynamic properties of sulfamethoxazole. The results showed that the adsorption capacity of sulfamethoxazole was larger on polyvinyl chloride, and the pseudo-second-order model was more suitable for describing the adsorption kinetics of sulfamethoxazole on the two micro-plastics. The adsorption thermodynamic process of sulfamethoxazole on polyvinyl chloride and polyethylene was well fitted by the Langmuir model, indicating that the adsorption process was monolayer adsorption. The adsorption of sulfamethoxazole by the two micro-plastics was a spontaneous, endothermic and entropy-increasing process.
Key words: polyvinyl chloride; polyethylene; sulfamethoxazole; adsorption
作者簡介:閆曉娜(1999- ),女,碩士,西華師范大學(xué)環(huán)境科學(xué)專業(yè)。
通信作者:劉艷梅(1993- ),女,博士,講師,西華師范大學(xué)。