摘要:【目的】解析GhWRKY44基因在干旱脅迫下的功能,為棉花抗旱育種提供候選基因資源?!痉椒ā恳躁懙孛蓿℅ossypium hirsutum L.)CQJ-5葉片cDNA為模板進行聚合酶鏈式反應(polymerase chain reaction, PCR),獲得GhWRKY44基因編碼序列,并進行生物信息學分析。利用實時熒光PCR(quantitative real-time PCR, qRT-PCR)分析GhWRKY44基因在脫落酸(abscisic acid, ABA)和聚乙二醇(polyethylene glycol, PEG)6000處理下的表達模式。利用病毒誘導的基因沉默(virus-induced gene silencing, VIGS)技術研究GhWRKY44基因在干旱脅迫下的功能?!窘Y果】GhWRKY44編碼的蛋白屬于Ⅰa類WRKY成員,與GbWRKY44親緣關系較近。GhWRKY44受PEG 6000和ABA誘導表達。干旱脅迫下,與對照棉株相比,GhWRKY44沉默棉株的葉片萎蔫程度更重,植株存活率和葉片葉綠素含量(soil and plant analyzer development, SPAD值)顯著降低。脫水處理6 h和7 h,GhWRKY44基因沉默棉株的葉片失水率顯著高于對照?!窘Y論】沉默GhWRKY44基因降低棉花抗旱性,GhWRKY44是棉花抗旱性的正調(diào)控因子。
關鍵詞:陸地棉;GhWRKY44;病毒誘導的基因沉默;干旱脅迫;存活率
Abstract: [Objective] This research aims to analysis the function of GhWRKY44 gene under drought stress, and to provide candidate gene resources for drought-resistant breeding in cotton. [Methods] The coding sequence of GhWRKY44 gene was obtained by polymerase chain reaction (PCR) from the cDNA of CQJ-5 (Gossypium hirsutum) leaves. And bioinformatics analysis was performed. The expression pattern of GhWRKY44 gene under the treatment of abscisic acid (ABA) and polyethylene glycol (PEG) 6000 were analyzed by quantitative real-time PCR (qRT-PCR). The function of GhWRKY44 genes under drought stress was investigated by using the virus-induced gene silencing (VIGS) technology. [Results] The protein encoded by GhWRKY44 is a member of class Ⅰa WRKY, and is closely related to GbWRKY44. The expression of GhWRKY44 was induced by PEG 6000 and ABA. Compared with the control cotton plants, GhWRKY44 silenced cotton plants showed more severe leaf wilting, and plant survival rate and leaf chlorophyll content (soil and plant analyzer development, SPAD value) were significantly reduced under drought stress. With 6 h and 7 h of dehydration treatment, the leaf water loss rate of GhWRKY44 silenced cotton plants was significantly higher than that of control plants. [Conclusion] Silencing of GhWRKY44 gene reduced drought tolerance of cotton, and GhWRKY44 is a positive regulator of drought tolerance in cotton.
Keywords: Gossypium hirsutum; GhWRKY44; virus-induced gene silencing; drought stress; survival rate
棉花是關系國計民生的重要戰(zhàn)略物資。新疆是我國最大的棉花種植基地,屬于典型的干旱、半干旱氣候區(qū),降水稀少、蒸發(fā)量大。新疆棉花易受到干旱脅迫危害。棉花受到干旱脅迫時,體內(nèi)會產(chǎn)生一系列的反應來減少或清除干旱脅迫帶來的危害,這些抗性反應涉及多個基因的協(xié)同調(diào)控[1]。挖掘棉花抗旱基因并解析其功能,有助于揭示棉花抗旱的分子機制,并通過分子育種培育抗旱棉花品種。
為了適應干旱脅迫,植物必須表達大量的干旱響應基因,以增強植株對干旱脅迫的耐受性。研究發(fā)現(xiàn),多種基因參與干旱脅迫響應,如酶、離子通道、水通道和轉錄因子等的編碼基因[2]。AREB、DREB、NAC、MYB、bZIP和WRKY等轉錄因子在植物對干旱脅迫的響應中發(fā)揮了重要作用[3]。
WRKY轉錄因子是高等植物中最大的轉錄因子家族之一。WRKY轉錄因子的DNA結合域稱為WRKY結構域,由60個氨基酸組成,具有鋅指狀基序和N端高度保守的“WRKYGQK”序列[4]。根據(jù)WRKY結構域的數(shù)量和鋅指狀基序的類型,WRKY蛋白可分為3類:具有2個WRKY結構域的蛋白屬于Ⅰ類,而只有1個WRKY結構域的蛋白屬于Ⅱ類和Ⅲ類[4]。Ⅰ類和Ⅱ類的成員具有C2H2(C-X4-5-C-X22-23-H-X1-H,其中X可以是任何氨基酸,下同)鋅指狀基序,而Ⅲ類WRKY蛋白含有C2HC(C-X7-C-X23-H-X-C)鋅指狀基序[5]。根據(jù)鋅指狀基序,Ⅰ類成員被細分為2個亞組:Ⅰa(至少含有1個C2H2型鋅指狀基序以及至少有1個常見的WRKY基序)和Ⅰb(含有C2HC型鋅指狀基序,通常帶有非典型WRKY基序);Ⅱ類可進一步分為6個亞組:Ⅱa、Ⅱb、Ⅱc、Ⅱd、Ⅱe和IIf;Ⅲ類進一步分為Ⅲa和Ⅲb[6]。
研究表明WRKY轉錄因子參與調(diào)節(jié)植物對干旱脅迫的耐受性[5]。例如,葡萄VvWRKY11參與對脫水脅迫的響應[7]。小麥TaWRKY24響應干旱和鹽脅迫,干旱脅迫下,在煙草中過表達TaWRKY24基因?qū)е氯~片的枯萎程度較野生型輕[8]。TaWRKY31受聚乙二醇(polyethylene glycol, PEG)、脫落酸(abscisic acid, ABA)、NaCl和水楊酸(salicylic acid, SA)誘導表達,在小麥中沉默TaWRKY31可顯著降低小麥抗旱性,而過表達TaWRKY31則增強了擬南芥的抗旱性[9]。在干旱條件下,過表達OsWRKY114基因顯著提高了水稻對干旱脅迫的敏感性,導致水稻在干旱脅迫下的成活率降低。此外,過表達OsWRKY114基因?qū)е滤救~片的氣孔關閉受到限制,OsPYL2和OsPYL10的表達量顯著降低,表明OsWRKY114通過限制氣孔關閉負向調(diào)節(jié)水稻對干旱脅迫的耐受性[10]。
雷蒙德氏棉(Gossypium raimondii)、亞洲棉(G. arboreum)、陸地棉(G. hirsutum)基因組中分別有116個、112個和102個WRKY基因[1, 11]。研究表明,棉花中WRKY轉錄因子在干旱脅迫中發(fā)揮重要作用。Gu等[12]在陸地棉基因組中鑒定出34個Ⅱd WRKY基因,其中有10個基因在干旱和鹽脅迫下明顯高表達,用病毒誘導的基因沉默(virus-induced gene silencing, VIGS)技術沉默高表達基因Gh_A11G1801增強了棉花幼苗對干旱脅迫的敏感性。棉花Ⅲ類WRKY基因GhWRKY7、GhWRKY50、GhWRKY59、GhWRKY60和GhWRKY102在ABA、甘露醇和鹽脅迫處理下的表達量顯著升高,說明這些基因可能參與調(diào)控棉花植株對干旱或鹽脅迫的響應[13]。在本氏煙中過表達Ⅰ類WRKY基因GhWRKY25可降低植株對干旱脅迫的耐受性,但增強了植株對鹽脅迫的耐受性[14]。然而,目前棉花中大多數(shù)Ⅰ類WRKY蛋白的生物學功能尚不清楚。
本課題組前期研究發(fā)現(xiàn),在棉花中過表達GhMYB4可提高棉花的抗旱耐鹽性,而沉默GhMYB4則表現(xiàn)出相反的結果(數(shù)據(jù)尚未發(fā)表)。酵母雙雜交文庫篩選發(fā)現(xiàn)GhWRKY44可以與抗旱耐鹽蛋白GhMYB4互作,GhWRKY44定位于細胞核,沒有轉錄自激活活性[15],由此推測GhWRKY44可能參與棉花對干旱脅迫的響應?;诖?,本研究克隆了GhWRKY44基因,分析其在不同組織和干旱脅迫下的表達模式,并利用VIGS技術分析其在干旱脅迫下的功能,為增強棉花抗旱性提供候選基因。
1 材料與方法
1.1 棉花材料及種植方法
具有較強耐鹽性的陸地棉品系CQJ-5[16]由新疆農(nóng)業(yè)大學陳全家教授贈予。
用50%過氧化氫浸泡脫絨棉花種子6 h,播種于育苗盆(營養(yǎng)土與蛭石的體積比為1∶1)中,每盆2株,于溫室(28 ℃,16 h光照/8 h黑暗)培養(yǎng)。
1.2 載體與試劑
農(nóng)桿菌菌株GV3101,煙草脆裂病毒(tobacco rattle virus, TRV)載體TRV1(輔助載體)、TRV2、TRV2-GhCLA1(陽性對照載體)均由新疆農(nóng)業(yè)大學生命科學學院植物逆境分子實驗室保存。
RNAplant Plus試劑盒、Thermo反轉錄試劑盒、T4 DNA連接酶、Taq DNA聚合酶、限制性內(nèi)切酶、DNA產(chǎn)物純化試劑盒均購于天根生化科技(北京)有限公司;熒光定量試劑盒、DH5α感受態(tài)購于北京全式金生物技術股份有限公司;pMD18-T克隆載體購于寶生物工程(大連)有限公司。ABA、PEG、卡那霉素、利福平及培養(yǎng)基配制原料等化學試劑均購于北京索萊寶生物有限公司;引物合成和DNA測序由上海生工生物有限公司完成。
1.3 GhWRKY44基因克隆及生物信息學分析
利用RNAplant Plus試劑盒提取CQJ-5苗期葉片總RNA;用Thermo反轉錄劑盒合成cDNA第1鏈。根據(jù)棉花基因數(shù)據(jù)庫(https://cottonfgd.org/)公布的GhWRKY44(Gh_A04G096000)基因序列設計引物(表1)。以cDNA為模板擴增GhWRKY44基因。擴增體系:10×Taq Buffer(含Mg2+)5 μL、dNTPs 4 μL、上下游引物(10 μmol·L-1)各2 μL、Taq DNA聚合酶1 μL、cDNA模板1 μL、加ddH2O補足至50 μL。擴增程序:94 ℃預變性3 min;94 ℃變性30 s,58 ℃復性30 s,72 ℃延伸2 min,35個循環(huán);72 ℃延伸10 min。將擴增后的GhWRKY44基因序列連接到pMD18-T載體上,經(jīng)測序得到GhWRKY44的編碼序列(coding sequence, CDS)。
從棉花組學數(shù)據(jù)庫(http://cotton.zju.edu.cn/)和美國國立生物技術信息中心(National Center for Biotechnology Information, NCBI)數(shù)據(jù)庫(https://www.ncbi.nlm.nih.gov/)獲得GhWRKY44(Gh_A04G096000)、GhWRKY44-D(Gh_D04G1292)、GaWRKY44(Ga04G0787.1)、GrWRKY44(Gorai.009G421200.3)、榴蓮DzWRKY44(XP_022767436.1)、毛果楊PtWRKY44(XP_006381519.2)、玫瑰RrWRKY44(XP_062002853.1)、芒果MiWRKY44(XP_044472826.1)和月季RcWRKY44(XP_024188175.1)的蛋白序列,用DNAMAN 7軟件進行多序列比對。
從棉花數(shù)據(jù)庫和NCBI數(shù)據(jù)庫獲得GhWRKY25(Gh_A05G3892)、GhWRKY1-like(XP_016696352.2)、GhWRKY68(KJ551845)、GhWRKY33(KJ825862)、GbWRKY44-A(Gb_A04G1001)、GbWRKY44-D(Gb_D04G1365)和擬南芥AtWRKY6(NP_564792)、AtWRKY8 (NP_199447)、AtWRKY10(NP_175956)、AtWRKY11(NP_567878)、AtWRKY14(NP_564359)、At-WRKY15(NP_179913)、AtWRKY17(NP_565574)、AtWRKY18(NP_001031766.1)、At-WRKY22(NP_192034)、AtWRKY23(NP_182248)、AtWRKY25(NP_180584)、AtWRKY28(NP_193551)、AtWRKY30(NP_568439)、At-WRKY31(NP_567644)、AtWRKY33(NP_181381)、AtWRKY39(NP_001030634)、At-WRKY40(NP_178199)、AtWRKY41(NP_192845)、AtWRKY42(NP_192354)、AtWRKY44(NP_001078015)、AtWRKY46(NP_182163)、At-WRKY63(NP_176833)、AtWRKY64(NP_176829)、AtWRKY67(NP_001117559)及At-WRKY70(NP_191199)的蛋白序列。用MEGA 7構建系統(tǒng)進化樹,設自展值(bootstrap value)為1 000,其他參數(shù)為系統(tǒng)默認值。
利用Plant CARE在線網(wǎng)站(http://bioinformatics.psb.u-gent.be/webtools/plantcare/html)分析GhWRKY44基因啟動子區(qū)(起始密碼子ATG上游3 000 bp序列)的基本啟動子元件和順式作用元件。
1.4 表達模式分析
從棉花功能基因組數(shù)據(jù)庫(Cotton Functional Genomics Database, https://cottonfgd.net/)獲得GhWRKY44基因在根、莖、葉、花藥、萼片和花托中的相對表達量數(shù)據(jù),即每千個堿基的轉錄每百萬映射讀取的片段(fragments per kilobase of transcript per million mapped reads, FPKM)。
將長勢一致且健康的3葉期棉花轉至水培,恢復2 d后轉移至霍格蘭氏(Hoagland’s)營養(yǎng)液,分別用100 μmol·L-1 ABA和15%(質(zhì)量分數(shù))PEG 6000處理[17],收集處理后0 h、2 h、4 h、6 h、12 h和24 h的棉花葉片。提取RNA并進行反轉錄,方法同1.3。根據(jù)測序獲得的GhWRKY44 CDS序列,設計實時熒光定量聚合酶鏈式反應(quantitative real-time polymerase chain reaction, qRT-PCR)引物,以GhUBQ7基因(GenBank登錄號為DQ116441)作為內(nèi)參,引物序列見表1。使用ABI 7500快速實時PCR儀器,反應體積為20 μL。擴增程序參照熒光定量試劑盒說明書。采用2-△△Ct法[18]分析目的基因的相對表達量,設置3個生物學重復。
1.5 GhWRKY44基因沉默載體構建
在GhWRKY44(Gh_A04G096000)的3’ UTR區(qū)設計含有EcoR I和BamH I酶切位點的引物(序列見表1),以CQJ-5葉片的DNA為模板進行PCR擴增,將PCR產(chǎn)物和空載體TRV2分別進行雙酶切后連接,并轉化至DH5α感受態(tài),經(jīng)測序得到TRV2-GhWRKY44質(zhì)粒。采用凍融法[19]分別將TRV1、TRV2、TRV2-GhWRKY44和TRV2-GhCLA1質(zhì)粒轉入農(nóng)桿菌GV3101。
1.6 VIGS實驗及沉默效率檢測
待棉花生長至兩葉一心期,將TRV::GhWRKY44重組質(zhì)粒、TRV::00(空載體對照)和TRV::GhCLA1(陽性對照)分別與TRV1菌液按體積比1∶1混合后注射至葉片。注射后15 d采用qRT-PCR方法檢測GhWRKY44在基因沉默植株中的表達情況,具體方法參照1.4。共3次重復,每個重復20株棉花。
1.7 干旱脅迫處理及相關指標的測定
通過控制灌水進行干旱脅迫處理。在干旱脅迫前,所有棉株定期灌水7 d;停止灌水15 d,其間觀察TRV::GhWRKY44基因沉默棉株和對照棉株TRV::00的表型;復水培養(yǎng)3 d,觀察棉株表型,統(tǒng)計存活率。共3次重復,每個重復20株棉花。
取干旱處理前TRV::00和TRV::GhWRKY44棉株相同部位的葉片,用萬分之一天平(上海恒平天平科學儀器有限公司)稱量,隨后在培養(yǎng)箱(25 ℃,60%濕度)中進行脫水處理,每隔1 h測定1次葉片質(zhì)量,共測量7次[20]。3次重復,每個重復10株棉花。按照以下公式計算失水率:失水率=(脫水前質(zhì)量-脫水后質(zhì)量)/脫水前質(zhì)量×100%。
使用SPAD-502PLUS葉綠素儀(日本柯尼卡美能達公司)測量干旱處理前和處理后15 d TRV::00和TRV::GhWRKY44棉花第2片真葉的SPAD(soil and plant analyzer development)值[21]。共3次重復,每個重復10株棉花。
1.8 數(shù)據(jù)處理與分析
采用SPSS 17.0進行t檢驗和方差分析,并使用GraphPad Prism 6.0繪圖。
2 結果與分析
2.1 GhWRKY44基因的生物信息學分析
從陸地棉CQJ-5中克隆出GhWRKY44基因的CDS,長度為1 404 bp。經(jīng)預測,GhWRKY44具有5個外顯子、3個內(nèi)含子,編碼的蛋白包括467個氨基酸殘基,蛋白質(zhì)分子質(zhì)量為11.32 kDa,等電點為5.02。多序列比對結果顯示,GhWRKY44的氨基酸序列有2個保守的“WRKYGQK”基序和2個C2H2鋅指狀基序,屬于WRKY轉錄因子家族Ia類成員(圖1)。
系統(tǒng)進化分析結果表明,GhWRKY44與GbWRKY44聚集在同一分支上且親緣關系較近,均屬于Ⅰ類WRKY轉錄因子(圖2)。
經(jīng)預測,GhWRKY44的啟動子區(qū)除了含有CAAT-box和TATA-box基本啟動子順式作用元件外,還有參與生長素反應的順式調(diào)控元件(AuxRR-core)、參與茉莉酸甲酯反應的順式作用調(diào)控元件(CGTCA-motif和TGACG-motif)、參與干旱誘導的MYB結合位點(MYB和Myb)和參與干旱響應的MYC元件等(表2)。
2.2 GhWRKY44基因的表達模式分析
根據(jù)棉花基因數(shù)據(jù)庫,GhWRKY44基因在根、莖、葉、花藥、萼片和花托中均有一定的表達量,其中在萼片中的表達量最高,在花藥中的表達量最低(圖3A)。
qRT-PCR結果表明,在ABA處理下,GhWRKY44在CQJ-5葉片中的表達量整體呈先降低后升高再降低的趨勢,在處理后2 h、4 h和6 h的表達量均低于0 h,處理后12 h的表達量顯著升高并達到峰值(為0 h的2.83倍),處理后24 h表達量有所下降,但仍顯著高于處理后0 h(圖3B)。在PEG 6000脅迫下,GhWRKY44在CQJ-5葉片中的表達量整體呈先升高后降低的趨勢,在處理后2 h和4 h的表達量顯著高于0 h,在處理后4 h其表達量達到峰值(圖3C)。上述結果表明GhWRKY44基因的表達響應ABA和PEG 6000脅迫處理。
2.4 沉默GhWRKY44降低棉花對干旱脅迫的耐受性
農(nóng)桿菌侵染大約14 d后,TRV::GhCLA1植株葉片出現(xiàn)白化表型(圖4A)。qRT-PCR結果表明,與對照TRV::00相比,3個TRV::GhWRKY44株系中GhWRKY44基因的表達量均顯著下降(圖4B)。
干旱處理15 d后,TRV::00植株的葉片萎蔫程度較TRV::GhWRKY44植株輕(圖4C);TRV::00植株的存活率為91.7%,TRV::GhWRKY44植株的存活率為12.6%,二者存在顯著差異(圖4D)。對干旱處理前的TRV::00和TRV::GhWRKY44棉株葉片進行失水率測定,發(fā)現(xiàn)脫水處理后1 h、2 h、3 h、4 h、5 h、6 h和7 h,TRV::GhWRKY44植株的失水率均高于TRV::00植株,在處理6 h和7 h TRV::GhWRKY44植株葉片失水率顯著高于TRV::00植株(圖4E)。在干旱脅迫前和干旱脅迫后15 d,TRV::GhWRKY44植株的葉片SPAD值均顯著低于TRV::00植株(圖4F)。
3 討論
WRKY轉錄因子參與調(diào)控植物的發(fā)育、衰老、種子發(fā)育、種子休眠和萌發(fā)、生物脅迫及非生物脅迫響應等多個方面[4]。小麥TaWRKY72B啟動子區(qū)包括ABA響應元件(ABA response element, ABRE)、干旱誘導的MYB結合位點(MYB binding site, MBS)、低溫響應元件(low temperature response element, LTR)以及茉莉酸甲酯響應元件等,并且TaWRKY72B基因受ABA、低溫、高溫和植物激素誘導表達[22]。大豆GmWRKY40啟動子區(qū)包含ABRE元件、MBS元件、乙烯應答元件(ethylene response element, ERF)以及植物激素應答元件,并且其受到鹽、ABA和乙烯脅迫誘導表達[23]。本研究從陸地棉CQJ-5中克隆了GhWRKY44基因,多序列比對結果顯示GhWRKY44的氨基酸序列包含2個保守的WRKY基序和2個C2H2型鋅指狀基序,屬于Ⅰa類WRKY成員,系統(tǒng)進化樹分析發(fā)現(xiàn)GhWRKY44與GbWRKY44在同一分支,親緣關系最近。GhWRKY44的啟動子區(qū)包括植物激素和干旱響應元件,表明GhWRKY44基因可能受干旱脅迫誘導表達。
干旱嚴重影響棉花的生長發(fā)育及產(chǎn)量形成。研究發(fā)現(xiàn)一些WRKY基因在轉錄水平上響應干旱脅迫,如PmWRKY[24]、StWRKY[25]、SbWRKY[26]、CmWRKY[27]和MsWRKY[28]等。陸地棉中有102個WRKY基因,其中部分基因響應干旱脅迫[11]。本研究發(fā)現(xiàn),PEG 6000模擬干旱和ABA處理均可誘導GhWRKY44的表達。
前人研究發(fā)現(xiàn),棉花WRKY轉錄因子在干旱脅迫下既能發(fā)揮正調(diào)控作用又能發(fā)揮負調(diào)控作用。例如,利用VIGS技術沉默GhWRKY33基因(Ⅲ類成員)可增強棉花的抗旱性[29]。在擬南芥中過表達GhWRKY1-like(Ⅲ類成員)可影響ABA的合成,增強轉基因植株的抗旱性[30]。利用VIGS技術在棉花中沉默Gh_A11G1801基因(Ⅱd亞組成員),導致葉片丙二醛含量升高,過氧化氫酶活性降低,增強棉花幼苗對干旱脅迫的敏感性[31]。利用VIGS技術沉默GhWRKY25基因(Ⅰ類成員)可提高棉花抗旱性[29]。有趣的是,本研究發(fā)現(xiàn)GhWRKY44屬于Ⅰa類成員,利用VIGS技術沉默GhWRKY44基因?qū)е旅藁ǖ拇婊盥屎蚐PAD值顯著降低,葉片失水率增加,這與GhWRKY25基因的抗旱作用相反。系統(tǒng)進化分析表明GhWRKY25與GhWRKY44都屬于Ⅰ類WRKY但并不在同一分支。Zhang等[32]研究表明,作為進化祖先,Ⅰ類WRKY成員的功能不像Ⅱ類或Ⅲ類WRKY成員那樣多樣化。本研究豐富了棉花Ⅰ類WRKY成員的功能。GhWRKY44正調(diào)控棉花對干旱脅迫的響應,為棉花抗旱育種提供了候選基因。下一步可通過轉基因過表達和基因編輯技術等獲得穩(wěn)定的遺傳轉化材料,以進一步驗證該基因的生物學功能并探究其作用機制。
4 結論
PEG 6000和ABA可誘導棉花葉片中GhWRKY44基因表達。與對照棉株相比,GhWRKY44基因沉默棉株在干旱脅迫下的存活率和葉片SPAD值顯著降低,脫水處理后的葉片失水率明顯增加,說明GhWRKY44是棉花干旱脅迫耐受能力的正調(diào)控因子。
參考文獻:
[1] Guo Xiaoqiang, Ullah Abid, Siuta Dorota, et al. Role of WRKY transcription factors in regulation of abiotic stress responses in cotton[J/OL]. Life (Basel, Switzerland), 2022, 12(9): 1410[2024-05-14]. https://doi.org/10.3390/life12091410.
[2] Wei Wei, Liang Dawei, Bian Xiaohua, et al. GmWRKY54 improves drought tolerance through activating genes in abscisic acid and Ca2+ signaling pathways in transgenic soybean[J/OL]. The Plant Journal, 2019, 100(2): 384-398[2024-05-14]. https://doi.org/10.1111/tpj.14449.
[3] Joshi Rohit, Wani Shabir H, Singh Balwant, et al. Transcription factors and plants response to drought stress: current understanding and future directions[J/OL]. Frontiers in Plant Science, 2016, 7: 1029[2024-05-14]. https://doi.org/10.3389/fpls.2016.01029.
[4] Rushton P J, Somssich I E, Ringler Patricia, et al. WRKY trans-cription factors[J/OL]. Trends in Plant Science, 2010, 15(5): 247-258[2024-05-14]. https://doi.org/10.1016/j.tplants.2010.02.006.
[5] Javed Talha, Gao Sanji. WRKY transcription factors in plant defense[J/OL]. Trends in Genetics, 2023, 39(10): 787-801[2024-05-14]. https://doi.org/10.1016/j.tig.2023.07.001.
[6] Li Zhen, Hua Xiuting, Zhong Weiming, et al. Genome-wide identification and expression profile analysis of WRKY family genes in the autopolyploid Saccharum spontaneum[J/OL]. Plant amp; Cell Physiology, 2023, 61(3): 616-630[2024-05-14]. https://doi.org/10.1093/pcp/pcz227.
[7] Liu Huaying, Yang Wenlong, Liu Dongcheng, et al. Ectopic expression of a grapevine transcription factor VvWRKY11 contributes to osmotic stress tolerance in Arabidopsis[J/OL]. Molecular Biology Reports, 2010, 38(1): 417-427[2024-05-14]. https://doi.org/10.1007/s11033-010-0124-0.
[8] Yu Yong’ang, He Lingyun, Wu Yanxia. Wheat WRKY trans-cription factor TaWRKY24 confers drought and salt tolerance in transgenic plants[J/OL]. Plant Physiology and Biochemistry, 2023, 205: 108137[2024-05-14]. https://doi.org/10.1016/j.plaphy.2023.108137.
[9] Ge Miaomiao, Tang Yan, Guan Yijun, et al. TaWRKY31, a novel WRKY transcription factor in wheat, participates in regulation of plant drought stress tolerance[J/OL]. BMC Plant Biology, 2024, 24(1): 27[2024-05-14]. https://doi.org/10.1186/s12870-023-04709-7.
[10] Song Giha, Son Seungmin, Lee Kyong Sil, et al. OsWRKY114 negatively regulates drought tolerance by restricting stomatal closure in rice[J/OL]. Plants, 2011, 11(15): 1938[2024-05-14]. https://doi.org/10.3390/plants11151938.
[11] Dou Lingling, Zhang Xiaohong, Pang Chaoyou, et al. Genome-wide analysis of the WRKY gene family in cotton[J/OL]. Molecular Genetics and Genomics, 2014, 289(6): 1103-1121[2024-05-14]. https://doi.org/10.1007/s00438-014-0872-y.
[12] Gu Lijiao, Wang Hantao, Wei Hengling, et al. Identification, expression, and functional analysis of the group Ⅱd WRKY subfamily in upland cotton (Gossypium hirsutum L.) [J/OL]. Frontiers in Plant Science, 2018, 9: 1684[2024-05-14]. https://doi.org/10.3389/fpls.2018.01684.
[13] Dou Lingling, Guo Yaning, Ondati Evans, et al. Identification and expression analysis of group Ⅲ WRKY transcription factors in cotton[J/OL]. Journal of Integrative Agriculture, 2016, 15(11): 2469-2480[2024-05-14]. https://doi.org/10.1016/s2095-3119(15)61306-5.
[14] Liu Xiufang, Song Yunzhi, Xing Fangyu, et al. GhWRKY25, a group I WRKY gene from cotton, confers differential tolerance to abiotic and biotic stresses in transgenic Nicotiana bentha-miana[J/OL]. Protoplasma, 2016, 253(5): 1265-1281[2024-05-14]. https://doi.org/10.1007/s00709-015-0885-3.
[15] 曾佳聰. GhMYB4互作蛋白篩選及互作蛋白在干旱和鹽脅迫應答中的功能鑒定[D]. 烏魯木齊: 新疆農(nóng)業(yè)大學, 2023.Zeng Jiacong. Screening of GhMYB4 interacting proteins and functional identification of interacting proteins in response to drought and salt stress[D]. Urumqi: Xinjiang Agricultural University, 2023.
[16] 徐凱祥. 陸地棉耐鹽相關基因GhRTE1、Gh_A08G1293的克隆與功能驗證[D]. 烏魯木齊: 新疆農(nóng)業(yè)大學, 2023.Xu Kaixiang. Cloning and functional validation of the salt-resistance genes GhRTE1 and Gh_A08G1293[D]. Urumqi: Xinjiang Agricultural University, 2023.
[17] Wang Yi, Yu Yuahua, Wan Huina, et al. Sea-island cotton (Gossypium barbadense L.) GbTCP5 improves plant adaptation to drought and salt stress by directly activating GbERD7, GbUBC19, and GbGOLS2 expression[J/OL]. Industrial Crops amp; Products, 2023, 203: 117209[2024-05-14]. https://doi.org/10.1016/j.indcrop.2023.117209.
[18] 李月, 許朋斐, 劉超, 等. 陸地棉bZIP轉錄因子響應非生物脅迫表達譜分析[J/OL]. 植物遺傳資源學報, 2016, 17(3): 562-569[2024-05-14]. https://doi.org/10.13430/j.cnki.jpgr.2016.03.024.Li Yue, Xu Pengfei, Liu Chao, et al. Expression profiling of cotton (Gossypium hirsutum L.) bZIP genes responsive to abiotic stresses[J/OL]. Journal of Plant Genetic Resources, 2016, 17(3): 562-569[2024-05-14]. https://doi.org/10.13430/j.cnki.jpgr.2016.03.024.
[19] Ni Zhiyong, Hu Zheng, Jiang Qiyan, et al. GmNFYA3, a target gene of miR169, is a positive regulator of plant tolerance to drought stress[J/OL]. Plant Molecular Biology, 2013, 82(1/2): 113-129[2024-05-14]. https://doi.org/10.1007/s11103-013-0040-5.
[20] Chen Tianzi, Li Wenjuan, Hu Xuehong, et al. A cotton MYB transcription factor, GbMYB5, is positively involved in plant adaptive response to drought stress[J/OL]. Plant amp; Cell Physiology, 2015, 56(5): 917-929[2024-05-14]. https://doi.org/10.1093/pcp/pcv019.
[21] Wang Yi, Yu Yuehua, Wan Huina, et al. The sea-island cotton GbTCP4 transcription factor positively regulates drought and salt stress responses[J/OL]. Plant Science, 2022, 322: 111329[2024-05-14]. https://doi.org/10.1016/j.plantsci.2022.111329.
[22] 張麗, 甘露, 盧振華, 等. 小麥WRKY轉錄因子TaWRKY72B的克隆、亞細胞定位及表達分析[J/OL]. 麥類作物學報, 2024, 44(1): 7-15[2024-05-14]. https://doi.org/10.7606/j.issn.1009-1041.2024.01.02.Zhang Li, Ganlu, Lu Zhenhua, et al. Cloning, subcellular locali-zation and expression analysis of the WRKY transcription factor TaWRKY72B in wheat[J/OL]. Journal of Triticeae Crops, 2024, 44(1): 7-15[2024-05-14]. https://doi.org/10.7606/j.issn.1009-1041.2024.01.02.
[23] 王玉斌, 張彥威, 劉薇, 等. 大豆鹽脅迫響應WRKY基因的篩選及GmWRKY40的克隆和表達[J/OL]. 分子植物育種. (2023-10-17)[2024-05-14]. https://link.cnki.net/urlid/46.1068.S.20231016.1019.006.Wang Yubin, Zhang Yanwei, Liu Wei, et al. Screening of soybean salt stress responsive WRKY genes and cloning and expression of GmWRKY40[J/OL]. Molecular Plant Breeding. (2023-10-17) [2024-05-14]. https://link.cnki.net/urlid/46.1068.S.20231016.1019.006.
[24] Sun Shuang, Chen Hu, Yang Zhangqi, et al. Identification of WRKY transcription factor family genes in Pinus massoniana Lamb. and their expression patterns and functions in response to drought stress[J/OL]. BMC Plant Biology, 2022, 22(1): 424[2024-05-14]. https://10.1186/s12870-022-03802-7.
[25] Zhang Chao, Wang Dongdong, Yang Chenghui, et al. Genome-wide identification of the potato WRKY transcription factor family[J/OL]. PLoS One, 2017, 12(7): e0181573[2024-05-14]. https://doi.org/10.1371/journal.pone.0181573.
[26] Baillo Elamin Hafiz, Hanif Muhammad Sajid, Guo Yinghui, et al. Genome-wide identification of WRKY transcription factor family members in sorghum (Sorghum bicolor L. Moench) [J/OL]. PLoS One, 2020, 15(8): e0236651[2024-05-14]. https://doi.org/10.1371/journal.pone.0236651.
[27] 趙爽, 葛朝紅, 石鶴飛, 等. 板栗WRKY基因家族鑒定及其在干旱脅迫下的表達分析[J/OL]. 華北農(nóng)學報, 2024, 39(1): 72-82[2024-05-14]. https://doi.org/10.7668/hbnxb.20194000.Zhao Shuang, Ge Chaohong, Shi Hefei, et al. Identification and expression analysis of the chestnut WRKY gene family under drought stress[J/OL]. Acta Agriculturae Boreali-Sinica, 2024, 39(1): 72-82[2024-05-14]. https://doi.org/10.7668/hbnxb.20194000.
[28] 李顯煬, 劉昊, 何飛, 等. 全基因組水平紫花苜蓿WRKY轉錄因子家族鑒定與表達模式分析[J/OL]. 草業(yè)學報, 2024, 33(4): 154-170[2024-05-14]. https://doi.org/10.11686/cyxb2023214.Li Xianyang, Liu Hao, He Fei, et al. Identification and expression pattern of the WRKY transcription factor family in Medi-cago sativa[J/OL]. Acta Prataculturae Sinica, 2024, 33(4): 154-170[2024-05-14]. https://doi.org/10.11686/cyxb2023214.
[29] Ehsan Aiman, Naqvi Rubab Zahra, Azhar Maryam, et al. Genome-wide analysis of WRKY gene family and negative regulation of GhWRKY25 and GhWRKY33 reveal their role in whitefly and drought stress tolerance in cotton[J/OL]. Genes, 2023, 14(1): 171[2024-05-14]. https://doi.org/10.3390/genes14010171.
[30] Hu Qin, Ao Chuanwei, Wang Xiaorui, et al. GhWRKY1-like, a WRKY transcription factor, mediates drought tolerance in Arabidopsis via modulating ABA biosynthesis[J/OL]. BMC Plant Biology, 2021, 21(1): 458[2024-05-14]. https://doi.org/10.1186/s12870-021-03238-5.
[31] Gu Lijiao, Wang Hantao, Wei Hengling, et al. Identification, expression, and functional analysis of the group Ⅱd WRKY subfamily in upland cotton Gossypium hirsutum L.[J/OL]. Frontiers in Plant Science, 2018, 9: 1684[2024-05-14]. https://doi.org/10.3389/fpls.2018.01684.
[32] Zhang Yuanji, Wang Liangjiang. The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plant[J/OL]. BMC Evolutionary Biology, 2005, 5: 1[2024-05-14]. https://doi.org/10.1186/1471-2148-5-1.
(責任編輯:王小璐 責任校對:王國鑫)