摘要:過魚效果監(jiān)測與評估可為魚道設(shè)計優(yōu)化、功能完善及運行管理提供參考依據(jù)。2020年6?9月采用陷阱法、張網(wǎng)法和水聲學(xué)等方法對安谷豎縫式魚道過魚效果進行監(jiān)測,以評估魚道出口高程改進后的過魚效果,保護大渡河魚類資源。結(jié)果顯示:(1)魚道下游河段分布魚類34種,包括過魚種類蛇鮈、唇?、泉水魚、瓦氏黃顙魚、鲇5種和優(yōu)勢種光澤黃顙魚、蛇鮈、唇?、凹尾擬鲿、鯽5種;月均單位捕撈努力量(CPUE)為13.39 g/(net·h);(2)有24種魚進入魚道進口,占魚道下游種類數(shù)的70.59%;魚道進口時均凈上行數(shù)量為0.44 尾/h,呈遞減趨勢;相較于白晝,魚類更喜歡夜晚通過魚道進口斷面;(3)有19種183尾魚通過魚道,占魚道進口魚類種數(shù)的79.17%;其中包含目標(biāo)魚6種114尾,占過魚總數(shù)的62.30%;魚道出口時均過魚數(shù)量為0.11尾/h,呈現(xiàn)先減小后增加的趨勢,魚道過魚效率為25%;(4)監(jiān)測期間,魚道流量在(0.11±0.03) m3/s和豎縫流速在0.50~0.58 m/s有利于魚類通過魚道。研究表明,安谷豎縫式魚道有效可用,具有一定的集魚和過魚功能;相較于改進前,魚道集魚和過魚效果明顯提升。
關(guān)鍵詞:豎縫式魚道;集魚效果;過魚效果;安谷水電站
中圖分類號:S956.3" " " " 文獻標(biāo)志碼:A" " " " 文章編號:1674-3075(2024)05-0115-09
水利水電工程建設(shè)運行阻斷了河流的連通性,嚴(yán)重影響魚類在索餌場和產(chǎn)卵場間的遷移,降低了魚類種群資源增殖和遺傳交流(Amoros amp; Bornette,2002; Pelicice et al, 2015)。為減緩大壩對河流生態(tài)系統(tǒng)尤其是魚類種群的影響,可以通過修建過魚設(shè)施來改善河流連通性,使魚類能順利上行或下行過壩(陳凱麒等,2012;Agostinho et al,2008; Bunt,2011)。過魚設(shè)施對維持河流生態(tài)系統(tǒng)的連通性以及維護河流生物多樣性具有重要意義(Bunt,2011;Muir amp; Williams,2012;Tummers et al,2016a)。
魚道等過魚設(shè)施在設(shè)計建成后,需要對運行效果進行全面監(jiān)測與評估,找出設(shè)計、建設(shè)過程中存在的問題,為過魚設(shè)施的功能完善與優(yōu)化以及運行管理提供參考依據(jù)并積累經(jīng)驗(Kroes et al,2006),同時也可為其他類似設(shè)施的設(shè)計提供實例參數(shù)(Roscoe amp; Hinch, 2010)。通過對不同型式魚道進口(Bunt,2001;Moser et al,2019)和內(nèi)部進行改造(Tummers et al,2016b;Cornu et al,2012;Pratt et al,2009),可大大提升魚道集魚和通過效果;此外,還能通過優(yōu)化調(diào)整魚道內(nèi)流量大小以提升魚道效果(Santos et al,2014)。魚道監(jiān)測與評估是不斷改進魚道結(jié)構(gòu)、優(yōu)化運行方式、保障魚道良好運行、發(fā)揮過魚功能的重要手段,其過魚效果監(jiān)測與評價指標(biāo)包括過魚有效性(Passage effectiveness) 和過魚效率(Passage efficiency)兩方面(Larinier,2008)。近年來,我國眾多學(xué)者從過魚有效性和效率方面對魚道過魚效果進行了監(jiān)測和評價,大渡河枕頭壩一級豎縫式魚道(王猛等,2022;Bao et al,2019)、沙坪二級豎縫式魚道(薛守寧等,2022)、流溪河水廠壩丹尼爾式魚道(何貞俊等,2019; Hu et al,2020)、峽江水利樞紐魚道(王曉等,2022)、黑水河松新魚道(石小濤等,2023) 、雅魯藏布江藏木豎縫式魚道(姚凡等,2023)、多布豎縫式魚道(夏朝輝等,2022)等相關(guān)研究積累了豐富的原始數(shù)據(jù)資料,但涉及魚道改進后的效果評估還較為缺乏。
安谷水電站為大渡河最末級電站,建設(shè)有1號、2號仿自然和豎縫式魚道,因電站長期低水位運行,且魚道出口(進水口) 底板高程較高,導(dǎo)致豎縫式魚道內(nèi)有時無水或低水(陸波等,2020);2019年建設(shè)和設(shè)計單位對豎縫式魚道出口高程進行了改進,即鑿魚道出口混凝土深度27 cm,調(diào)整長度約20 m,讓底坡與下游自然銜接(周武等,2024)。魚道改進前,金瑤等(2022)以唇?和白甲魚為研究對象,采用PIT遙測技術(shù)對安谷豎縫式魚道過魚效率及魚類行為進行了研究,但尚未對魚道有效性進行評估。本研究對豎縫式魚道下游河段、魚道進口段和出口段魚群特征進行了監(jiān)測,分析了通過魚道的目標(biāo)種類及數(shù)量、魚道進出口過魚數(shù)量月變化規(guī)律、進口斷面魚類的晝夜活動節(jié)律和魚道周過魚種類、數(shù)量與周均流量、豎縫流速的關(guān)系,明確了過魚的有效性和效率以及改進后對魚道過魚效果的提升作用,以期為魚道優(yōu)化改進與運行管理提供參考。
1" "材料與方法
1.1" "時間和地點
本研究監(jiān)測時間為2020年6-9月,地點為四川省大渡河安谷豎縫式魚道及下游河段(圖1)。豎縫式魚道布置于庫尾放水閘和水庫左岸副壩之間,魚道由進出口、池室、觀測室等組成。全長為340.26 m,坡度為1.50%;魚道寬度為2.50 m,單個池室長度3.20 m,豎縫寬為0.30 m,共102個池室。主要過魚種類為胭脂魚(Myxocyprinus asiaticus)、長薄鰍(Leptobotia elongata)、長鰭吻鮈(Rhinogobio ventralis)、異鰾鰍鮀(Xenophysogobio boulengeri)、蛇鮈(Saurogobio dabryi);兼顧種類為犁頭鰍(Lepturichthys fimbriata)、四川白甲魚(Onychostoma angustistomata)、唇?(Hemibarbus labeo)、泉水魚(Pseudogyrinocheilus prochilus)、瓦氏黃顙魚(Pseudobagrus vachellii)、切尾擬鲿(Pseudobagrus truncatus)、鲇(Silurus asotus)、大鰭鳠(Hemibagrus macropterus)和黃顙魚(Tachysurus fulvidraco)。魚道過魚季節(jié)為每年3?10月,其中重點過魚時間為每年4?6月(金瑤等,2022)。
1.2" "評估指標(biāo)與監(jiān)測方法
本研究安谷豎縫式魚道過魚效果評估指標(biāo)為過魚有效性和效率。監(jiān)測方法包括張網(wǎng)法、排空法、陷阱法、漁業(yè)聲學(xué)法等。
6?9月采用地籠網(wǎng)(長15 m、高0.3 m、寬0.35 m)和3層刺網(wǎng)(長50~100 m、高1.5~2.0 m、網(wǎng)目1~4 cm)在魚道進口下游河段開展魚類標(biāo)本采集,每月采集2~3 d。6月共使用3個地籠網(wǎng)、9張刺網(wǎng),放置時間共23 h;7月共使用4個地籠網(wǎng)、19張刺網(wǎng),放置時間共49 h;8月共使用4個地籠網(wǎng)、14張刺網(wǎng),放置時間共25 h;9月共使用4個地籠網(wǎng)、16張刺網(wǎng),放置時間共42 h。
在魚道進魚口安裝Garmin Panoptix LiveScope?魚探儀及換能器(發(fā)射頻率530~1100 kHz,最大探測深度向下和向前約61 m,波束夾角為20°×135°)(圖2)。經(jīng)過現(xiàn)場驗證,確定了探測目標(biāo)從右側(cè)向左側(cè)運動為上行(聲納實時界面圖中箭頭所示方向);反之,則為下行。水聲學(xué)監(jiān)測從2020年7月16日開始至9月22日結(jié)束,實際有效監(jiān)測時長920 h。采用錄屏方式存儲視頻數(shù)據(jù),視頻數(shù)據(jù)不完全連續(xù)。2020年7月采用張網(wǎng)和排空法對進入魚道進口的魚類進行了抽樣調(diào)查。
在豎縫式魚道出口段(第95號池室)安裝捕撈籠;7月13日至9月21日每天17:00收集籠中魚類,共計71 d,被捕撈籠采集到的魚類視為通過了魚道;參考相關(guān)文獻對魚類進行種類鑒定,并測量常規(guī)生物學(xué)數(shù)據(jù)(丁瑞華,1994;陳宜瑜等,1998)。采用LS1206B型螺旋槳流速儀對魚道進口流速和第46號池室豎縫流速進行測量;采用測深桿測量第46號池室豎縫水深。每天10:00點和17:00分別測量1次,連續(xù)測量71 d。
1.3" "數(shù)據(jù)處理
本研究使用相對重要性指數(shù)(index of relative importance,IRI)表征魚道下游河段中魚類種類優(yōu)勢度(Pinkas et al,1971),劃定IRI大于1 000的為優(yōu)勢種:
IRI = (W + N) × F × 10000" " " " " " " " " " " " " " "①
式中:N為某一種類的尾數(shù)占總尾數(shù)的百分比,W為某一種類的質(zhì)量占總質(zhì)量的百分比,F(xiàn)為某一種類出現(xiàn)次數(shù)占總調(diào)查次數(shù)的百分比(僅含時間站位)。
本研究采用單位捕撈努力量(catch-per-unit effort,CPUE)表征魚道下游河段魚類資源量:
CPUE = M/(S × H)" " " " " " " " " " " " " " " " " ②
式中:CPUE為單位捕撈努力量[g/(net·h)],M為某月的漁獲物總重量(g),S為所用網(wǎng)具數(shù)量(net),H為捕撈時間(h)。
過魚效率為通過魚道出口某種魚的數(shù)量與進入魚道進口該種魚數(shù)量的比值(Bunt et al,1999; Aarestrup et al,2003)。本研究定義過魚效率(Ep)為魚道出口與進口時均過魚數(shù)量的比值:
[EP=Nen/TenNex/Tex]" " " " " " " " " " " " " " " " " "③
式中:Ep為過魚效率(%),Nen和Nex分別為進入魚道進口和通過魚道出口的魚類數(shù)量(尾),Ten和Tex分別為在進出口的監(jiān)測時間(h)。
魚道流量(Q)計算公式如下:
Q = w × h × v" " " " " " " " " " " " " " " " " " " "④
式中:w為豎縫寬度(m),h為豎縫水深(m),v為豎縫流速(m/s)。
對于水聲學(xué)數(shù)據(jù),通過重現(xiàn)和回放已錄制的視頻,人工識別魚類信號,統(tǒng)計每1 h進出魚道進口斷面的魚類數(shù)量,并計算凈上行魚類數(shù)量。魚類凈上行數(shù)量為進出魚道進口魚類信號數(shù)量的差值。根據(jù)每1 h在魚道進口監(jiān)測到的魚類信號數(shù),分析其晝夜活動節(jié)律。
2" "結(jié)果與分析
2.1" "過魚種類和數(shù)量
本次監(jiān)測共采集到魚類3目7科34種,共計1 595尾(表1)。在魚道下游河段共采集到魚類27種、1 263尾,包括過魚種類蛇鮈、唇?、泉水魚、瓦氏黃顙魚、鲇和優(yōu)勢種光澤黃顙魚、蛇鮈、唇?、凹尾擬鲿、鯽各5種。壩下河段6?9月CPUE為8.41~20.62 g/(net·h),均值為13.39 g/(net·h)。在魚道內(nèi)采集到魚類15種、149尾,包括過魚種蛇鮈、鲇和優(yōu)勢種凹尾擬鲿;在魚道出口采集到魚類19種、183尾,包括過魚種蛇鮈、泉水魚、瓦氏黃顙魚和優(yōu)勢種光澤黃顙魚、凹尾擬鲿、鯽;其中,通過魚道的過魚種和優(yōu)勢種數(shù)量共計6種114尾,占比62.30%。
結(jié)合進入魚道進口和通過魚道的種類,有24種魚進入魚道進口,占采集種類的70.59%;有19種魚通過魚道,占魚道進口種類的79.17%。魚道下游河段分布的5種過魚對象和5種優(yōu)勢種中有7種進入魚道進口,分別為蛇鮈、泉水魚、瓦氏黃顙魚、鲇、光澤黃顙魚、凹尾擬鲿和鯽;通過魚道的分別有3種過魚對象和優(yōu)勢種,為蛇鮈、泉水魚、瓦氏黃顙魚、光澤黃顙魚、凹尾擬鲿和鯽。
2.2" "魚道進出口過魚月變化和過魚效率
監(jiān)測期間,魚道進口斷面凈上行魚類409尾,時均凈上行0.44尾/h。7?9月凈上行數(shù)量分別為121、95、193尾;時均凈上行為0.83、0.38、0.37尾/h;月均凈上行數(shù)量呈遞減趨勢(圖3)。
魚道出口段共過魚19種183尾,時均過魚數(shù)量為0.11尾/h。7?9月分別過魚12種52尾、8種42尾、11種89尾;時均過魚分別為0.11、0.06、0.18 尾/h。過魚種類和數(shù)量呈現(xiàn)先減小、后增加的趨勢(圖4)。
根據(jù)魚道進出口時均過魚數(shù)量,過魚效率為25%。
2.3" "魚類晝夜活動節(jié)律
在白晝共觀測到魚類信號1 263個,夜晚(19:00?6:00)共觀測到2 526個。相較于白晝,發(fā)現(xiàn)魚類更喜歡在夜晚通過魚道進口斷面(圖5)。
2.4" "魚道過魚效果與流量和豎縫流速的關(guān)系
魚道周均流量和豎縫流速均呈現(xiàn)先增加后減小的趨勢(圖6-A),而過魚種類和數(shù)量則呈現(xiàn)先減小、后增加的趨勢(圖6-B)。第4?7周的周均流量和豎縫流速均較高,分別為(0.15±0.06)~(0.23±0.04) m3/s和(0.68±0.13)~(0.74±0.04) m/s;而此時段過魚種類和數(shù)量均較少;在第2周和第10周的過魚數(shù)量和種類均相對較高,相應(yīng)的周均流量分別為(0.11±0.02) m3/s和(0.11±0.04) m3/s;周均豎縫流速分別為(0.50±0.09) m/s和(0.58±0.07) m/s。因此,在7?9月控制流量在(0.11±0.03) m3/s和維持豎縫流速在0.50~0.58 m/s有利于魚類通過魚道。
3" "討論
3.1" "安谷魚道改進前后的過魚效果對比
本研究從過魚有效性和過魚效率兩方面對安谷豎縫式魚道過魚效果進行了評估。在過魚有效性方面,必須首先確定具體的生物學(xué)目標(biāo)(溫靜雅等,2019)。安谷豎縫式魚道設(shè)計階段確定過魚對象14種,而該河段的優(yōu)勢種類也應(yīng)作為目標(biāo)種,以滿足魚道上下游優(yōu)勢種群的遺傳交流。本次研究表明,有24種魚進入魚道進口,占采集到魚類種類的70.59%;有19種魚通過魚道,占魚道進口種類的79.17%;有7種目標(biāo)魚進入魚道進口,有6種目標(biāo)魚通過魚道。在過魚數(shù)量方面,魚道進口凈上行魚類409尾,時均凈上行數(shù)量0.44尾/h;魚道出口共過魚183尾,時均過魚數(shù)量為0.11尾/h。通過魚道的目標(biāo)魚數(shù)量共計114尾,占比62.30%。在過魚效率方面,魚道通過效率為25%。
魚道高程改進前,因安谷電站長期低水位運行,豎縫式魚道內(nèi)有時無水或低水,導(dǎo)致魚道不能持續(xù)正常運行(陸波等,2020)。改進前的監(jiān)測結(jié)果顯示,在魚道下游河段共采集到魚類26種440尾,包括目標(biāo)魚8種;在魚道內(nèi)采集到18種魚358尾,包括目標(biāo)魚5種,唇?和白甲魚通過魚道的效率為8.28%(金瑤等,2022)。相較于改進前,改進后進入魚道內(nèi)的魚類增加了6種,其中目標(biāo)魚2種,魚道過魚效率增加了16.72%,改進后的魚道集魚效果和過魚效果均有提高。
3.2" "安谷豎縫式魚道過魚種類及數(shù)量偏少
安谷豎縫式魚道過魚種類、相對過魚數(shù)量、過魚效率分別為19種、0.11尾/h、25%。在過魚種類方面,種類數(shù)低于大渡河枕頭壩一級豎縫式魚道(Bao et al,2019)、洋塘垂直豎槽式魚道(徐維忠和李生武,1988)、Engenheiro Sergio Motta隔板豎縫式(Sérgio et al,2007)、Burnett River barrage豎縫式魚道(Stuart amp; Berghuis,2002)、水廠壩丹尼爾魚道(Hu et al,2020)、連江西牛垂直豎槽式魚道(李捷等,2013;2019)和峽江水利樞紐魚道(王曉等,2022);高于裕溪閘隔板豎縫式(安徽省巢湖地區(qū)水產(chǎn)資源調(diào)查小組,1975)、崔家營航電樞紐淹沒孔口式魚道(王珂等,2013)和沙坪二級豎縫式魚道(薛守仁等,2023)。在相對過魚數(shù)量方面,相較于國內(nèi)外研究明顯偏少。在過魚效率方面,低于豎縫式魚道過魚效率均值45%(Bunt et al,2011),主要過魚對象為非鮭形目種類的豎縫式魚道(31.1%)(陶江平等,2018)、雅魯藏布江藏木(63.22%)和加查(46.10%)豎縫式魚道、黑水河松新豎縫式魚道(44.44%)(石小濤等,2023)、大渡河枕頭壩一級豎縫式魚道(71.2%)(Bao et al,2019)和沙坪二級豎縫式魚道(52.94%)(薛守仁等,2023)的過魚效率也均高于安谷豎縫式魚道的25%,主要原因可能與生態(tài)河道魚的種類和資源量較低[13.39 g/(net·h)]以及監(jiān)測時間為非主要過魚季節(jié)和進口集誘魚能力較差[進口流速0.02~0.38 m/s,均值為(0.12±0.08) m/s]有關(guān);此外,副壩下泄流量(約100 m3/s)顯著高于魚道流量,魚類更易被誘集至副壩壩下。因此,建議下一步在魚道進口增設(shè)相關(guān)設(shè)施,提升進口集誘魚的能力。
3.3" "魚類晝夜活動節(jié)律具有種間差異
魚道進口水聲學(xué)結(jié)果顯示,魚類活動具備明顯的晝夜節(jié)律,其更偏向于在夜晚上溯進入或出魚道進口。淡水石首魚(Aplodinotus grunniens)、斑點叉尾鮰(Ictalurus punctatus)、長吻似鮈(Pseudogobio esocinus)、銀吸口魚(Moxostoma anisurum)、河川吸口魚(Moxostoma carinatum)、長吻?(Hemibarbus longirostris)和黑斑原鮡(Glyptosternum maculatum)主要是在夜間上溯,而寬鰭鱲(Zacco platypus)、小口黑鱸(Micropterus dolomieu)、褐鱒(Salmo trutta)、真亞口魚(Catostomus catostomus)、大鱗吸口魚(Moxostoma macrolepidotum)和異齒裂腹魚(Schizothorax oconnori)主要在白晝上溯(姚凡等,2023;Thiem et al,2012;Kim et al,2015;Hatry et al,2016;Dodd et al,2017)。魚類的活動節(jié)律與其生理習(xí)性密切相關(guān),因而具有明顯的種間差異;此外,本研究區(qū)域緊臨沙灣市區(qū),夜晚相較于白晝更為安靜,更有利于魚類活動。
3.4" "魚道運行流量及流速優(yōu)化建議
魚道過魚效果除與其設(shè)計工藝參數(shù)有關(guān)外,還與魚類本身的生活習(xí)性及環(huán)境因子有關(guān)(Bizzotto et al,2010);其中,環(huán)境因子主要包括流速、流量、水溫、透明度、水位等(李捷等,2019;Kim et al,2015;Yoon et al,2015)。本研究中,魚道周均流量和豎縫流速均呈現(xiàn)先增加、后減小的趨勢(圖6-A),而過魚種類和數(shù)量則呈現(xiàn)先減少、后增加的趨勢(圖6-B),過魚效果與流量和流速總體呈現(xiàn)負相關(guān)。周均流量和豎縫流速分別在(0.11±0.02) m3/s和0.50~0.58 m/s時,魚道出口周過魚種類和數(shù)量相對較多,且月過魚數(shù)量呈現(xiàn)先減少、后增加的趨勢(圖4)。第4~7周(8月)較高的流量(0.15~0.23 m3/s)和豎縫流速(0.68~0.74 m3/s)不利于目標(biāo)魚類通過(圖6-A)。魚道出口目標(biāo)種主要為蛇鮈、凹尾擬鲿、光澤黃顙魚等,數(shù)量占62.30%,其通常棲息于靜緩流水體中,游泳能力相對較弱。因此,建議在7-9月控制流量在(0.11±0.03) m3/s和維持豎縫流速在0.50~0.58 m/s,有利于目標(biāo)魚類通過魚道。
參考文獻
安徽省巢湖地區(qū)水產(chǎn)資源調(diào)查小組,1975. 裕溪閘魚道過魚效果及其漁業(yè)效益的探討[J]. 淡水漁業(yè), (7):19-23.
陳凱麒,常仲農(nóng),曹曉紅,等,2012. 我國魚道的建設(shè)現(xiàn)狀與展望[J]. 水利學(xué)報, 43(2):182-188.
陳宜瑜,褚新洛,羅云林,等,1998.中國動物志:硬骨魚綱:鯉形目(中卷)[M]. 北京:科學(xué)出版社.
丁瑞華,1994. 四川魚類志[M]. 成都:四川科學(xué)技術(shù)出版社.
何貞俊,莫偉均,楊聿,等,2019. 流溪河水廠壩丹尼爾式魚道運行效果初探[J]. 水生態(tài)學(xué)雜志, 40(1):35-40.
金瑤,王翔,陶江平,等,2022. 基于PIT遙測技術(shù)的豎縫式魚道過魚效率及魚類行為分析[J]. 農(nóng)業(yè)工程學(xué)報, 4(38):251-259.
李捷,李新輝,潘峰,等,2013. 連江西牛魚道運行效果的初步研究[J]. 水生態(tài)學(xué)雜志, 34(4):53-57.
李捷,李新輝,朱書禮,等,2019. 連江西牛魚道過魚效果及其影響因子研究[J]. 生態(tài)與農(nóng)村環(huán)境學(xué)報, 35(12):1593-1600.
陸波,喻衛(wèi)奇,陳靜,等,2020. 淺談水電工程魚道運行管理[J]. 水力發(fā)電, 46(2):85-89.
石小濤,白天翔,許家煒,等,2023. 金沙江下游支流黑水河松新電站魚道過魚效果監(jiān)測與評估[J]. 湖泊科學(xué), 35(3):972-984.
陶江平,溫靜雅,賀達,等,2018. 上行過魚設(shè)施過魚效果監(jiān)測研究進展[J]. 長江流域資源與環(huán)境, 27(10):2270-2280.
王珂,劉紹平,段辛斌,等,2013. 崔家營航電樞紐工程魚道過魚效果[J]. 農(nóng)業(yè)工程學(xué)報, 29(3):184-189.
王猛,金志軍,杜健康,等,2022. 枕頭壩一級魚道過魚效果監(jiān)測[J]. 水力發(fā)電, 48(11):22-27,42.
王曉,高雷,王珂,等,2022. 峽江水利樞紐魚道過魚效果的初步研究[J]. 中國水產(chǎn)科學(xué), 29(1):130-140.
溫靜雅,陳昂,曹娜,等,2019. 國內(nèi)外過魚設(shè)施運行效果評估與監(jiān)測技術(shù)研究綜述[J]. 水利水電科技進展, 39(5):49-55.
夏朝輝,張彤,牛樂,等,2022. 多布水電站魚道運行效果評價[J]. 西北水電, (5):66-71.
徐維忠,李生武,1988. 洋塘魚道過魚的晝夜、季節(jié)變化的初步研究[J]. 內(nèi)陸水產(chǎn), (1):9-12,21.
薛守寧,2022. 沙坪二級水電站魚道工程過魚效果研究[J]. 人民長江, 53(S2):42-46.
周武,張祺,施家月,等,2024. 大渡河安谷水電站過魚設(shè)施改造效果研究[J]. 人民珠江, 45(1):114-121.
Aarestrup K, Lucas M C, Hansen J A, 2003. Efficiency of a nature-like bypass channel for sea trout (Salmo trutta) ascending a small Danish stream studied by PIT telemetry[J]. Ecology of Freshwater Fish, 12:160-168.
Agostinho A A, Pelicice F M, Gomes L C, 2008. Dams and the ?sh fauna of the Neotropical region: impacts and management related to diversity and ?sheries[J]. Brazilian Journal of Biology, 68:1119-132.
Amoros C, Bornette G, 2002. Connectivity and Biocomplexity in Waterbodies of Riverine Floodplains[J]. Freshwater Biology, 47:761-776.
Bao J H, Li W W, Zhang C S, et al, 2019. Quantitative assessment of ?sh passage efficiency at a vertical-slot fishway on the Daduhe River in Southwest China[J]. Ecological Engineering, 141:105597.
Bizzotto P M, Godinho A L, Vono V, et al, 2010. Influence of seasonal, diel, lunar, and other environmental factors on upstream fish passage in the Igarapava Fish Ladder, Brazil[J]. Ecology of Freshwater Fish, 18(3):461-472.
Bunt C M, 1999. Fishways for warmwater species: utilization patterns, attraction efficiency, passage efficiency and relative physical output[D]. Ontario: University of Waterloo.
Bunt C M, 2001. Fishway entrance modifications enhance fish attraction[J]. Fisheries Management and Ecology, 8(2):95-105.
Bunt C M, Castro-Santos T, Haro A, 2011. Performance of fish passage structures at upstream barriers to migration[J]. River Research and Applications, 28(4):457-478.
Cornu V, Baran P, Calluaud D, et al, 2012. Effects of various configurations of vertical slot fishways on fish behaviour in an experimental flume[M]//Proc. Int. Conf. 9th International symposium on ecohydraulics, Helmut Mader, Julia Kraml, eds. BOKU, Vienna:1-7.
Dodd J R, Cowx I G, Bolland J D, 2017. Efficiency of a nature-like bypass channel for restoring longitudinal connectivity for a river-resident population of brown trout[J]. Journal of Environmental Management, 204:318-326.
Hatry C, Thiem J D, Hatin D, et al, 2016. Fishway approach behaviour and passage of three redhorse species (Moxostoma anisurum, M. carinatum, and M. macrolepidotum) in the Richelieu River, Quebec[J]. Environmental Biology of Fishes, 99:249-263.
Hu X Z, Zhang Y Y, Yang F, et al, 2020. An efficiency analysis of the low-head gate Dam Fishway for freshwater fish ascending Liuxi River in South China[J]. Ecological Engineering, 158:1-8.
Kim J H, Yoon J D, Baek S H, et al, 2015. An Efficiency Analysis of a Nature-Like Fishway for Freshwater Fish Ascending a Large Korean River[J]. Water, 8(1):DOI:10.3390/w8010003
Kroes J, Gough P, Schollema P P, et al, 2006. From sea to source: practical guidance for restoration of fish migration in European Rivers[M]. London: Philip's, Octopus Publishing Group Ltd.
Larinier M, 2008. Fish passage experience at small-scale hydro-electric power plants in France[J]. Hydrobiologia, 609(1):97-108.
Moser M L, Corbett S C, Keefer M L, et al, 2019. Novel fishway entrance modifications for Pacific lamprey[J]. Journal of Ecohydraulics, 4(1):71-84.
Muir W D, Williams J G, 2012. Improving connectivity between freshwater and marine environments for salmon migrating through the lower Snake and Columbia River hydropower system[J]. Ecological Engineering, 48:19-24.
Pelicice F M, Pompeu P S, Agostinho A A, 2015. Large reservoirs as ecological barriers to downstream movements of Neotropical migratory fish[J]. Fish and Fisheries, 16:697-715.
Pinkas L, Oliphant M S, Iverson I L K, 1971. Food habits of albacore, bluefin tuna, and bonito in California waters[J]. Fish Bulletin, 152:1-105.
Pratt T C, Oconnor L M, Hallett A G, et al, 2009. Balancing aquatic habitat fragmentation and control of invasive species: enhancing selective fish passage at sea lamprey control barriers[J]. Transactions of the American Fisheries Society, 138(3):652-665.
Roscoe D W, Hinch S G, 2010. Effectiveness monitoring of fish passage facilities: historical trends, geographic patterns and future directions[J]. Fish and Fisheries, 11:12-33.
Santos J M, Branco P, Katopodis C, et al, 2014. Retrofitting pool-and-weir fishways to improve passage performance of benthic fishes: Effect of boulder density and fishway discharge[J]. Ecological Engineering, 73:335-344.
Sérgio M, Maristela C M, Ricardo L W, et al, 2007. Utilization of the fish ladder at the Engenheiro Sergio Motta Dam, Brazil, by long distance migrating potamodromous species[J]. Neotropical Ichthyology, 5(2):197-204.
Stuart I G, Berghuis A P, 2002. Upstream passage of fish through a vertical-slot fishway in an Australian subtropical river[J]. Fisheries Management and Ecology, 9:111-122.
Thiem J D, Binder T R, Dumont P, et al, 2012. Multispecies fish passage behaviour in a vertical slot fishway on the richelieu river, quebec, canada[J]. River Research and Applications, 29:582-592.
Tummers J S, Hudson S, Lucas M C, 2016a. Evaluating the effectiveness of restoring longitudinal connectivity for stream fish communities: towards a more holistic approach[J]. Science of the Total Environment, 569/570:850-860.
Tummers J S, Winter E, Silva S, et al, 2016b. Evaluating the effectiveness of a Larinier super active baffle fish pass for European river lamprey Lampetra fluviatilis before and after modification with wall-mounted studded tiles[J]. Ecological Engineering, 91:183-194.
Yoon J D, Kim J H, Yoon J, et al, 2015. Ef?ciency of a modi?ed Ice Harbor-type ?shway for Korean freshwater ?shes passing a weir in South Korea[J]. Aquatic Ecology, 49:417-429.
(責(zé)任編輯" "萬月華)
Monitoring and Assessment of Angu Vertical Slot Fishway Performance
in the Dadu River
CAI Yue‐ping1, JIANG Hao1,2, HUANG Jin3, GE Jing4, LIU Wei5
(1. Power China Leshan Ecological Environmental Protection Technology Co. Ltd., Leshan" "614000, P.R. China;
2. China Renewable Energy Engineering Institute, Beijing" "100120, P.R. China;
3. China Hydropower Construction Group Shengda Hydropower Co. Ltd., Chengdu" "610000, P.R. China;
4. Power China Hydropower Development Group Co. Ltd., Chengdu" "610000, P.R. China;
5. Tibet Brahmaputra Hydropower Development Investment Co. LTD, Shannan" "856000, P.R. China)
Abstract:Monitoring and assessment of fishway performance provides a reference for design optimization, function improvement and operation management. In this study, we evaluated the performance of the Angu vertical slot fishway after modifying the exit elevation, and assessed fishway effectiveness and passage rate by monitoring fish in the lower reach, entrance and exit of the fishway from June to September of 2020. Fish monitoring was carried out by fish trapping, net-catching and acoustical methods. Target fish species, quantity, weekly and monthly variation of fish species, quantity passing the entrance and exit, and the diurnal and nocturnal activity rhythm of fish at the entrance were recorded. Results were as follows: (1) A total of 34 fish species, from 7 families and 3 orders were collected downstream of the fishway, including five target species (barbel steed, Chinese lizard gudgeon, P. prochilus, P. vachellii, Amur catfish) and five dominant species (barbel steed, Chinese lizard gudgeon, goldfish, T. nitidus, P. pratti). The average monthly catch per unit effort (CPUE) was 13.39 g/(net·h). (2) The number of fish species that entered the fishway was 24, 70.59% of the species collected downstream. The average quantity of fish entering the fishway was 0.44 tail/h and there was a decreasing trend from July to September. Additionally, the fish showed a preference for entering the fishway at night rather than the day. (3) The 183 tails passing through the fishway belonged to 19 species and accounted for 79.17% of the fish species entering the fishway, and included 6 target species (114 tails, 62.3%). The average number of fish exiting fishway was 0.11 per hour, initially lower and then increasing from July to September. The passage rate of the fish through the fishway was 25%. (4) During the monitoring period, we found that fish preferred to pass through the fishway when the flow rate was (0.11±0.03) m3/s and the velocity of the vertical slot was in the range of 0.50-0.58 m/s. In conclusion, the Angu vertical slot fishway was effective in attracting and passing fish. Furthermore, fishway performance improved significantly after modifying the exit elevation. Our results will provide a reference for optimization and operation of fishways and support the effort to protect fish resources in Dadu River.
Key words:vertical slot fishway; effectiveness of attracting fish; fish passing effect; Angu Hydropower Station