• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    外源脯氨酸對棉花根際土壤微生物碳源利用和酶活性的影響

    2024-01-01 00:00:00趙衛(wèi)松李社增鹿秀云崔鈉淇郭慶港馬平
    棉花學報 2024年6期
    關(guān)鍵詞:脯氨酸根際外源

    摘要:【目的】研究外源脯氨酸對棉花根際土壤微生物碳源利用和土壤酶活性的影響,深入了解脯氨酸防病促生的生態(tài)機制?!痉椒ā吭O置施用不同濃度(0、50、100、200和400 mmol·L-1)脯氨酸處理,以感黃萎病棉花品種鄂荊1號為試驗材料,利用Biolog-ECO平板法評價不同處理的根際土壤微生物群落功能多樣性和碳源利用情況;采用主成分分析比較不同處理的根際土壤微生物的碳源利用特征,測定棉花根際土壤中脲酶、β-葡萄糖苷酶、中性磷酸酶和芳基硫酸酯酶的活性;通過冗余分析解析土壤酶活性與土壤微生物對不同類型碳源利用能力的相關(guān)性。【結(jié)果】除400 mmol·L-1脯氨酸處理的土壤微生物McIntosh指數(shù)顯著上升外,施用脯氨酸處理的土壤優(yōu)勢度指數(shù)、香農(nóng)-維納多樣性指數(shù)、均勻度指數(shù)及豐富度指數(shù)與空白對照均無顯著差異。培養(yǎng)6~20 d,50~200 mmol·L-1脯氨酸處理的土壤微生物代謝活性均低于空白對照,但差異均不顯著;400 mmol·L-1脯氨酸處理的土壤微生物代謝活性顯著高于空白對照。土壤微生物對氨基酸類、羧酸類和碳水化合物類具有較高的利用能力。50~400 mmol·L-1脯氨酸處理下,土壤微生物對L-苯丙氨酸、D-半乳糖酸內(nèi)酯、β-甲基-D-葡萄糖苷、糖原的利用能力顯著提高,對L-精氨酸、D-半乳糖醛酸、D-木糖、i-赤蘚糖醇的利用能力顯著降低。與空白對照相比,施用脯氨酸處理導致土壤β-葡萄糖苷酶和脲酶活性顯著降低,對中性磷酸酶活性無顯著影響;芳基硫酸酯酶活性隨脯氨酸濃度升高呈現(xiàn)先下降后上升趨勢。冗余分析表明,脲酶活性與土壤微生物對L-精氨酸、D-半乳糖醛酸、γ-羥基丁酸、D-木糖和i-赤蘚糖醇的利用能力正相關(guān);β-葡萄糖苷酶活性與土壤微生物對L-精氨酸、丙酮酸甲酯、D-木糖和i-赤蘚糖醇的利用能力正相關(guān);中性磷酸酶活性與土壤微生物對L-天冬酰胺酸、D-半乳糖醛酸、γ-羥基丁酸、糖原和β-甲基-D-葡萄糖苷的利用能力正相關(guān);芳基硫酸酯酶活性與土壤微生物對L-苯丙氨酸、L-絲氨酸、L-蘇氨酸、甘氨酰-L-谷氨酸、D-氨基葡萄糖酸、D-半乳糖酸內(nèi)酯、衣康酸和D-甘露醇的利用能力正相關(guān)。以碳水化合物為碳源時,β-葡萄糖苷酶和脲酶活性與土壤微生物對糖原的利用能力負相關(guān)?!窘Y(jié)論】施用外源脯氨酸改變根際土壤微生物的碳代謝活性,導致土壤中β-葡萄糖苷酶和脲酶活性顯著降低。以碳水化合物為碳源時,這2種酶活性與土壤微生物對D-木糖和i-赤蘚糖醇的利用能力存在正相關(guān)性,與土壤微生物對糖原的利用能力存在負相關(guān)性。

    關(guān)鍵詞:脯氨酸;棉花;根際微生物;土壤酶;Biolog-ECO;碳源利用;冗余分析

    Effects of proline on microbial carbon source utilization and enzyme activity in cotton rhizosphere microorganisms

    Zhao Weisong, Li Shezeng, Lu Xiuyun, Cui Naqi, Guo Qinggang*, Ma Ping

    (Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs/IPM Centre of Hebei Province/International Science and Technology Joint Research Center on IPM of Hebei Province, Baoding, Hebei 071000, China)

    Abstract: [Objective] The objective of this study is to study the effects of exogenous application of proline on carbon source utilization by soil microorganisms in the cotton rhizosphere and soil enzyme activities, and deeply understand the ecological mechanism of proline in disease prevention and cotton growth promotion. [Methods] In this study, the application of different proline concentrations (0, 50, 100, 200 and 400 mmol·L-1) were set, with a cotton Verticillium wilt-susceptible variety Ejing 1 as the experimental material, and the Biolog-ECO plate method was used to evaluate the functional diversity and carbon source utilization of rhizosphere soil microbial communities under different treatments. Principal component analysis was used to compare the carbon source utilization characteristics of rhizosphere soil microorganisms under different treatments. The activities of neutral phosphatase (NP), arylsulfatase (ASF), urease (UE), and β-glucosidase (β-GC) in cotton rhizosphere soil of different treatments were determined, respectively. Redundancy analysis was used to analyze the correlation between soil enzyme activities and the utilization ability of soil microorganisms for different types of carbon sources. [Results] The McIntosh index of soil microorganisms treated with 400 mmol·L-1 proline increased significantly, while there were no significant differences in the Simpson index, Shannon-Wiener index, Richness index, and Pielou index of soil microorganisms treated with proline compared with control. The soil microbial metabolic activities treated with 50-200 mmol·L-1 proline were all lower than that of the blank control after incubating for 6 to 20 days, while the soil microbial metabolic activity treated with 400 mmol·L-1 proline was significantly higher than that of the blank control. Soil microorganisms treated with proline have higher utilization ability for amino acids, carboxylic acids, and carbohydrates. The utilization ability of soil microorganisms treated with 50-400 mmol·L-1 proline was significantly enhanced for L-phenylalanine, D-galactonolactone, β-methyl-D-glucoside, and glycogen; while the utilization ability for L-arginine, D-galacturonic acid, D-xylose, and i-erythritol was significantly reduced. Compared with the blank control, proline treatments significantly reduced the activities of soil β-GC and UE, and had no significant effect on the activity of NP. The activity of ASF showed a trend of first decreasing and then increasing with the increase of proline concentration. Redundancy analysis shows that UE activity was positively correlated with the utilization ability of soil microorganisms for L-arginine, D-galacturonic acid, γ-hydroxybutyric acid, D-xylose, and i-erythritol; β-GC activity was positively correlated with the utilization ability of soil microorganisms for L-arginine, pyruvic acid methyl ester, D-xylose, and i-erythritol; NP activity was positively correlated with the utilization ability of soil microorganisms for L-asparagine," D-galacturonic acid, γ-hydroxybutyric acid, glycogen, and β-methyl-D-glucoside; ASF activity was positively correlated with the utilization ability of soil microorganisms for L-phenylalanine, L-serine, L-threonine, glycyl-L-glutamic acid, D-glucosaminic acid, D-galactonolactone, itaconic acid, and D-mannitol, respectively. With carbohydrates as carbon source, the activities of β-GC and UE are negatively correlated with the utilization ability of soil microorganisms for glycogen. [Conclusion] The proline treatments can change the soil microbial metabolic activities, leading to a significant decrease in the activities of soil β-GC and UE. With carbohydrates as carbon source, the activities of β-GC and UE are positively correlated with the utilization ability of soil microorganisms for D-xylose and i-erythritol, but negatively correlated with the utilization ability of soil microorganisms for glycogen.

    Keywords: proline; cotton; rhizosphere microorganism; soil enzyme; Biolog-ECO; carbon utilization; redundancy analysis

    根系分泌物是植物-土壤系統(tǒng)中信息傳遞和物質(zhì)交換的重要載體物質(zhì),其在調(diào)節(jié)植物-土壤-微生物的互作過程、根際微生態(tài)結(jié)構(gòu)與功能方面具有重要作用[1]。根系分泌物能夠通過植物自身化感作用[2]、招募有益根際微生物[3-5]和改變根際微生態(tài)環(huán)境[6-7]等影響植物土傳病害的發(fā)生。

    目前,關(guān)于根系分泌物與寄主、生防微生物和病原微生物互作方面開展了大量的研究[8-11]。已有研究表明,黃瓜根系分泌物中色氨酸能夠招募并且提高解淀粉芽孢桿菌(Bacillus amyloliquefaciens)SQR9在黃瓜根部的定殖能力[10];棉花根系分泌物中脯氨酸能夠招募枯草芽孢桿菌(B. subtilis)NCD-2生物膜的形成,并提高菌株的定殖能力[11]。植物根系分泌物的組成十分復雜,許多學者采用外源添加標準溶液模擬根系分泌物,以闡明根系分泌物對微生物群落的調(diào)控作用[12-16]。田晴等[14]研究表明外源添加小麥根系分泌物能夠降低西瓜根際土壤中尖孢鐮刀菌(Fusarium oxy-

    sporum)的豐度,增加有益微生物毛殼菌屬(Chaetomium sp.)和頂孢霉屬(Acremonium sp.)的相對豐度。嚴文輝等[15]研究表明添加外源丁香酸和蘋果酸可明顯改變土壤細菌群落結(jié)構(gòu)和潛在功能。楊章明等[16]研究表明,施用外源有機酸(如肉桂酸)能夠顯著刺激青枯勞爾氏菌(Ralstonia solanacearum)的定殖與侵染,并加重煙草青枯病的發(fā)生,但對煙草植株生長影響不明顯。此外,根系分泌物對土壤微生物的影響在一定程度上與物質(zhì)濃度有關(guān)[17],根系分泌物中低濃度的有機酸和酚酸類物質(zhì)對植物種子萌發(fā)、幼苗生長、病菌菌絲生長和孢子萌發(fā)主要表現(xiàn)為促進作用,而高濃度則主要是抑制作用[18-19]。然而,關(guān)于根系分泌物對土壤微生物生態(tài)功能變化情況關(guān)注較少。

    棉花是我國重要的經(jīng)濟作物,其根系分泌物中含有較高比例的脯氨酸,在調(diào)控棉花植株健康生長及棉花-土壤微生物互作過程中發(fā)揮了重要作用[11, 20],然而脯氨酸對棉花根際土壤微生物碳源利用和土壤酶活性的影響尚不明確。前期研究表明施用脯氨酸能夠有效降低棉花黃萎病的發(fā)生[20],然而脯氨酸如何影響棉花根際土壤微生物的微生態(tài)尚不清晰。本研究以施用外源脯氨酸處理的棉花根際土壤為研究對象,利用Biolog-ECO平板分析脯氨酸處理下土壤微生物的功能多樣性和碳源利用能力,同時從生理生化水平研究脯氨酸處理對土壤營養(yǎng)元素循環(huán)相關(guān)酶活性的影響,探究脯氨酸處理下土壤微生物的酶活性與微生物代謝的關(guān)系,初步解析外源脯氨酸對棉花根際土壤微生物的微生態(tài)效應,進而揭示脯氨酸防病促生的生態(tài)機制。

    1 材料與方法

    1.1 試驗材料

    供試棉花材料是感黃萎病品種鄂荊1號,由河北省農(nóng)林科學院植物保護研究所提供。L-脯氨酸(簡稱脯氨酸,CAS:147-85-3,純度≥99.0%)購自北京索萊寶科技有限公司,使用時用蒸餾水進行稀釋。

    次氯酸鈉溶液(分析純,有機氯含量≥10.0%)購自天津市富宇精細化工有限公司,使用時用蒸餾水稀釋至1%。

    1.2 試驗設計

    挑選飽滿、均勻一致的棉花種子,先用70%(體積分數(shù))乙醇浸泡3 min,再用1%次氯酸鈉消毒10 min,用無菌水沖洗3次,最后播種于含有1 kg培養(yǎng)基質(zhì)(營養(yǎng)土∶土壤=1∶1)的花盆(上直徑13.5 cm、下直徑9 cm、高11.5 cm)中,每個花盆中播種10粒種子,每盆保證8株棉苗。將花盆置于日光溫室中進行培養(yǎng),待棉苗生長至兩葉一心時,分別澆施5 mL濃度為50、100、200和400 mmol·L-1的脯氨酸溶液(記作L50、L100、L200和L400),以澆施相同體積的蒸餾水為空白對照(CK), 然后每盆灌施蒸餾水200 mL。每7 d澆施1次,共澆施3次。每個處理3次重復,每個重復各1盆。

    1.3 根際土壤的收集

    采用抖根法收集根際土壤樣品[20]。具體操作步驟如下:將培養(yǎng)60 d的棉花植株整個根系完整挖出,輕抖根系,棄去與根系結(jié)合不緊密的土壤,用毛刷清理、收集與根系緊密結(jié)合的土壤,將采集的根際土壤過篩(孔徑2 mm)后4 ℃保存,用于后續(xù)分析。

    1.4 不同處理的根際土壤微生物代謝特征分析

    參考趙衛(wèi)松等[21]方法稍作修改,具體操作如下:將4 ℃保存的土壤樣品放在培養(yǎng)箱于25 ℃活化24 h,準確稱取3 g土壤樣品加到27 mL無菌的0.85 mol·L-1 NaCl溶液,于25 ℃、180 r·min-1振蕩培養(yǎng)45 min,然后用上述無菌的0.85 mol·L-1 NaCl溶液稀釋1 000倍制備成接種液并轉(zhuǎn)移至儲液槽中,利用8孔道排槍向Biolog-ECO平板孔加入150 μL接種液,對照孔加入相同體積的無菌的0.85 mol·L-1 NaCl溶液。將平板置于25 ℃培養(yǎng)箱中進行培養(yǎng),在培養(yǎng)0、2、4、6、8、10、12、14、16、18和20 d,利用ELxS08-Biolog微孔板讀數(shù)儀測定樣品在590 nm和750 nm的吸收值(分別用A590和A750表示),試驗重復3次。采用培養(yǎng)20 d的檢測結(jié)果計算下列參數(shù),以對不同脯氨酸處理下根際土壤微生物代謝特征進行分析,計算公式如下:

    平均顏色變化率(average well color development,AWCD),用來評價不同脯氨酸處理下土壤微生物對碳源的利用能力。微生物代謝活性用A590-A750計算,若數(shù)值小于0.06則記作0。

    AWCD=" " (1)

    式中,Ci和K分別表示第i孔和對照孔的微生物代謝活性,n為碳源種類數(shù),本研究中為31。

    優(yōu)勢度指數(shù)(Simpson index, D)用來評估土壤微生物群落的物種優(yōu)勢度。

    D=1-∑Pi2 (2)

    Pi= (3)

    香農(nóng)-維納多樣性指數(shù)(Shannon-Wiener index, H)用來評估群落中物種的多樣性。

    H=-∑(Pi×lnPi) (4)

    McIntosh指數(shù)(McIntosh index, U)是基于群落物種多維空間上的歐氏距離多樣性指數(shù)。

    U=" (5)

    式中,ni為第i孔的相對吸光值即Ci-K。

    均勻度指數(shù)(Pielou index, J):

    J= (6)

    式中,S為能被利用的碳源總數(shù)。

    豐富度指數(shù)(Richness index, R),表示可被利用的碳源總數(shù)目,本研究中為相對吸光值大于0.06的孔數(shù)。

    土壤微生物對碳源的相對利用率,以所有處理中最大AWCD值為基準,其他處理的AWCD與基準值之比。

    1.5 土壤酶活性測定

    按照參考文獻[21]的方法分別測定與土壤氮、磷循環(huán)相關(guān)的土壤脲酶(urease, UE)活性和中性磷酸酶(neutral phosphatase, NP)活性。按照參考文獻[22]的方法測定與碳、硫循環(huán)相關(guān)的β-葡萄糖苷酶(β-glucosidase, β-GC)和芳基硫酸酯酶(arylsulfatase, ASF)活性。

    1.6 數(shù)據(jù)分析

    采用Microsoft Excel 2010和Origin 8.6對試驗數(shù)據(jù)進行整理和作圖,利用SPSS 17.0統(tǒng)計分析軟件對試驗結(jié)果進行單因素方差分析,采用鄧肯新復極差法多重比較不同處理間的顯著性差異。采用Canoco 4.5軟件和CanoDraw軟件分別進行主成分分析和冗余分析。

    2 結(jié)果與分析

    2.1 外源脯氨酸對棉花根際土壤微生物功能多樣性的影響

    根際土壤微生物功能多樣性分析結(jié)果表明,除400 mmol·L-1脯氨酸處理下土壤微生物的McIntosh指數(shù)顯著上升外,其他脯氨酸處理下土壤微生物優(yōu)勢度指數(shù)、McIntosh指數(shù)、香農(nóng)-維納多樣性指數(shù)、均勻度指數(shù)及豐富度指數(shù)與空白對照之間不存在顯著差異(表1)。

    2.2 外源脯氨酸對土壤微生物代謝活性的影響

    從圖1可以看出,培養(yǎng)0~6 d,土壤微生物的AWCD很低,說明微生物的代謝活性較低;隨著培養(yǎng)時間的延長,不同處理的AWCD均呈上升趨勢,其中400 mmol·L-1脯氨酸處理的土壤微生物代謝活性顯著高于空白對照,50~200 mmol·L-1脯氨酸處理的土壤微生物代謝活性均低于空白對照,但無顯著差異(圖1)。

    2.3 外源脯氨酸處理的根際土壤微生物的碳源利用分析

    2.3.1 外源脯氨酸處理的根際土壤微生物對碳源利用的主成分分析。主成分分析結(jié)果表明,除50 mmol·L-1脯氨酸處理外,其他濃度脯氨酸處理的土壤微生物的碳源與空白對照在主成分坐標中位于不同的象限,表明與空白對照相比,100~400 mmol·L-1脯氨酸處理下根際土壤微生物對碳源的利用存在差異。第一主成分(PC1)和第二主成分(PC2)分別解釋所有變量的94.2%和2.9%,2個主成分方差累積貢獻率為97.1%,說明其能夠表征土壤微生物的碳源利用特征(圖 2)。

    2.3.2 外源脯氨酸處理下根際土壤微生物對碳源的利用特征分析。通過相對利用率比較不同處理下根際土壤微生物的碳源利用能力,從圖3可以看出,棉花根際土壤微生物對氨基酸類、羧酸類和碳水化合物類碳源的利用率較高。脯氨酸處理下土壤微生物對不同碳源的利用能力存在不同程度的差異。400 mmol·L-1脯氨酸處理顯著提高了土壤微生物對羧酸類、氨基酸類和碳水化合物類碳源的利用能力,顯著降低了土壤微生物對聚合物類和雙親類化合物的利用能力,土壤微生物對胺類物質(zhì)的利用能力與空白對照差異不顯著。脯氨酸濃度為200 mmol·L-1和100 mmol·L-1處理顯著提高了土壤微生物對羧酸類物質(zhì)的利用能力,顯著降低了土壤微生物對碳水化合物類、聚合物類和雙親類化合物的利用能力,土壤微生物對胺類和氨基酸類物質(zhì)的利用能力與空白對照差異不顯著。50 mmol·L-1脯氨酸處理顯著降低了土壤微生物對胺類、聚合物類和雙親類化合物的利用能力,對氨基酸類、羧酸類和碳水化合物類物質(zhì)的利用能力與空白對照差異不顯著。

    2.3.3 外源脯氨酸處理下根際土壤微生物對主要碳源的利用比較。進一步分析比較脯氨酸處理下根際土壤微生物對氨基酸類、碳水化合物類和羧酸類碳源的具體利用情況(圖4)。在氨基酸類方面(圖4A),不同脯氨酸處理不同程度地顯著降低土壤微生物對L-精氨酸的利用能力。脯氨酸濃度為200 mmol·L-1的處理顯著降低了土壤微生物對L-天冬酰胺酸的利用能力,脯氨酸濃度為100 mmol·L-1和400 mmol·L-1的處理顯著提高了土壤微生物對L-天冬酰胺酸的利用能力,而脯氨酸濃度為50 mmol·L-1的處理下土壤微生物對L-天冬酰胺酸的利用能力與空白對照差異不顯著。施用脯氨酸處理顯著提高了土壤微生物對L-苯丙氨酸的利用能力;200 mmol·L-1和400 mmol·L-1脯氨酸處理顯著提高土壤微生物對L-絲氨酸和甘氨酰-L-谷氨酸的利用能力;400 mmol·L-1脯氨酸處理顯著提高土壤微生物對L-蘇氨酸的利用能力,而其他濃度處理對土壤微生物對L-蘇氨酸的利用能力與空白對照無顯著差異。

    在羧酸類方面(圖4B),50 mmol·L-1脯氨酸處理下土壤微生物對衣康酸、α-丁酮酸、丙酮酸甲酯和D-氨基葡萄糖酸的利用能力與空白對照差異不顯著,但土壤微生物對D-半乳糖醛酸、4-羥基苯甲酸和γ-羥基丁酸的利用能力顯著降低,對D-半乳糖酸內(nèi)酯、2-羥基苯甲酸和D-蘋果酸的利用能力則顯著提高。100 mmol·L-1脯氨酸處理顯著提高了土壤微生物對D-半乳糖酸內(nèi)酯、2-羥基苯甲酸、衣康酸、D-蘋果酸和D-氨基葡萄糖酸的利用能力,顯著降低了土壤微生物對D-半乳糖醛酸的利用能力,未顯著影響微生物對其他羧酸類物質(zhì)的利用能力。200 mmol·L-1脯氨酸處理顯著提高了土壤微生物對D-半乳糖酸內(nèi)酯和衣康酸的利用能力,顯著降低了土壤微生物對D-半乳糖醛酸的利用能力,未顯著影響微生物對其他羧酸類物質(zhì)的利用能力。脯氨酸濃度為400 mmol·L-1處理下,土壤微生物對D-半乳糖酸內(nèi)酯、2-羥基苯甲酸、4-羥基苯甲酸、衣康酸、D-蘋果酸和D-氨基葡萄糖酸的利用能力顯著提高,對D-半乳糖醛酸的利用能力顯著降低,對γ-羥基丁酸、α-丁酮酸和丙酮酸甲酯的利用能力與空白對照差異不顯著。

    在碳水化合物類方面(圖4C),脯氨酸濃度為50 mmol·L-1和200 mmol·L-1的處理顯著提高土壤微生物對β-甲基-D-葡萄糖苷和糖原的利用能力,顯著降低壤微生物對D-木糖和i-赤蘚糖醇的利用能力,未顯著影響土壤微生物對D-甘露醇和α-D-乳糖的利用能力。脯氨酸濃度為100 mmol·L-1和400 mmol·L-1的處理顯著提高了土壤微生物對β-甲基-D-葡萄糖苷、糖原和α-D-乳糖的利用能力,顯著降低對D-木糖和i-赤蘚糖醇的利用能力,100 mmol·L-1脯氨酸處理還顯著降低土壤微生物對D-甘露醇和D-纖維二糖的利用能力。

    2.4 施用脯氨酸對根際土壤酶活性的影響

    研究結(jié)果(表2)表明,施用不同濃度脯氨酸對棉花根際土壤酶活性產(chǎn)生不同程度的影響。施用脯氨酸顯著降低了β-葡萄糖苷酶活性和脲酶活性,而對中性磷酸酶活性無顯著影響。50 mmol·L-1和100 mmol·L-1脯氨酸處理顯著降低了芳基硫酸酯酶的活性,而200 mmol·L-1和400 mmol·L-1脯氨酸處理下芳基硫酸酯酶活性與空白對照差異不顯著。

    2.5 土壤酶活性與碳源利用能力的相關(guān)性分析

    施用脯氨酸處理的土壤酶活性與土壤微生物對氨基酸類、羧酸類和碳水化合物類碳源利用能力的冗余分析結(jié)果(圖5)表明,對于氨基酸類碳源,脲酶和β-葡萄糖苷酶活性與土壤微生物對L-精氨酸的利用能力存在正相關(guān)性,與土壤微生物對L-苯丙氨酸、L-蘇氨酸、L-絲氨酸和甘氨酰-L-谷氨酸的利用能力存在負相關(guān)性;中性磷酸酶活性與土壤微生物對L-天冬酰胺酸的利用能力存在正相關(guān)性;芳基硫酸酯酶活性與土壤微生物對L-苯丙氨酸、L-蘇氨酸、L-絲氨酸和甘氨酰-L-谷氨酸的利用能力存在正相關(guān)性,而與土壤微生物對L-天冬酰胺酸的利用能力存在負相關(guān)性(圖5A)。

    對于羧酸類碳源,脲酶和中性磷酸酶活性與土壤微生物對D-半乳糖醛酸和γ-羥基丁酸的利用能力存在正相關(guān)性;β-葡萄糖苷酶活性與土壤微生物對丙酮酸甲酯的利用能力存在正相關(guān)性;芳基硫酸酯酶活性與土壤微生物對丙酮酸甲酯的利用能力存在負相關(guān)性,而與土壤微生物對D-半乳糖酸內(nèi)酯、D-氨基葡萄糖酸、衣康酸、α-丁酮酸和4-羥基苯甲酸的利用能力存在正相關(guān)性(圖5B)。

    對于碳水化合物類碳源,脲酶和β-葡萄糖苷酶活性與土壤微生物對D-木糖和i-赤蘚糖醇的利用能力存在正相關(guān)性,而與土壤微生物對糖原的利用能力存在負相關(guān)性;中性磷酸酶活性與土壤微生物對糖原和β-甲基-D-葡萄糖苷的利用能力存在正相關(guān)性;芳基硫酸酯酶活性與土壤微生物對D-甘露醇的利用能力存在正相關(guān)性,而與土壤微生物對D-纖維二糖的利用能力存在負相關(guān)性(圖5C)。

    3 討論

    根系分泌物是1把“雙刃劍”,在調(diào)控植物病害發(fā)生方面具有重要作用[23-29]。已有研究表明,感黃萎病橄欖品種產(chǎn)生的根系分泌物能顯著誘導病菌分生孢子和微菌核的萌發(fā)[23];煙草根系分泌物苯甲酸和3-苯基丙酸能夠促進煙草青枯病菌(R. solanacearum)的生長并加重病害發(fā)生程度[30]。然而,番茄植株根系分泌的蘋果酸能吸引有益菌解淀粉芽孢桿菌(B. amyloliquefaciens)T-5[26],西瓜根系分泌物的蘋果酸和檸檬酸能夠招募多粘類芽孢桿菌(Paenibacillus polymyxa)SQR-21在寄主根際定殖發(fā)揮防病促生作用[27]。本團隊前期研究表明,外源施用低濃度脯氨酸促進黃萎病的發(fā)生,而高濃度脯氨酸能夠降低黃萎病發(fā)生[20]。

    Biolog方法是基于微生物群落對不同碳源的利用程度來表征微生物功能的動態(tài)變化,廣泛應用于土壤微生物群落功能多樣性的研究[21, 31-32]。土壤微生物功能多樣性是描述土壤微生物群落特征的1個重要指標[33-34],其與土壤營養(yǎng)元素(如碳、氮、磷等)循環(huán)轉(zhuǎn)化的生物化學過程存在密切關(guān)系[35]。土壤微生物功能多樣性和植物健康狀況有一定相關(guān)性,土壤微生物多樣性能夠影響植物土傳病害的發(fā)生[21, 36-37]。根系分泌物介導的土壤微生物群落結(jié)構(gòu)與功能變化對寄主的生長發(fā)育能夠產(chǎn)生重要的影響[1, 38-39]。沈鳳英等[38]研究表明,高濃度的根系分泌物能夠顯著改變夾竹桃根際土壤微生物群落功能多樣性。嚴文輝等[15]研究表明添加外源蘋果酸能顯著提高番茄植株根際細菌群落的短鏈有機酸降解能力,添加外源丁香酸可降低細菌生物膜的形成能力并提高細菌群落對芳香族化合物的降解能力。本研究結(jié)果表明,與空白對照相比,脯氨酸處理下土壤微生物群落功能多樣性指數(shù)無顯著差異(400 mmo·L-1脯氨酸處理下的McIntosh指數(shù)除外),但大部分處理下土壤微生物的優(yōu)勢度指數(shù)、香農(nóng)-維納多樣性指數(shù)、均勻度指數(shù)和豐富度指數(shù)呈上升趨勢。推測脯氨酸能改變土壤微生物群落功能多樣性,降低土傳病害的發(fā)生,與前人研究的觀點相似[1," 38-39]。通過對不同類型碳源物質(zhì)的相對利用率分析發(fā)現(xiàn),施用脯氨酸對棉花根際土壤微生物的碳源利用存在不同程度的影響,其中400 mmol·L-1脯氨酸處理顯著提高土壤微生物對氨基酸類、羧酸類和碳水化合物類碳源的利用能力,顯著降低對聚合物類和雙親化合物類碳源的利用能力。進一步分析表明,400 mmol·L-1脯氨酸處理顯著提高了土壤微生物對L-天冬酰胺酸、L-苯丙氨酸、L-絲氨酸、L-蘇氨酸、甘氨酰-L-谷氨酸、D-半乳糖酸內(nèi)酯、2-羥基苯甲酸、4-羥基苯甲酸、衣康酸、D-蘋果酸、D-氨基葡萄糖酸、β-甲基-D-葡萄糖苷、D-甘露醇、糖原和α-D-乳糖的利用能力。值得注意的是,植物根系分泌物成分復雜,基于上述對土壤微生物碳代謝特征的研究結(jié)果,將脯氨酸與不同類型氨基酸、碳水化合物或者羧酸類物質(zhì)聯(lián)合使用是否改變棉花農(nóng)藝性狀以及黃萎病的發(fā)生,有待進一步研究。

    土壤微生物是生態(tài)系統(tǒng)養(yǎng)分循環(huán)和轉(zhuǎn)化的動力,其潛在的生物化學活性對土壤生態(tài)功能具有重要意義。已有研究表明,植物根系分泌物能夠?qū)ν寥烂富钚援a(chǎn)生不同程度的影響,改善土壤肥力進而影響植物的健康生長[40-42]。彭雪梅等[40]研究發(fā)現(xiàn)空心蓮子草根系分泌物改變了土壤酶活性,使土壤微生物群落結(jié)構(gòu)組成和功能向著有利于植物生長的方向轉(zhuǎn)化。劉澤淼等[42]研究表明低濃度外源芍藥內(nèi)酯苷處理能提高芍藥根中可溶性蛋白和脯氨酸含量,改善土壤酶活性,促進芍藥的生長發(fā)育;高濃度芍藥內(nèi)酯苷處理則抑制芍藥生長、降低成花率。本團隊前期研究表明外源施用脯氨酸降低土壤銨態(tài)氮含量,而對速效磷含量無顯著影響,對棉花株高和地上部鮮物質(zhì)質(zhì)量 具有促進作用[20]。本研究結(jié)果表明,與空白對照相比,施用脯氨酸顯著降低β-葡萄糖苷酶和脲酶活性,對中性磷酸酶活性無顯著影響。隨著脯氨酸濃度升高,芳基硫酸酯酶活性呈現(xiàn)先下降后上升趨勢,且400 mmol·L-1脯氨酸處理與空白對照的酶活性不存在顯著差異。由此推測,外源施用脯氨酸能夠通過降低土壤脲酶活性,改變土壤銨態(tài)氮含量,在一定程度上發(fā)揮防病促生作用。

    根系分泌物是調(diào)控根際微生態(tài)功能的重要因素,也是植物與土壤交流的主要媒介[43]。根系分泌物成分復雜,根際微環(huán)境受到多種因素影響。本研究通過澆灌不同濃度的脯氨酸對根際土壤酶活性、土壤微生物群落結(jié)構(gòu)及其代謝功能產(chǎn)生不同程度的影響,表明根際土壤微環(huán)境與植物根系分泌物濃度有密切關(guān)系。此外,棉花抗/感黃萎病品種產(chǎn)生的根系分泌物種類及濃度不同,導致根際微生物結(jié)構(gòu)和功能存在差異[44]。本研究僅以棉花感病品種為試驗材料開展研究,對于棉花抗病品種根際微生物的微生態(tài)效應的影響,有待進一步研究。

    同時,已有研究表明,脯氨酸在緩解植物逆境(鹽脅迫、干旱、重金屬污染、凍害等)損傷方面具有重要的作用[45-49]。曾鈺等[45]研究認為外源施用脯氨酸能夠促進缺硼條件下棉花植株生長;戴茂華等[46]研究認為干旱條件下棉花葉片的脯氨酸含量增加能夠抵御植株干旱脅迫;楊艷兵等[47]研究表明棉花在鹽脅迫下,植株體內(nèi)脯氨酸含量顯著增加。高彥強等[48]研究發(fā)現(xiàn)葉面噴施適宜濃度的脯氨酸能夠有效緩解鹽脅迫下芹菜株高、莖粗及葉片葉綠素含量的降低,促進根系形態(tài)建成及生物量的積累,增強光合作用。陳奮奇等[49]研究表明外源脯氨酸能夠通過調(diào)節(jié)抗氧化酶活性、滲透溶質(zhì)及營養(yǎng)離子平衡能力來緩解鹽脅迫對玉米幼苗的傷害作用。然而,在病原菌脅迫下脯氨酸處理對棉花植株氧化酶活性產(chǎn)生何種影響以及內(nèi)生微生物如何變化有待進一步研究。

    4 結(jié)論

    培養(yǎng)6~20 d,50~200 mmol·L-1脯氨酸處理對棉花根際土壤微生物的代謝活性無顯著影響,而400 mmol·L-1脯氨酸處理顯著提高土壤微生物代謝活性??瞻讓φ蘸屯庠锤彼崽幚硐?,棉花根際土壤微生物對羧酸類、氨基酸類和碳水化合物類物質(zhì)的平均相對利用率較高,施用脯氨酸處理影響根際微生物對上述化合物的利用能力:50~400 mmol·L-1脯氨酸處理顯著提高了土壤微生物對L-苯丙氨酸、D-半乳糖酸內(nèi)酯、β-甲基-D-葡萄糖苷、糖原的利用能力,顯著降低了土壤微生物對L-精氨酸、D-半乳糖醛酸、D-木糖、i-赤蘚糖醇的利用,未顯著影響微生物對α-丁酮酸和丙酮酸甲酯的利用能力。施用脯氨酸處理顯著降低土壤β-葡萄糖苷酶和脲酶活性;在以碳水化合物為碳源時,這2種酶的活性與土壤微生物對D-木糖和i-赤蘚糖醇的利用能力存在正相關(guān)性,而與土壤微生物對糖原的利用能力存在負相關(guān)性。

    參考文獻:

    [1] 吳林坤, 林向民, 林文雄. 根系分泌物介導下植物-土壤-微生物互作關(guān)系研究進展與展望[J/OL]. 植物生態(tài)學報, 2014, 38(3): 298-310[2024-05-01]. https://doi.org/10.3724/SP.J.1258.

    2014.00027.

    Wu Linkun, Lin Xiangmin, Lin Wenxiong. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates[J/OL]. Chinese Journal of Plant Ecology, 2014, 38(3): 298-310[2024-05-01]. https://doi.org/10.3724/SP.J.1258.2014.00027.

    [2] 袁婷婷, 董坤, 郭增鵬, 等. 阿魏酸誘導蠶豆枯萎病發(fā)生及根系組織結(jié)構(gòu)損傷的化感效應[J/OL]. 植物營養(yǎng)與肥料學報, 2020, 26(5): 914-923[2024-05-01]. https://doi.org/10.11674/zwyf.

    19388.

    Yuan Tingting, Dong Kun, Guo Zengpeng, et al. Allelopathic effects of ferulic acid inducing Fusarium wilt occurrence and abnormal root tissue structure of faba bean[J/OL]. Journal of Plant Nutrition and Fertilizers, 2020, 26(5): 914-923[2024-05-

    01]. https://doi.org/10.11674/zwyf.19388.

    [3] Yuan J, Zhao J, Wen T, et al. Root exudates drive the soil-borne legacy of aboveground pathogen infection[J/OL]. Microbiome, 2018, 6(1): 156[2024-05-01]. https://doi.org/10.1186/s40168-

    018-0537-x.

    [4] Wen T, Yuan J, He X M, et al. Enrichment of beneficial cucumber rhizosphere microorganisms mediated by organic acid secretion[J/OL]. Horticulture Research, 2020, 7(1): 154[2024-05-01]. https://doi.org/10.1038/s41438-020-00380-3.

    [5] Ren G D, Meng T Z, Ma Y. Sugars altered fungal community composition and caused high network complexity in a Fusarium wilt pathogen-infested soil[J/OL]. Biology and Fertility of Soils, 2020, 56(3): 395-409[2024-05-01]. https://doi.org/10.1007/

    s00374-019-01424-0.

    [6] Wu H M, Qin X J, Wang J Y, et al. Rhizosphere responses to environmental conditions in Radix pseudostellariae under continuous monoculture regimes[J/OL]. Agriculture, Ecosystems and Environment, 2019(270/271): 19-31[2024-05-01]. https://

    doi.org/10.1016/j.agee.2018.10.014.

    [7] Gu Y A, Wang X F, Yang T J, et al. Chemical structure predicts the effect of plant-derived low-molecular weight compounds on soil microbiome structure and pathogen suppression[J/OL]. Functional Ecology, 2020, 34(10): 2158[2024-05-01]. https://

    doi.org/10.1111/1365-2435.13624.

    [8] Bais H P, Weir T L, Perry L G, et al. The role of root exudates in rhizosphere interactions with plants and other organisms[J/OL]. Annual Review of Plant Biology, 2006, 57: 233-266[2024-05-

    01]. https://doi.org/10.1146/annurev.arplant.57.032905.105159.

    [9] Al-Ali A, Deravel J, Krier F, et al. Biofilm formation is determinant in tomato rhizosphere colonization by Bacillus velezensis FZB42[J/OL]. Environmental Science and Pollution Research International, 2018, 25: 29910-29920[2024-05-01]. https://doi.org/10.1007/s11356-017-0469-1.

    [10] Liu Y P, Chen L, Wu G W, et al. Identification of root-secreted compounds involved in the communication between cucumber, the beneficial Bacillus amyloliquefaciens, and the soil-borne pathogen Fusarium oxysporum[J/OL]. Molecular Plant-

    Microbe Interactions, 2017, 30(1): 53-62[2024-05-01]. https://

    doi.org/10.1094/MPMI-07-16-0131-R.

    [11] 趙衛(wèi)松, 郭慶港, 董麗紅, 等. L-脯氨酸對枯草芽胞桿菌NCD-2菌株生物膜形成的影響[J/OL]. 植物病理學報, 2021, 51(1): 115-122[2024-05-01]. https://doi.org/10.13926/j.cnki.apps.000513.

    Zhao Weisong, Guo Qinggang, Dong Lihong, et al. Effect of L-proline on biofilm formation of Bacillus subtilis NCD-2[J/OL]. Acta Phytopathologica Sinica, 2021, 51(1): 115-122[2024-05-01]. https://doi.org/10.13926/j.cnki.apps.000513.

    [12] Chen S C, Yu H J, Zhou X G, et al. Cucumber (Cucumis sativus L.) seedling rhizosphere Trichoderma and Fusarium spp. communities altered by vanillic acid[J/OL]. Frontiers in Microbio-

    logy, 2018, 9: 2195[2024-05-01]. https://doi.org/10.3389/fmicb.

    2018.02195

    [13] Wang Z L, Zhang J H, Wu F Z, et al. Changes in rhizosphere microbial communities in potted cucumber seedlings treated with syringic acid[J/OL]. PLoS One, 2018, 13(6): e0200007[2024-05-01]. https://doi.org/10.1371/journal.pone.0200007.

    [14] 田晴, 高丹美, 李慧, 等." 小麥根系分泌物對西瓜連作土壤真菌群落結(jié)構(gòu)的影響[J/OL]. 中國農(nóng)業(yè)科學, 2020, 53(5): 1018-1028[2024-05-01]. https://doi.org/10.3864/j.issn.0578-

    1752.2020.05.013.

    Tian Qing, Gao Danmei, Li Hui, et al. Effects of wheat root exudates on the structure of fungi community in continuous cropping watermelon soil[J/OL]. Scientia Agricultura Sinica, 2020, 53(5): 1018-1028[2024-05-01]. https://doi.org/10.3864/j.issn.0578-1752.2020.05.013.

    [15] 嚴文輝, 李志丹, 鄧逐流, 等. 番茄根系分泌物蘋果酸和丁香酸對土壤細菌群落結(jié)構(gòu)和潛在功能的影響[J/OL]. 江蘇農(nóng)業(yè)學報, 2022, 38(5): 1340-1347[2024-05-01]. https://doi.org/10.3969/j.issn.1000-4440.2022.05.021.

    Yan Wenhui, Li Zhidan, Deng Zhuliu, et al. Effects of malic acid and syringic acid from tomato root exudates on soil bacterial community structure and potential function[J/OL]. Jiangsu Journal of Agricultural Sciences, 2022, 38(5): 1340-1347[2024-

    05-01]. https://doi.org/10.3969/j.issn.1000-4440.2022.05.021.

    [16] 楊章明, 王姣, 李石力, 等. 施用外源有機酸對早期煙草青枯病菌的影響[J/OL]. 植物醫(yī)生, 2018, 31(10): 41-44[2024-05-

    01]. https://doi.org/10.13718/j.cnki.zwys.2018.10.028.

    Yang Zhangming, Wang Jiao, Li Shili, et al. Effect of applying exogenous organic acids on early tobacco bacterial wilt[J/OL]. Plant Health and Medicine, 2018, 31(10): 41-44[2024-05-01]. https://doi.org/10.13718/j.cnki.zwys.2018.10.028.

    [17] Zhou X G, Zhang J H, Pan D D, et al. p-Coumaric can alter the composition of cucumber rhizosphere microbial communities and induce negative plant-microbial interaction[J/OL]. Biology and Fertility of Soils, 2018, 54(3): 363-372[2024-05-01]. https://

    doi.org/10.1007/s00374-018-1265-x

    [18] Lü J X, Xiao J X, Guo Z P, et al. Nitrogen supply and intercropping control of Fusarium wilt in faba bean depend on organic acids exuded from the roots[J/OL]. Scientific Reports, 2021, 11(1): 9598[2024-05-01]. https://doi.org/10.1038/s41598-021-

    89109-3.

    [19] Lin Z M, Muhammad U K, Fang C X, et al. Crop allelopathy types: current research status and prospects in China[J/OL]. Chinese Journal of Eco-Agriculture, 2022, 30(3): 343-355[2024-05-01]. https://doi.org/10.12357/cjea.20210418.

    [20] 趙衛(wèi)松, 郭慶港, 崔鈉淇, 等. 外源添加L-脯氨酸對棉花黃萎病發(fā)生及其根際土壤微生物群落的影響[J/OL]. 中國農(nóng)業(yè)科學, 2024, 57(11): 2143-2160[2024-06-01]. https://doi.org/10.3864/j.issn.0578-1752.2024.11.008.

    Zhao Weisong, Guo Qinggang, Cui Naqi, et al. Effects of exogenous addition of L-proline on the occurrence of cotton Verticillium wilt and its soil microbial community in rhizosphere[J/OL]. Scientia Agricultura Sinica, 2024, 57(11): 2143-

    2160[2024-06-01]. https://doi.org/10.3864/j.issn.0578-1752.

    2024.11.008.

    [21] 趙衛(wèi)松, 郭慶港, 李社增, 等. 土壤添加西蘭花殘體對棉花根際土壤酶活性的影響及其與碳代謝特征的關(guān)系[J/OL]. 中國農(nóng)業(yè)科學, 2023, 56(11): 2092-2105[2024-05-01] https://doi.org/10.3864/j.issn.0578-1752.2023.11.005.

    Zhao Weisong, Guo Qinggang, Li Shezeng, et al. Effect of broccoli residues on enzyme activity of cotton rhizosphere soil and relationships between enzyme activity and carbon metabolism characteristics[J/OL]. Scientia Agricultura Sinica, 2023, 56(11): 2092-2105[2024-05-01] https://doi.org/10.3864/

    j.issn.0578-1752.2023.11.005.

    [22] Feng Y X, Hu Y Y, Wu J S, et al. Change in microbial communities, soil enzyme and metabolic activity in a Torreya grandis plantation in response to root rot disease[J/OL]. Forest Ecology and Management, 2019, 432: 932-941[2024-05-01]. https://doi.org/10.1016/j.foreco.2018.10.028.

    [23] Lopez-Moral A, Sanchez-Rodrguez A R, Trapero A, et al. Establishment of a method to collect root exudates from olive plants and its validation by determining the effect of root exudates against Verticillium dahliae[J/OL]. Plant and Soil, 2023, 483: 625-642[2024-05-01]. https://doi.org/10.1007/s11104-

    022-05770-1.

    [24] Ochola J, Cortada L, Nganga M, et al. Mediation of potato-

    potato cyst nematode, G. rostochiensis interaction by specific root exudate compounds[J/OL]. Frontiers in Plant Science, 2020, 11: 649[2024-05-01]. https://doi.org/10.3389/fpls.2020.

    00649.

    [25] Yang R X, Gao Z G, Liu X, et al. Effects of phenolic compounds of muskmelon root exudates on growth and pathogenic gene expression of Fusarium oxysporum f. sp melonis[J]. Allelopathy Journal, 2015, 35(2): 175-186.

    [26] Tan S Y, Yang C L, Mei X L, et al. The effect of organic acids from tomato root exudates on rhizosphere colonization of Bacillus amyloliquefaciens T-5[J/OL]. Applied Soil Ecology, 2013, 64(1):15-22[2024-05-01]. https://doi.org/10.1016/j.apsoil.

    2012.10.011.

    [27] Ling N, Raza W, Ma J H, et al. Identification and role of organic acids in watermelon root exudates for recruiting Paenibacillus polymyxa SQR-21 in the rhizosphere[J/OL]. European Journal of Soil Biology, 2011, 47(6): 374-379[2024-05-01]. https://doi.org/10.1016/j.ejsobi.2011.08.009.

    [28] Lakshmanan V, Kitto S L, Caplan J L, et al. Microbe-associated molecular patterns-triggered root responses mediate beneficial rhizobacterial recruitment in Arabidopsis[J/OL]. Plant Physio-

    logy, 2012, 160: 1642-1661[2024-05-01]. https://doi.org/10.

    2307/41694020.

    [29] Lü H F, Cao H S, Muhammad A N, et al. Wheat intercropping enhances the resistance of watermelon to Fusarium wilt[J/OL]. Frontiers in Plant Science, 2018, 9: 696[2024-05-01]. https://

    doi.org/10.3389/fpls.2018.00696.

    [30] Liu Y X, Li X, Cai K, et al. Identification of benzoic acid and 3-phenylpropanoic acid in tobacco root exudates and their role in the growth of rhizosphere microorganisms[J/OL]. Applied Soil Ecology, 2015, 93: 78-87[2024-05-01]. https://doi.org/10.1016/j.apsoil.2015.04.009.

    [31] Du L S, Zhu Z K, Qi Y Y, et al. Effects of different stoichiometric ratios on mineralisation of root exudates and its priming effect in paddy soil[J/OL]. Science of the Total Environment, 2020, 743: 140808[2024-05-01]. https://doi.org/10.1016/j.scitotenv.2020.140808.

    [32] Feng X Y, Wang Q L, Sun Y H, et al. Microplastics change soil properties, heavy metal availability and bacterial community in a Pb-Zn-contaminated soil[J/OL]. Journal of Hazardous Materials, 2022, 424: 127364[2024-05-01]. https://doi.org/10.1016/j.jhazmat.2021.127364.

    [33] Hofman J, Vihalek J, Holoubek I. Evaluation of functional diversity of soil microbial communities a case study[J]. Plant and Soil Environment, 2004, 50(4): 141-148.

    [34] Wang G H, Jin J, Chen X L, et al. Biomass and catabolic diversity of microbial communities with long-term restoration, bare fallow and cropping history in Chinese Mollisols[J/OL]. Plant and Soil Environment, 2007, 53 (4): 177-185[2024-05-01]. https://

    doi.org/10.17221/2313-PSE.

    [35] Giller K E, Beare M, Lavelle P, et al. Agricultural intensification, soil biodiversity and agroecosystem function[J/OL]. Applied Soil Ecology, 1997, 6: 3-16[2024-05-01]. https://doi.org/10.1016/

    S0929-1393(96)00149-7.

    [36] Gorissen A, Van Overbeek L S, Van Elsas J D. Pig slurry reduces the survival of Ralstonia solanacearum biovar 2 in soil[J/OL]. Canadian Journal of Microbiology, 2004, 50: 587-593[2024-05-01]. https://doi.org/10.1139/w04-042.

    [37] 李勝華, 谷麗萍, 劉可星, 等. 有機肥配施對番茄土傳病害的防治及土壤微生物多樣性的調(diào)控[J/OL]. 植物營養(yǎng)與肥料學報, 2009, 15(4): 965-969[2024-05-01]. https://doi.org/10.11674/

    zwyf.2009.0435.

    Li Shenghua, Gu Liping, Liu Kexing, et al. Effects of combined application of organic fertilizers on the control of soilborne diseases and the regulation of soil microbial diversity[J/OL]. Journal of Plant Nutrition and Fertilizers, 2009, 15(4): 965-969[2024-05-01]. https://doi.org/10.11674/zwyf.2009.0435.

    [38] 沈鳳英, 吳偉剛, 李亞寧, 等. 不同濃度植物根系分泌物微生態(tài)效應研究[J/OL]. 生態(tài)環(huán)境學報, 2021, 30(2): 313-319[2024-05-01]. https://doi.org/10.16258/j.cnki.1674-5906.2021.

    02.010.

    Shen Fengying, Wu Weigang, Li Yaning, et al. Study on microecological effects of root exudates of garden plants with different concentrations[J/OL]. Ecology and Environmental Sciences, 2021, 30(2): 313-319[2024-05-01]. https://doi.org/10.16258/j.cnki.1674-5906.2021.02.010.

    [39] Zhou X G, Wu F Z. P-Coumaric acid influenced cucumber rhizosphere soil microbial communities and the growth of Fusarium oxysporum f. sp. cucumerinum Owen[J/OL]. PLoS One, 2012, 7: e48288[2024-05-01]. https://doi.org/10.1371/

    journal.pone.0048288.

    [40] 彭雪梅, 敖檢玲, 郝守鮮, 等. 外來入侵植物空心蓮子草根系分泌物對土壤微生物和酶活性的影響研究[J/OL]. 貴州師范學院學報, 2022, 38(6): 14-19[2024-05-01]. https://doi.org/10.13391/j.cnki.issn.1674-7798.2022.06.001.

    Peng Xuemei, Ao Jianling, Hao Shouxian, et al. Study on the effects of extracts from the root system of invasive plant hollow lotus grass on soil microorganisms and enzyme activities[J/OL]. Journal of Guizhou Education University, 2022, 38(6): 14-19[2024-05-01]. https://doi.org/10.13391/j.cnki.issn.1674-7798.

    2022.06.001.

    [41] 忙順蘭, 羅曉蔓, 丁貴杰. 馬尾松幼苗根系分泌物對土壤酶活性和養(yǎng)分的影響[J/OL]. 中南林業(yè)科技大學學報, 2021, 41(12): 53-59[2024-05-01]. https://doi.org/10.14067/j.cnki.1673-

    923x.2021.12.007.

    Mang Shunlan, Luo Xiaoman, Ding Guijie. Effects of root exudates of Pinus massoniana seedlings on enzyme activity and nutrient in soil[J/OL]. Journal of Central South University of Forestry and Technology, 2021, 41(12): 53-59[2024-05-01]. https://doi.org/10.14067/j.cnki.1673-923x.2021.12.007.

    [42] 劉澤淼, 王海燕, 李洋, 等. 外源芍藥內(nèi)酯苷對芍藥生長發(fā)育及根際土壤的影響[J/OL]. 植物生理學報, 2022, 58(5): 873-

    888[2024-05-01]. https://doi.org/10.13592/j.cnki.ppj.100043.

    Liu Zemiao, Wang Haiyan, Li Yang, et al. Effect of exogenous paeoniflorin on the growth and development of peony and the rhizosphere soil[J/OL]. Plant Physiology Journal, 2022, 58(5): 873-888[2024-05-01]. https://doi.org/10.13592/j.cnki.ppj.100043.

    [43] 丁娜, 林華, 張學洪, 等. 植物根系分泌物與根際微生物交互作用機制研究進展[J/OL]. 土壤通報, 2022, 53(5): 1212-1219[2024-05-01]. https://doi.org/10.19336/j.cnki.trtb.2022010201.

    Ding Na, Lin Hua, Zhang Xuehong, et al. Interaction mechanism between root secretion and rhizosphere microorganisms: a review[J/OL]. Chinese Journal of Soil Science, 2022, 53(5): 1212-1219[2024-05-01]. https://doi.org/10.19336/j.cnki.trtb.2022010201

    [44] 趙衛(wèi)松, 郭慶港, 李社增, 等. 花鈴期棉花黃萎病抗病與感病品種對土壤細菌群落結(jié)構(gòu)的影響[J/OL]. 中國農(nóng)業(yè)科學, 2020, 53(5): 942-954[2024-05-01]. https://doi.org/10.3864/j.issn.0578-1752.2020.05.007.

    Zhao Weisong, Guo Qinggang, Li Shezeng, et al. Effect of wilt-resistant and wilt-susceptible cotton on soil bacterial community structure at flowering and boll stage[J/OL]. Scientia Agricultura Sinica, 2020, 53(5): 942-954[2024-05-01]. https://

    doi.org/10.3864/j.issn.0578-1752.2020.05.007.

    [45] 曾鈺, 閆磊, 劉亞林, 等. 外源脯氨酸對缺硼下棉花幼苗生長、生理特性以及脯氨酸代謝的影響[J/OL]. 棉花學報, 2020, 32(3): 258-268[2024-05-01]. https://doi.org/10.11963/1002-

    7807.zyjcc.20200509.

    Zeng Yu, Yan Lei, Liu Yalin, et al. Effects of exogenous proline on the growth, physiological characteristics, and proline metabolism of cotton seedlings under boron deficiency stress[J/OL]. Cotton Science, 2020, 32(3): 258-268[2024-05-01]. https://doi.org/10.11963/1002-7807.zyjcc.20200509.

    [46] 戴茂華, 劉麗英, 龐昭進, 等. 不同棉花品種對干旱脅迫的生理響應及抗旱性評價[J/OL]. 中國農(nóng)學通報, 2015, 31(21): 98-101[2024-05-01]." https://doi.org/10.11924/j.issn.1000-

    6850.casb15020068.

    Dai Maohua, Liu Liying, Pang Zhaojin, et al. Evaluations of drought resistance among different cotton varieties[J/OL]. Chin-

    ese Agricultural Science Bulletin, 2015, 31(21): 98-101[2024-

    05-01]." https://doi.org/10.11924/j.issn.1000-6850.casb15020068.

    [47] 楊艷兵, 姜艷麗, 尹曉斐, 等." NaCl脅迫對棉花幼苗生理特性的影響[J/OL]. 山西農(nóng)業(yè)大學學報(自然科學版), 2013, 33(4): 290-294[2024-05-01]. https://doi.org/10.13842/j.cnki.issn1671-

    8151.2013.04.011.

    Yang Yanbing, Jiang Yanli, Yin Xiaofei, et al. Effect of NaCl stress on the physiological characteristics of cotton[J/OL]. Journal of Shanxi Agricultural University (Nature Science Edition), 2013, 33(4): 290-294[2024-05-01]. https://doi.org/10.13842/j.cnki.issn1671-8151.2013.04.011.

    [48] 高彥強, 頡建明, 王成, 等. 外源脯氨酸對鹽脅迫下芹菜生長及光合特性的影響[J/OL]. 江西農(nóng)業(yè)大學學報, 2023, 45(2): 322-336[2024-05-01]. https://doi.org/10.13836/j.jjau.2023032.

    Gao Yanqiang, Xie Jianming, Wang Cheng, et al. Effects of exogenous proline on growth and photosynthetic characteristics of celery under salt stress[J/OL]. Acta Agriculturae Universitatis Jiangxiensis, 2023, 45(2): 322-336[2024-05-01]. https://doi.org/10.13836/j.jjau.2023032.

    [49] 陳奮奇, 方鵬, 白明興, 等. 外源脯氨酸緩解玉米幼苗鹽脅迫的效應[J/OL]. 草業(yè)科學, 2022, 39(4): 747-755[2024-05-01]. https://doi.org/10.11829/j.issn.1001-0629.2021-0492.

    Chen Fenqi, Fang Peng, Bai Mingxing, et al. Mitigation of salt stress in maize seedlings by exogenous proline application[J/OL]. Pratacultural Sciences, 2022, 39(4): 747-755[2024-05-

    01]. https://doi.org/10.11829/j.issn.1001-0629.2021-0492.

    (責任編輯:王國鑫 責任校對:秦凡)

    猜你喜歡
    脯氨酸根際外源
    國家藥監(jiān)局批準脯氨酸恒格列凈片上市
    中老年保健(2022年3期)2022-11-21 09:40:36
    具有外源輸入的船舶橫搖運動NARX神經(jīng)網(wǎng)絡預測
    根際微生物對植物與土壤交互調(diào)控的研究進展
    外源鉛脅迫對青稞生長及鉛積累的影響
    植物體內(nèi)脯氨酸的代謝與調(diào)控
    反式-4-羥基-L-脯氨酸的研究進展
    黃花蒿葉水提物對三七根際尖孢鐮刀菌生長的抑制作用
    外源鈣對干旱脅迫下火棘種子萌發(fā)的影響
    外源添加皂苷對斑玉蕈生長發(fā)育的影響
    干旱脅迫對馬尾松苗木脯氨酸及游離氨基酸含量的影響
    欧美日韩综合久久久久久| 日本五十路高清| 青春草视频在线免费观看| 国产大屁股一区二区在线视频| 中文资源天堂在线| 波野结衣二区三区在线| 国产女主播在线喷水免费视频网站 | 久久精品久久久久久噜噜老黄 | 亚洲18禁久久av| 嫩草影院入口| 亚洲精品久久国产高清桃花| 午夜久久久久精精品| 亚洲国产精品合色在线| 久久国产乱子免费精品| а√天堂www在线а√下载| 99热6这里只有精品| 免费观看精品视频网站| 高清午夜精品一区二区三区 | 亚洲精品影视一区二区三区av| 久久精品国产99精品国产亚洲性色| 赤兔流量卡办理| 91狼人影院| 又粗又爽又猛毛片免费看| 最好的美女福利视频网| 成人漫画全彩无遮挡| 可以在线观看的亚洲视频| 亚洲在线自拍视频| 免费在线观看影片大全网站| 国产成年人精品一区二区| 中国美女看黄片| 国产亚洲av嫩草精品影院| 日本三级黄在线观看| 国内精品一区二区在线观看| 精品国产三级普通话版| 97热精品久久久久久| 国产精品久久电影中文字幕| 久久鲁丝午夜福利片| 亚洲第一区二区三区不卡| 国产精品一及| 男女视频在线观看网站免费| 精品免费久久久久久久清纯| 国产成人a∨麻豆精品| 免费看美女性在线毛片视频| 国产精品女同一区二区软件| 可以在线观看的亚洲视频| 精品国内亚洲2022精品成人| 国内少妇人妻偷人精品xxx网站| 日韩三级伦理在线观看| 午夜免费激情av| 国产av一区在线观看免费| 日韩精品中文字幕看吧| 香蕉av资源在线| 中国美女看黄片| 中文字幕人妻熟人妻熟丝袜美| 人人妻人人澡人人爽人人夜夜 | 成人鲁丝片一二三区免费| 午夜日韩欧美国产| 一级a爱片免费观看的视频| 少妇裸体淫交视频免费看高清| 桃色一区二区三区在线观看| 又黄又爽又免费观看的视频| 久久这里只有精品中国| 日韩av在线大香蕉| 欧洲精品卡2卡3卡4卡5卡区| 国语自产精品视频在线第100页| 国产不卡一卡二| 午夜精品国产一区二区电影 | 一个人看的www免费观看视频| 美女免费视频网站| 久久久久国内视频| 国产精品电影一区二区三区| 日本五十路高清| 国产精品女同一区二区软件| 国产久久久一区二区三区| 三级经典国产精品| 日本精品一区二区三区蜜桃| 日韩亚洲欧美综合| 中文资源天堂在线| 日本 av在线| 男女视频在线观看网站免费| 国产aⅴ精品一区二区三区波| 亚洲成人av在线免费| 在线观看一区二区三区| av卡一久久| 精品人妻一区二区三区麻豆 | 日韩av在线大香蕉| 久久久久久久亚洲中文字幕| 91午夜精品亚洲一区二区三区| 中文字幕熟女人妻在线| 欧美另类亚洲清纯唯美| 亚洲一区二区三区色噜噜| 久久精品影院6| 亚洲国产色片| 伦精品一区二区三区| 无遮挡黄片免费观看| 日日干狠狠操夜夜爽| 校园春色视频在线观看| 身体一侧抽搐| 97在线视频观看| 秋霞在线观看毛片| 婷婷亚洲欧美| 床上黄色一级片| 欧美xxxx性猛交bbbb| 免费av观看视频| 亚洲成人精品中文字幕电影| 中国美女看黄片| 亚洲在线观看片| 99久久久亚洲精品蜜臀av| 有码 亚洲区| 97超级碰碰碰精品色视频在线观看| 亚洲性久久影院| 国产av在哪里看| 色综合亚洲欧美另类图片| 五月玫瑰六月丁香| 香蕉av资源在线| 免费av毛片视频| 女生性感内裤真人,穿戴方法视频| 亚洲欧美日韩卡通动漫| 一本一本综合久久| 蜜桃久久精品国产亚洲av| 国产精品乱码一区二三区的特点| 精品乱码久久久久久99久播| 99热全是精品| 亚洲色图av天堂| 成人国产麻豆网| 狂野欧美激情性xxxx在线观看| 日韩欧美免费精品| 亚洲av免费高清在线观看| 国产亚洲av嫩草精品影院| 中出人妻视频一区二区| 欧美潮喷喷水| av.在线天堂| 床上黄色一级片| 久久99热6这里只有精品| 国产毛片a区久久久久| 久久精品国产清高在天天线| av女优亚洲男人天堂| 少妇的逼水好多| 久久人人精品亚洲av| 狠狠狠狠99中文字幕| 国内久久婷婷六月综合欲色啪| 成年女人看的毛片在线观看| 天美传媒精品一区二区| 99热这里只有是精品50| 国产一区二区三区av在线 | 国产精品久久久久久久久免| 精品熟女少妇av免费看| 亚洲av第一区精品v没综合| 高清毛片免费看| 午夜福利在线观看免费完整高清在 | 久久久久久大精品| 一级av片app| 国产精品1区2区在线观看.| 99热只有精品国产| 久久久国产成人精品二区| 三级经典国产精品| 激情 狠狠 欧美| 欧美成人免费av一区二区三区| 亚洲专区国产一区二区| 最近视频中文字幕2019在线8| 99久国产av精品| 亚洲人成网站在线播放欧美日韩| 深爱激情五月婷婷| 又黄又爽又刺激的免费视频.| 嫩草影视91久久| 岛国在线免费视频观看| 啦啦啦韩国在线观看视频| 欧美日韩在线观看h| 在线观看午夜福利视频| 搡老熟女国产l中国老女人| 少妇丰满av| 国内精品宾馆在线| 少妇高潮的动态图| 久久精品综合一区二区三区| 99久久成人亚洲精品观看| 天天躁夜夜躁狠狠久久av| 天美传媒精品一区二区| 亚洲人成网站高清观看| 男人舔女人下体高潮全视频| 秋霞在线观看毛片| 永久网站在线| 少妇裸体淫交视频免费看高清| 又爽又黄a免费视频| 亚洲激情五月婷婷啪啪| 日韩欧美精品免费久久| 尾随美女入室| АⅤ资源中文在线天堂| 99热这里只有精品一区| 欧美+亚洲+日韩+国产| 女人十人毛片免费观看3o分钟| 观看免费一级毛片| 一级a爱片免费观看的视频| 国产亚洲av嫩草精品影院| 中国美白少妇内射xxxbb| 久久久成人免费电影| 国产精品一区www在线观看| 国产探花极品一区二区| 少妇的逼好多水| 精品午夜福利视频在线观看一区| 少妇高潮的动态图| 国产乱人视频| 亚洲成av人片在线播放无| 成人精品一区二区免费| 国产精品爽爽va在线观看网站| 欧美一区二区国产精品久久精品| 天天躁日日操中文字幕| 欧美成人精品欧美一级黄| 国产成人一区二区在线| .国产精品久久| 麻豆久久精品国产亚洲av| 少妇丰满av| 丰满乱子伦码专区| 欧美成人一区二区免费高清观看| 能在线免费观看的黄片| 男人狂女人下面高潮的视频| 看片在线看免费视频| 日韩精品中文字幕看吧| 午夜a级毛片| 国国产精品蜜臀av免费| 听说在线观看完整版免费高清| 日日摸夜夜添夜夜爱| 人妻少妇偷人精品九色| 日韩一区二区视频免费看| 精品一区二区三区人妻视频| 欧美zozozo另类| 啦啦啦观看免费观看视频高清| 亚洲精品成人久久久久久| 国产淫片久久久久久久久| 亚洲最大成人中文| 色哟哟·www| 久久精品国产亚洲av天美| 91午夜精品亚洲一区二区三区| 午夜福利在线观看吧| 国产精品人妻久久久久久| 99久久中文字幕三级久久日本| 欧美丝袜亚洲另类| 亚洲欧美精品自产自拍| 99久久无色码亚洲精品果冻| 色5月婷婷丁香| 亚洲一级一片aⅴ在线观看| 最新在线观看一区二区三区| 91午夜精品亚洲一区二区三区| 一级毛片我不卡| 欧美人与善性xxx| 久久精品影院6| 亚洲久久久久久中文字幕| 成人av一区二区三区在线看| 性色avwww在线观看| 久久久久免费精品人妻一区二区| 免费不卡的大黄色大毛片视频在线观看 | 欧美丝袜亚洲另类| 国产又黄又爽又无遮挡在线| 少妇高潮的动态图| 亚洲美女视频黄频| 男女视频在线观看网站免费| 日韩欧美国产在线观看| 日韩欧美 国产精品| 亚洲内射少妇av| 99久国产av精品国产电影| 国产高清三级在线| 日韩一本色道免费dvd| 一级毛片久久久久久久久女| 成人一区二区视频在线观看| 国内揄拍国产精品人妻在线| 在线免费观看不下载黄p国产| 又黄又爽又免费观看的视频| 国产精品爽爽va在线观看网站| 欧美国产日韩亚洲一区| av天堂在线播放| 久久午夜福利片| 又黄又爽又刺激的免费视频.| 国产精品福利在线免费观看| 乱系列少妇在线播放| 亚洲,欧美,日韩| 美女黄网站色视频| 特大巨黑吊av在线直播| 一区二区三区高清视频在线| 久久天躁狠狠躁夜夜2o2o| 亚洲性久久影院| 久久精品国产清高在天天线| 欧美3d第一页| 大型黄色视频在线免费观看| 国产亚洲av嫩草精品影院| 日韩成人伦理影院| 亚洲内射少妇av| 亚洲美女搞黄在线观看 | 亚洲欧美日韩高清专用| 变态另类成人亚洲欧美熟女| 日本a在线网址| 日韩大尺度精品在线看网址| 看非洲黑人一级黄片| 1024手机看黄色片| 99视频精品全部免费 在线| 亚洲性夜色夜夜综合| 久久久久精品国产欧美久久久| 国产精品福利在线免费观看| 一进一出抽搐动态| 成人特级黄色片久久久久久久| 综合色丁香网| 日韩一区二区视频免费看| 菩萨蛮人人尽说江南好唐韦庄 | 欧美+日韩+精品| 午夜福利在线在线| 有码 亚洲区| 久久精品国产亚洲网站| 真人做人爱边吃奶动态| 国产高清视频在线播放一区| 日韩欧美三级三区| 一本一本综合久久| 亚洲人成网站在线观看播放| av国产免费在线观看| 18禁裸乳无遮挡免费网站照片| 美女被艹到高潮喷水动态| 深夜a级毛片| 中国美女看黄片| 亚洲av中文字字幕乱码综合| 亚洲欧美日韩无卡精品| 午夜免费激情av| 欧美高清成人免费视频www| 男人舔女人下体高潮全视频| 欧美色视频一区免费| av在线亚洲专区| 国产成人91sexporn| 可以在线观看的亚洲视频| 伦理电影大哥的女人| 偷拍熟女少妇极品色| 日韩欧美在线乱码| 国产成人福利小说| 免费人成在线观看视频色| 国产一区亚洲一区在线观看| 国产色爽女视频免费观看| 国产成人91sexporn| 免费黄网站久久成人精品| 国产 一区精品| 国产精品一二三区在线看| 国产精品久久久久久亚洲av鲁大| 久久精品国产亚洲网站| 欧美日本亚洲视频在线播放| 成年免费大片在线观看| 久久人人精品亚洲av| 欧美色欧美亚洲另类二区| 此物有八面人人有两片| 狂野欧美白嫩少妇大欣赏| 老熟妇仑乱视频hdxx| 最近在线观看免费完整版| 永久网站在线| av女优亚洲男人天堂| 国产精品一区二区性色av| 久久九九热精品免费| 久久精品国产亚洲av香蕉五月| 免费看日本二区| 自拍偷自拍亚洲精品老妇| 国产日本99.免费观看| 国产乱人视频| 熟女人妻精品中文字幕| 日韩一本色道免费dvd| 精品人妻熟女av久视频| 大型黄色视频在线免费观看| 国产麻豆成人av免费视频| 精品人妻偷拍中文字幕| 午夜激情欧美在线| 午夜福利高清视频| 久久精品国产亚洲网站| 精品人妻视频免费看| 又爽又黄无遮挡网站| 国产一区二区三区av在线 | 亚洲性久久影院| 久久综合国产亚洲精品| 搡老熟女国产l中国老女人| av在线天堂中文字幕| 亚洲精华国产精华液的使用体验 | av在线天堂中文字幕| 欧美高清成人免费视频www| a级毛片a级免费在线| 精品久久久久久久人妻蜜臀av| 国产黄a三级三级三级人| 成人欧美大片| 噜噜噜噜噜久久久久久91| 中文字幕av在线有码专区| 露出奶头的视频| 久久亚洲国产成人精品v| 乱人视频在线观看| 免费看光身美女| 成人午夜高清在线视频| 变态另类成人亚洲欧美熟女| 国产亚洲精品久久久com| 成人特级黄色片久久久久久久| 久久国内精品自在自线图片| 老熟妇仑乱视频hdxx| 国产成人aa在线观看| 久久热精品热| 国产69精品久久久久777片| 2021天堂中文幕一二区在线观| 欧美丝袜亚洲另类| 国产一区二区三区av在线 | 99久久九九国产精品国产免费| av视频在线观看入口| 成年版毛片免费区| 成人无遮挡网站| 国产亚洲精品久久久久久毛片| 久久久久国内视频| 免费在线观看影片大全网站| 少妇熟女欧美另类| 国产一区二区三区av在线 | 婷婷精品国产亚洲av| 亚洲婷婷狠狠爱综合网| 欧美日韩一区二区视频在线观看视频在线 | 草草在线视频免费看| 热99re8久久精品国产| 亚洲av五月六月丁香网| 丰满的人妻完整版| 韩国av在线不卡| 插逼视频在线观看| 91在线精品国自产拍蜜月| 真人做人爱边吃奶动态| av免费在线看不卡| 国产单亲对白刺激| 99国产极品粉嫩在线观看| 亚洲人与动物交配视频| 中文亚洲av片在线观看爽| 成人午夜高清在线视频| 国产精品不卡视频一区二区| 十八禁网站免费在线| 成年av动漫网址| 亚洲成人精品中文字幕电影| 国产美女午夜福利| 日本-黄色视频高清免费观看| а√天堂www在线а√下载| 中文资源天堂在线| 亚洲精品粉嫩美女一区| 日韩成人伦理影院| 久久韩国三级中文字幕| 国产一级毛片七仙女欲春2| 可以在线观看的亚洲视频| 亚洲精品一区av在线观看| 欧美中文日本在线观看视频| 久久亚洲精品不卡| 午夜精品一区二区三区免费看| 久久精品综合一区二区三区| 不卡视频在线观看欧美| 精品久久久久久久末码| 12—13女人毛片做爰片一| 久久精品国产亚洲网站| 在线观看一区二区三区| 国产高清三级在线| or卡值多少钱| 黄色配什么色好看| 给我免费播放毛片高清在线观看| 午夜福利18| 1000部很黄的大片| 一区二区三区四区激情视频 | 国产av一区在线观看免费| 深夜精品福利| 国产亚洲精品av在线| 欧美激情在线99| 在线天堂最新版资源| 精品欧美国产一区二区三| 男人舔奶头视频| 欧美成人精品欧美一级黄| 国产成人91sexporn| 青春草视频在线免费观看| 九九热线精品视视频播放| 伊人久久精品亚洲午夜| 一级毛片我不卡| 午夜福利高清视频| 女的被弄到高潮叫床怎么办| 国产成年人精品一区二区| 久久久欧美国产精品| 两个人视频免费观看高清| 中文亚洲av片在线观看爽| 精品人妻熟女av久视频| www日本黄色视频网| 级片在线观看| 淫秽高清视频在线观看| 看十八女毛片水多多多| 精品一区二区三区视频在线| 少妇人妻一区二区三区视频| 又爽又黄a免费视频| 国产精品三级大全| 国内精品一区二区在线观看| 久久午夜亚洲精品久久| 色在线成人网| 国产 一区 欧美 日韩| 久久久精品94久久精品| 亚洲av五月六月丁香网| 亚洲国产色片| 婷婷色综合大香蕉| 十八禁国产超污无遮挡网站| 欧美性感艳星| 波野结衣二区三区在线| 一进一出抽搐动态| 一区福利在线观看| av专区在线播放| 日本爱情动作片www.在线观看 | 在线看三级毛片| 草草在线视频免费看| 免费人成在线观看视频色| 观看美女的网站| 国产精品亚洲一级av第二区| 少妇熟女欧美另类| 99久久精品热视频| 波多野结衣巨乳人妻| 69av精品久久久久久| 亚洲电影在线观看av| 亚洲成a人片在线一区二区| 男女做爰动态图高潮gif福利片| 久久久精品大字幕| 亚洲性夜色夜夜综合| 国产高清不卡午夜福利| 国产麻豆成人av免费视频| 一a级毛片在线观看| 啦啦啦观看免费观看视频高清| 欧美日韩乱码在线| 不卡一级毛片| 99久国产av精品| 五月玫瑰六月丁香| 两性午夜刺激爽爽歪歪视频在线观看| 国产亚洲精品久久久com| 国产三级在线视频| 天堂影院成人在线观看| 淫秽高清视频在线观看| 三级男女做爰猛烈吃奶摸视频| 精品人妻熟女av久视频| 亚洲欧美成人综合另类久久久 | 国产成人a区在线观看| 最近视频中文字幕2019在线8| 亚洲色图av天堂| 乱系列少妇在线播放| 日韩精品有码人妻一区| 欧美日本视频| 久久午夜福利片| 男人舔奶头视频| 在线播放国产精品三级| 亚洲无线在线观看| 在线a可以看的网站| 欧美xxxx性猛交bbbb| 国产伦精品一区二区三区视频9| 精品久久久久久久人妻蜜臀av| 毛片一级片免费看久久久久| 国产爱豆传媒在线观看| 久久草成人影院| 天堂√8在线中文| 日本熟妇午夜| 国产人妻一区二区三区在| 欧美日韩精品成人综合77777| 人妻丰满熟妇av一区二区三区| 午夜亚洲福利在线播放| 国产免费一级a男人的天堂| 男人狂女人下面高潮的视频| 欧美精品国产亚洲| 伦理电影大哥的女人| 国产麻豆成人av免费视频| 久久99热这里只有精品18| 亚洲成av人片在线播放无| 久久久久九九精品影院| 国产精品福利在线免费观看| 亚洲在线自拍视频| 中文字幕熟女人妻在线| 国产亚洲精品久久久久久毛片| 成人鲁丝片一二三区免费| 亚洲国产欧洲综合997久久,| 久久久久国产精品人妻aⅴ院| 亚洲欧美中文字幕日韩二区| 国产不卡一卡二| 国产在线男女| 中国美女看黄片| 亚洲乱码一区二区免费版| 天堂网av新在线| 69av精品久久久久久| 你懂的网址亚洲精品在线观看 | 色噜噜av男人的天堂激情| 中文字幕免费在线视频6| 日韩制服骚丝袜av| 级片在线观看| 免费电影在线观看免费观看| 人妻丰满熟妇av一区二区三区| 97在线视频观看| 成人永久免费在线观看视频| 丝袜美腿在线中文| 全区人妻精品视频| 精品一区二区三区视频在线| 久久久午夜欧美精品| 亚洲av不卡在线观看| 在线观看一区二区三区| 中文在线观看免费www的网站| 天堂√8在线中文| 在线播放无遮挡| 欧美在线一区亚洲| 国产老妇女一区| 成人av在线播放网站| 国产午夜精品久久久久久一区二区三区 | 在线免费十八禁| 日韩欧美精品v在线| 99久久成人亚洲精品观看| 天堂√8在线中文| 欧美日韩国产亚洲二区| 欧美在线一区亚洲| 欧美三级亚洲精品| 色视频www国产| 哪里可以看免费的av片| 在线观看66精品国产| 男人狂女人下面高潮的视频| 男女边吃奶边做爰视频| 国产熟女欧美一区二区| 成熟少妇高潮喷水视频| 中文字幕熟女人妻在线| 国产成人精品久久久久久| 人妻久久中文字幕网| 久久久精品欧美日韩精品| 麻豆久久精品国产亚洲av| 啦啦啦啦在线视频资源| 国产蜜桃级精品一区二区三区| 特大巨黑吊av在线直播| 伊人久久精品亚洲午夜| 亚洲国产精品成人综合色|