姜春雷 方碩 劉偉 邵克勇 陳朋
摘要:油井的實(shí)時(shí)生產(chǎn)監(jiān)測(cè)對(duì)油田的輔助生產(chǎn)和精細(xì)化管理有重要意義。然而,針對(duì)僅有小樣本生產(chǎn)數(shù)據(jù)、數(shù)據(jù)波動(dòng)大且有缺失的特高含水期油井,傳統(tǒng)的機(jī)器學(xué)習(xí)算法無(wú)法實(shí)現(xiàn)良好的生產(chǎn)預(yù)測(cè)。提出一種基于卷積神經(jīng)網(wǎng)絡(luò)和遷移學(xué)習(xí)的多任務(wù)生產(chǎn)預(yù)測(cè)方法。該方法不僅可以實(shí)現(xiàn)時(shí)間和空間上特征的自適應(yīng)提取,還可以改善模型在小樣本數(shù)據(jù)上的預(yù)測(cè)性能。結(jié)果表明:相比于基準(zhǔn)模型,產(chǎn)液量和動(dòng)液面的平均絕對(duì)誤差分別降低31.26%和60.81%,決定系數(shù)分別提高1.89%和7.59%?;谶w移學(xué)習(xí)的MTCNN模型提高小樣本數(shù)據(jù)油井的生產(chǎn)預(yù)測(cè)精度,實(shí)現(xiàn)了特高含水油井產(chǎn)液量和動(dòng)液面的實(shí)時(shí)預(yù)測(cè),對(duì)抽油機(jī)系統(tǒng)的效率優(yōu)化、油井邊緣設(shè)備智能化有參考意義。
關(guān)鍵詞:卷積神經(jīng)網(wǎng)絡(luò); 遷移學(xué)習(xí); 特高含水油井; 小樣本數(shù)據(jù); 多任務(wù); 動(dòng)態(tài)生產(chǎn)預(yù)測(cè)
中圖分類號(hào):TP 392 文獻(xiàn)標(biāo)志碼:A
引用格式:姜春雷,方碩,劉偉,等.基于卷積神經(jīng)網(wǎng)絡(luò)和遷移學(xué)習(xí)的特高含水油井生產(chǎn)預(yù)測(cè)[J].中國(guó)石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2023,47(6):162-170.
JIANG Chunlei, FANG Shuo, LIU Wei, et al. Production prediction of extra high water cut oil well based on convolution neural network and transfer learning[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023,47(6):162-170.
Production prediction of extra high water cut oil well based on
convolution neural network and transfer learning
JIANG Chunlei1,2, FANG Shuo1, LIU Wei1,2, SHAO Keyong1, CHEN Peng1
(1.School of Electrical Information Engineering, Northeast Petroleum University, Daqing 163318, China;
2.Sanya Offshore Oil & Gas Research Institute, Northeast Petroleum University, Sanya 572024, China)
Abstract: The real-time production monitoring of oil wells is of great significance for enhancing auxiliary production and fine management in oil fields.However, the traditional machine learning algorithms struggle to provide accurate production predictions for ultra-high water cut oil fields due to limited sample production data, substantial data fluctuations, and missing data.This paper proposes a multi-task production forecasting scheme based on convolutional neural networks and transfer learning to address these challenges.This model not only enablesadaptive extraction of temporal and spatial features, but also enhancesprediction performance on small sample data.The experimental results demonstrate notable improvements over the benchmark model. Specifically, the average absolute percentage errors of liquid production and dynamic liquid level are reduced by 31.26% and 60.81% respectively. Additionally, and the determination coefficient increases by 1.89% and 7.59% respectively.The MTCNN model, based on transfer learning,enhances the prediction accuracy of oil wells with limitedsample data, enabling real-time prediction of liquid production and dynamic liquid level inultra-high water cut oil wells. It holds significant implications for the efficiency optimization of pumping unit systems and the intelligence of oil well edge equipment.
Keywords: convolutional neural network; transfer learning; extra high water cut oil well; small sample data; multitasking; dynamic production forecast
進(jìn)入21世紀(jì)以來(lái),中國(guó)大量油田進(jìn)入高含水期甚至特高含水期。高含水和特高含水期油田具有油層多、儲(chǔ)層非均質(zhì)性強(qiáng)和油水關(guān)系復(fù)雜等特點(diǎn),其生產(chǎn)監(jiān)控和預(yù)測(cè)過(guò)程更為復(fù)雜且難以管理[1]。相比于傳統(tǒng)的油藏工程和數(shù)值模擬方法[2],人工智能無(wú)需復(fù)雜的物理建模過(guò)程,模型簡(jiǎn)潔且具有更強(qiáng)的適應(yīng)性;無(wú)需依賴專家經(jīng)驗(yàn),能夠更精準(zhǔn)地反映生產(chǎn)數(shù)據(jù)間的非線性關(guān)系[3]。最近,人工智能在生產(chǎn)預(yù)測(cè)領(lǐng)域得到廣泛應(yīng)用并獲得顯著經(jīng)濟(jì)效益。不同的機(jī)器學(xué)習(xí)算法被用于油井的生產(chǎn)預(yù)測(cè)。包括向量自回歸模型[5]、隨機(jī)森林算法[6]、人工神經(jīng)網(wǎng)絡(luò)[7]、卷積神經(jīng)網(wǎng)絡(luò)[8]、循環(huán)神經(jīng)網(wǎng)絡(luò)[9]、長(zhǎng)短期記憶[10]和門控循環(huán)單元[11]、卷積-遞歸神經(jīng)網(wǎng)絡(luò)[12]和基于局部保持投影的無(wú)監(jiān)督學(xué)習(xí)[13]等。鐘儀華等[14]基于支持向量機(jī)在9 a生產(chǎn)數(shù)據(jù)基礎(chǔ)上建立了特高含水期油井的月產(chǎn)量預(yù)測(cè)模型。Negash等
[15]利用人工神經(jīng)網(wǎng)絡(luò)在單口注水開發(fā)井10 a生產(chǎn)數(shù)據(jù)上進(jìn)行快速建模預(yù)測(cè)月產(chǎn)量。王洪亮等[16]采用循環(huán)神經(jīng)網(wǎng)絡(luò)在兩個(gè)特高含水油田18 a的數(shù)據(jù)上實(shí)現(xiàn)月產(chǎn)油量的預(yù)測(cè),考慮了產(chǎn)量與時(shí)間的關(guān)聯(lián)。Zhang等[17]提出了基于遺傳算法超參數(shù)優(yōu)化的門循環(huán)單元模型,對(duì)高含水單井產(chǎn)量進(jìn)行預(yù)測(cè),實(shí)現(xiàn)模型參數(shù)自動(dòng)調(diào)優(yōu)。然而以上研究都是基于長(zhǎng)達(dá)數(shù)十年的月度動(dòng)態(tài)和靜態(tài)數(shù)據(jù),需要昂貴的時(shí)間和人力成本且無(wú)法實(shí)時(shí)監(jiān)控和預(yù)測(cè)。模型也僅針對(duì)特定工作狀態(tài)下的單一任務(wù)預(yù)測(cè),無(wú)法適應(yīng)不同工況下的多任務(wù)預(yù)測(cè)。為克服機(jī)器學(xué)習(xí)模型在小樣本數(shù)據(jù)上泛化能力弱,解決以砂巖油井為代表的特高含水期復(fù)雜油藏的生產(chǎn)動(dòng)態(tài)預(yù)測(cè)難點(diǎn),筆者開展抽油機(jī)電流參數(shù)相關(guān)性分析、數(shù)據(jù)預(yù)處理流程、多任務(wù)卷積神經(jīng)網(wǎng)絡(luò)(multitask convolutional neural network, MTCNN)產(chǎn)量預(yù)測(cè)模型建立和遷移微調(diào)方案方面的研究。提出并應(yīng)用抽油機(jī)實(shí)時(shí)電流參數(shù)作為輸入,給出實(shí)時(shí)參數(shù)數(shù)據(jù)預(yù)處理的完整流程,引入卷積神經(jīng)網(wǎng)絡(luò)(convolutional neural network, CNN)作為特征提取模塊與多任務(wù)人工神經(jīng)網(wǎng)絡(luò)(multitask artificial neural network, MTANN)結(jié)合,實(shí)現(xiàn)生產(chǎn)的多任務(wù)動(dòng)態(tài)預(yù)測(cè),首次將遷移學(xué)習(xí)(transfer learning, TL)應(yīng)用到小樣本數(shù)據(jù)的特高含水油井生產(chǎn)預(yù)測(cè),大大提高模型預(yù)測(cè)性能,從而實(shí)現(xiàn)不同工況下小樣本特高含水油井的多任務(wù)生產(chǎn)預(yù)測(cè)。
1 基礎(chǔ)理論
1.1 任務(wù)選擇
油井產(chǎn)液量用來(lái)反映油井的生產(chǎn)能力和評(píng)估抽油機(jī)的工作狀態(tài),對(duì)產(chǎn)液量的動(dòng)態(tài)監(jiān)控預(yù)測(cè),可以實(shí)現(xiàn)對(duì)油井設(shè)備的科學(xué)部署和可靠生產(chǎn)[18]。油井的動(dòng)液面可以用于確定合理沉沒度,是判斷油井工作制度與地層能量匹配情況的重要依據(jù)。油井動(dòng)液面也被作為反映地層供液能力的重要指標(biāo),所以對(duì)動(dòng)液面進(jìn)行實(shí)時(shí)監(jiān)測(cè)是特高含水油井節(jié)能生產(chǎn)的關(guān)鍵因素[19]。基于以上考慮,選擇油井產(chǎn)液量和動(dòng)液面作為多任務(wù)生產(chǎn)預(yù)測(cè)目標(biāo)。
1.2 小樣本數(shù)據(jù)預(yù)處理
特高含水期油井實(shí)時(shí)載荷和實(shí)時(shí)電流數(shù)據(jù)樣本少、波動(dòng)大且有殘缺,若數(shù)據(jù)未經(jīng)處理就送進(jìn)網(wǎng)絡(luò)訓(xùn)練,會(huì)對(duì)預(yù)測(cè)結(jié)果造成極大的誤差,甚至無(wú)法運(yùn)行。為實(shí)現(xiàn)快速穩(wěn)定的動(dòng)態(tài)生產(chǎn)預(yù)測(cè),建立了完整的小樣本數(shù)據(jù)處理流程。如圖1所示,包括單樣本劃分、相關(guān)性分析、缺失值KNN(k-最近鄰算法,k-nearest neighbor)插補(bǔ)和數(shù)據(jù)歸一化。
1.2.1 單樣本劃分
示功圖和電功圖是通過(guò)安裝在抽油機(jī)上的位移載荷傳感器和電流傳感器實(shí)時(shí)采集的載荷數(shù)據(jù)和電流數(shù)據(jù)繪制而成,本文中使用一維數(shù)據(jù)代替二維圖像數(shù)據(jù),減小數(shù)據(jù)占用空間和模型計(jì)算量,實(shí)現(xiàn)快速預(yù)測(cè)。每隔半小時(shí)進(jìn)行一組單樣本數(shù)據(jù)采集,包括一組載荷參數(shù)(一個(gè)完整200點(diǎn)示功圖)、一組電參數(shù)(一個(gè)完整200點(diǎn)電功圖)、一個(gè)產(chǎn)液量和動(dòng)液面參數(shù)。
1.2.2 Spearman相關(guān)性分析
Spearman秩相關(guān)系數(shù)是一種非闡述(無(wú)分布)秩統(tǒng)計(jì)量,用于衡量?jī)蓚€(gè)變量之間的關(guān)聯(lián)強(qiáng)度。與Pearson相關(guān)系數(shù)相比,Spearman秩相關(guān)系數(shù)不需要變量服從正態(tài)分布,它衡量的是兩個(gè)變量有多大程度可以用單調(diào)函數(shù)描述[20]。Spearman秩相關(guān)系數(shù)ρ的計(jì)算公式為
式中,di=xi-yi為秩次之差,xi和yi為原始數(shù)據(jù);n為樣本容量。
Spearman相關(guān)系數(shù)介于-1和1之間,相關(guān)系數(shù)的正負(fù)代表自變量和因變量關(guān)系的方向。由載荷參數(shù)繪制而成的示功圖常用于抽油機(jī)產(chǎn)液量和動(dòng)液面的計(jì)算[21-22],將實(shí)時(shí)電流參數(shù)與實(shí)時(shí)載荷參數(shù)進(jìn)行Spearman相關(guān)性分析,分析用純電流參數(shù)進(jìn)行產(chǎn)液量和動(dòng)液面預(yù)測(cè)的可行性。將相關(guān)性矩陣取絕對(duì)值,統(tǒng)計(jì)上相關(guān)系數(shù)大于0.8被視為極強(qiáng)相關(guān),所以將大于0.8的值置為1,其他置為0。如圖2所示,歸一化后單樣本的200點(diǎn)載荷參數(shù)和200點(diǎn)電流參數(shù)的繪制為紅色和藍(lán)色的折線圖,200點(diǎn)載荷和200點(diǎn)電流的Spearman相關(guān)性矩陣?yán)L制為熱力圖。將代表極高相關(guān)性的高亮區(qū)域與折線圖對(duì)應(yīng)區(qū)域用箭頭連接,可以看到,在上行和下行部分(即抽油機(jī)運(yùn)行到最高處和最低處),數(shù)據(jù)特征明顯,相關(guān)性高,占整個(gè)周期的絕大部分。所以無(wú)論是從油田中多口不同工況的長(zhǎng)時(shí)間跨度的井來(lái)看,還是從單樣本分析來(lái)看,抽油機(jī)電流參數(shù)與抽油機(jī)載荷參數(shù)具有普遍相關(guān)性,可以用于油井生產(chǎn)預(yù)測(cè)。
相對(duì)于抽油機(jī)載荷參數(shù),電流參數(shù)受外在因素影響較小且測(cè)量精確,還有測(cè)取方便、安裝及維護(hù)成本低和連續(xù)實(shí)時(shí)測(cè)量等優(yōu)點(diǎn)[23]。抽油機(jī)電流參數(shù)實(shí)時(shí)反映油井的運(yùn)行狀態(tài)和舉升所需的能量變化,其與動(dòng)液面和產(chǎn)液量息息相關(guān),可以實(shí)現(xiàn)實(shí)時(shí)生產(chǎn)預(yù)測(cè)[24]。而卷積神經(jīng)網(wǎng)絡(luò)中的最大池化層作為一種下采樣操作,在保留強(qiáng)特征的基礎(chǔ)上丟棄弱特征,從而在學(xué)習(xí)過(guò)程中自動(dòng)減少有用信號(hào)中的噪聲[25-26]。所以選擇電流參數(shù)作為輸入特征進(jìn)行研究。
1.2.3 KNN缺失值插補(bǔ)
采集到的原始數(shù)據(jù)可能有缺失值,這會(huì)導(dǎo)致算法訓(xùn)練時(shí)出現(xiàn)問題。在對(duì)任務(wù)進(jìn)行建模之前,識(shí)別輸入數(shù)據(jù)中的缺失值并替代的方法被稱為缺失數(shù)據(jù)插補(bǔ)。一種有效的數(shù)據(jù)插補(bǔ)方法是用模型來(lái)預(yù)測(cè)缺失值,
KNN插值算法被證明通常是有效的。KNN插值算法通過(guò)距離度量找出與缺失值最近的k個(gè)樣本,缺失值使用數(shù)據(jù)集中找到的k鄰域的平均值進(jìn)行插補(bǔ)[27]。這里選用歐幾里得距離即兩點(diǎn)間的直線距離作為度量,歐幾里得距離計(jì)算如下:
式中,D(x,y)為x和y兩點(diǎn)的歐幾里得距離;
xi和yi為第i組的兩點(diǎn);k為所考慮的樣本點(diǎn)數(shù)。KNN插值通過(guò)忽略缺失值并放大非缺失坐標(biāo)的權(quán)重來(lái)計(jì)算:
式中,n為樣本總數(shù)。
根據(jù)對(duì)k值的選擇可以產(chǎn)生不同的插值結(jié)果。如果k值太小,而臨近的樣本恰好是噪聲,那么預(yù)測(cè)就會(huì)出錯(cuò);如果k值太大,只是對(duì)數(shù)據(jù)進(jìn)行統(tǒng)計(jì),沒有實(shí)際意義。一般k值的選擇為特征數(shù)的平方根且不超過(guò)25,所以選擇10作為k的值。
1.2.4 歸一化
梯度下降算法是利用梯度進(jìn)行導(dǎo)航從而到達(dá)最優(yōu)解,為了使梯度下降算法運(yùn)行的更好,需要把數(shù)字輸入變量縮放到標(biāo)準(zhǔn)范圍內(nèi)。兩種最常用縮放數(shù)值的方法是標(biāo)準(zhǔn)化和歸一化,非高斯變量的縮放一般采用歸一化。歸一化是將輸入變量分別縮放到0~1范圍內(nèi),這是精度最高的點(diǎn)值的范圍。
式中,xmin為最小值;xmax為最大值。
表1將單樣本原始數(shù)據(jù)和單樣本預(yù)處理數(shù)據(jù)進(jìn)行對(duì)比,輸入特征為200個(gè)采樣點(diǎn)的實(shí)時(shí)電流參數(shù),輸出標(biāo)簽為預(yù)測(cè)目標(biāo)產(chǎn)液量和動(dòng)液面。有缺失的原始數(shù)據(jù)經(jīng)過(guò)KNN插值和歸一化處理,得到值在0~1內(nèi)的無(wú)量綱數(shù)據(jù),可以加快模型收斂速度,提高模型精度。
1.3 一維多任務(wù)卷積模型
一維多任務(wù)卷積神經(jīng)網(wǎng)絡(luò)模型(MTCNN)如圖3所示,卷積神經(jīng)網(wǎng)絡(luò)模塊由兩個(gè)卷積層和兩個(gè)池化層組成,用于從多任務(wù)輸入中提取深層特征[28]。卷積層的核尺寸為5,步幅為1,填充選擇不填充;最大池化層的池化尺寸為2。卷積神經(jīng)網(wǎng)絡(luò)提取的深層特征不能直接作為輸入進(jìn)入多任務(wù)模塊,而是要經(jīng)過(guò)展開層進(jìn)行參數(shù)展開。MTANN模塊,將兩個(gè)人工神經(jīng)網(wǎng)絡(luò)(ANN)以并行的方式連接在卷積層(CNN)的輸出,實(shí)現(xiàn)共享特征提取模塊的權(quán)重,通過(guò)充分利用多個(gè)相關(guān)任務(wù)的訓(xùn)練信號(hào)中包含的共享表示,提高了單任務(wù)的泛化性能[29]。每個(gè)人工神經(jīng)網(wǎng)絡(luò)部分由3個(gè)密集層按倒金字塔結(jié)構(gòu)組成,共享輸入權(quán)重,以利用知識(shí)共享來(lái)提高單任務(wù)泛化能力,最后一個(gè)密集層激活函數(shù)為L(zhǎng)inear,其他層的激活函數(shù)為Relu。優(yōu)化器采用Adam[30],可以實(shí)現(xiàn)自適應(yīng)調(diào)整學(xué)習(xí)率。損失函數(shù)采用均方誤差,度量指標(biāo)為R2。以決定系數(shù)(R2)和平均絕對(duì)誤差(E)作為模型評(píng)價(jià)指標(biāo),R2用于評(píng)估預(yù)測(cè)值與真實(shí)值的擬合程度,某種程度上,R2可以看作回歸預(yù)測(cè)的準(zhǔn)確率,其結(jié)果位于0~1之間,R2越接近1代表擬合越好;E用來(lái)評(píng)估預(yù)測(cè)值與真實(shí)值的相對(duì)誤差,其結(jié)果為0以上的范圍,越接近0代表預(yù)測(cè)誤差越小。根據(jù)評(píng)價(jià)指標(biāo),綜合考慮了模型的輕量化和最優(yōu)化,對(duì)模型的超參數(shù)進(jìn)行網(wǎng)格搜索優(yōu)化。卷積層數(shù)設(shè)置為兩層,卷積核數(shù)分別為6和16,密集層3層的神經(jīng)元數(shù)分別為120、84和1。
2 特高含水期油井多任務(wù)生產(chǎn)預(yù)測(cè)試驗(yàn)
2.1 預(yù)訓(xùn)練和遷移訓(xùn)練
深度學(xué)習(xí)方案已經(jīng)在油田行業(yè)各個(gè)方面取得很大的成功。這一切的前提是現(xiàn)場(chǎng)有大量標(biāo)記的訓(xùn)練數(shù)據(jù),而且訓(xùn)練數(shù)據(jù)與測(cè)試數(shù)據(jù)要有相同的分布。然而,在大量剛剛進(jìn)入高含水期或特高含水期的油井上收集足夠的訓(xùn)練數(shù)據(jù)通常是昂貴、耗時(shí)的,甚至是不現(xiàn)實(shí)的[31]。這些問題可以完美地被深度遷移學(xué)習(xí)所解決。
遷移學(xué)習(xí)在某種程度上相似的充足數(shù)據(jù)上預(yù)訓(xùn)練,然后在目標(biāo)數(shù)據(jù)上再訓(xùn)練,在缺乏充足訓(xùn)練數(shù)據(jù)的任務(wù)上顯著提高模型的性能[32]。實(shí)現(xiàn)遷移學(xué)習(xí)的方法主要有兩種:權(quán)重初始化和特征提取。微調(diào)是將遷移學(xué)習(xí)用于深度學(xué)習(xí)最廣泛的策略,將深度學(xué)習(xí)模型在源任務(wù)的數(shù)據(jù)上進(jìn)行預(yù)訓(xùn)練,并在目標(biāo)任務(wù)的數(shù)據(jù)上進(jìn)行微調(diào)。由于CNN模型特征的逐層提取特性,越靠近頂層的特征會(huì)更具體,且與任務(wù)更相關(guān),所以選擇微調(diào)遷移可以在小樣本數(shù)據(jù)上顯著提高預(yù)測(cè)性能[33]。
如圖4所示,為MTCNN模型遷移訓(xùn)練流程。訓(xùn)練主要包括兩個(gè)部分,模型預(yù)訓(xùn)練和遷移訓(xùn)練。首先在20口不同工況的6個(gè)月的大量數(shù)據(jù)上進(jìn)行預(yù)訓(xùn)練,得到在源域數(shù)據(jù)集上表現(xiàn)良好的預(yù)訓(xùn)練模型,然后將模型中的權(quán)值遷移到新模型中,從而實(shí)現(xiàn)權(quán)值初始化。目標(biāo)域數(shù)據(jù)即為需要預(yù)測(cè)的小樣本數(shù)據(jù),為同一油田8口井的3個(gè)月生產(chǎn)數(shù)據(jù)。為使得到預(yù)訓(xùn)練權(quán)值的新模型更好擬合小樣本目標(biāo)域數(shù)據(jù),凍結(jié)底層卷積特征提取模塊,僅對(duì)多任務(wù)模塊進(jìn)行遷移微調(diào)訓(xùn)練,即得到遷移訓(xùn)練模型。微調(diào)策略是以預(yù)訓(xùn)練模型的預(yù)測(cè)性能為基準(zhǔn)性能,采用網(wǎng)格搜索參數(shù)優(yōu)化算法重復(fù)預(yù)測(cè)100次,對(duì)多任務(wù)模塊微調(diào)的層數(shù)和微調(diào)訓(xùn)練迭代次數(shù)進(jìn)行搜索。在搜索結(jié)果中尋找R2大于0.8,且E分布最穩(wěn)定且均值最小的模型。
2.2 對(duì)比試驗(yàn)?zāi)P?/p>
為驗(yàn)證模型在小樣本數(shù)據(jù)上的泛化能力和預(yù)測(cè)性能,選擇并設(shè)計(jì)兩個(gè)對(duì)比模型,模型的其他部分和參數(shù)不變,僅將特征提取模塊進(jìn)行替換。
如圖5所示,為多任務(wù)多層感知機(jī)模型(multitask multi-layer perceptron, MTMLP)和多任務(wù)VGG16模型(multitask VGG16, MTVGG16)的特征提取模塊,圖5(a)使用典型的四層感知機(jī)模型代替卷積神經(jīng)網(wǎng)絡(luò)對(duì)輸入數(shù)據(jù)進(jìn)行特征提?。?4]。每層神經(jīng)元的數(shù)量都為64,其他部分的結(jié)構(gòu)和參數(shù)與原模型相同。圖5(b)特征提取部分的結(jié)構(gòu)為牛津大學(xué)視覺幾何小組(visual geometry group)提出的VGG16深層卷積網(wǎng)絡(luò),常用于作為遷移學(xué)習(xí)的基準(zhǔn)模型[35]。MTVGG16模型中的特征提取模塊,由A和B兩個(gè)模塊疊加而成。其中A模塊由3個(gè)卷積層和1個(gè)最大池化層組成,3個(gè)卷積層的卷積核個(gè)數(shù)相同。B模塊由兩個(gè)卷積層和一個(gè)最大池化層組成,兩個(gè)卷積層的卷積核個(gè)數(shù)相同。輸入首先依次經(jīng)過(guò)兩個(gè)A模塊,卷積核個(gè)數(shù)m分別為16和32。然后再依次經(jīng)過(guò)3個(gè)B模塊,卷積核個(gè)數(shù)n分別為64、128和128。
在本研究中,模型的訓(xùn)練是用開發(fā)深度學(xué)習(xí)框架Keras在Python3.8中編寫,并在內(nèi)置NVIDIA GEFORCEGTXTM 960M顯卡的計(jì)算機(jī)上運(yùn)行的。所有模型的迭代次數(shù)設(shè)置為500次,最小批次大小設(shè)置為64。將每個(gè)模型重復(fù)運(yùn)行100次以合理評(píng)估。
3 結(jié)果討論
3.1 遷移對(duì)比試驗(yàn)
在MTCNN模型上對(duì)小樣本數(shù)據(jù)進(jìn)行遷移對(duì)比試驗(yàn),比較了遷移前后模型的預(yù)測(cè)性能。圖6為預(yù)處理模型和遷移模型預(yù)測(cè)散點(diǎn)擬合對(duì)比圖。以預(yù)處理模型預(yù)測(cè)值為左圖x軸,遷移模型預(yù)測(cè)值為右圖x軸,真實(shí)值為y軸,預(yù)測(cè)結(jié)果越接近真實(shí)值,散點(diǎn)就越分布在y=x對(duì)角線上。以陰影部分表示擬合結(jié)果的分布,紅色擬合線是預(yù)測(cè)結(jié)果的線性回歸。可以看出,經(jīng)過(guò)遷移后的模型,其陰影形狀較窄,散點(diǎn)分布更集中在對(duì)角線上,擬合線斜率更貼近1。試驗(yàn)結(jié)果表明遷移學(xué)習(xí)的模型,具有更穩(wěn)健的預(yù)測(cè)性能。
為了更進(jìn)一步評(píng)估遷移后MTCNN模型的性能,統(tǒng)計(jì)了重復(fù)100次遷移前后的誤差和精度的箱線圖。箱線圖用于描述數(shù)據(jù)分布的離散程度,箱體的上下底分別是數(shù)據(jù)的上四分位(75%)和下四分位(25%),箱體中的線為中位線(50%),上下邊緣線代表該組數(shù)據(jù)的最大值和最小值,外部的點(diǎn)被稱為“異常值”。圖7(a)統(tǒng)計(jì)了任務(wù)1的R2分布,R2值越接近1代表擬合精度越高。圖7(b)是任務(wù)2的E分布,E越接近0代表預(yù)測(cè)誤差越低。與未遷移模型相比,遷移后的模型箱體和線體變得更窄,R2和E的均值有不同程度的提高和下降。表明遷移后的模型性能的提高和穩(wěn)定。
表2統(tǒng)計(jì)了100次運(yùn)行結(jié)果性能的均值和遷移后的性能改進(jìn)??梢钥吹?,遷移后模型的E分別為4.2%和8.12%,R2分別為97.25%和93.02%。相對(duì)于未遷移模型,E改進(jìn)了31.71%和56.55%,R2改進(jìn)了2.28%和7.12%。
3.2 模型對(duì)比試驗(yàn)
將所提出的MTCNN模型與MTMLP模型和MTVGG16模型遷移后的模型進(jìn)行對(duì)比試驗(yàn),評(píng)估不同模型遷移后的預(yù)測(cè)性能。
圖8統(tǒng)計(jì)了遷移后3種模型運(yùn)行100次的R2和E,以評(píng)估模型性能。與另外兩種模型相比,MTCNN模型預(yù)測(cè)評(píng)價(jià)指標(biāo)的箱體更窄,在兩個(gè)任務(wù)上的E更低,R2更高。表明MTCNN模型有更好的預(yù)測(cè)性能。
表3為遷移后的3個(gè)模型100次運(yùn)行結(jié)果性能的均值和性能改進(jìn)??梢钥吹剑琈TCNN模型的E分別為4.2%和8.12%,R2分別為97.25%和93.02%。相對(duì)于MTMLP模型,E改進(jìn)了74.41%和78.75%,R2改進(jìn)了75.80%和51.70%。相對(duì)于MTVGG16模型,E改進(jìn)了31.26%和60.81%,R2改進(jìn)了1.89%和7.59%。
總之,試驗(yàn)結(jié)果表明,經(jīng)過(guò)遷移學(xué)習(xí),模型的穩(wěn)定性和預(yù)測(cè)性能都有很大的提升。提出的MTCNN模型可以有效提取小樣本數(shù)據(jù)特征,實(shí)現(xiàn)高性能多任務(wù)預(yù)測(cè),而且模型結(jié)構(gòu)簡(jiǎn)單,參數(shù)較少,更利于嵌入到邊緣設(shè)備。
4 結(jié) 論
(1)載荷參數(shù)常用于產(chǎn)液量和動(dòng)液面計(jì)算,通過(guò)Spearman相關(guān)性分析,可以發(fā)現(xiàn)電流參數(shù)與載荷參數(shù)有普遍高相關(guān)性,且電流參數(shù)的測(cè)量影響因素更少,因此使用電流參數(shù)可以更精確反映油井產(chǎn)液量和動(dòng)液面生產(chǎn)參數(shù)變化。
(2)相對(duì)于未遷移模型,遷移模型的誤差最大改進(jìn)60.81%,精度最大改進(jìn)了7.12%。這表明基于遷移的MTCNN模型可以有效在小樣本數(shù)據(jù)上減少預(yù)測(cè)誤差和提高預(yù)測(cè)精度。
(3)在遷移后MTMLP、MTVGG16和MTCNN模型上進(jìn)行對(duì)比試驗(yàn),可以發(fā)現(xiàn)所提出的MTCNN模型可以對(duì)數(shù)據(jù)進(jìn)行時(shí)間和空間上的特征提取,得到最好且穩(wěn)健的預(yù)測(cè)性能。模型相對(duì)輕量化的結(jié)構(gòu)也更利于在邊緣設(shè)備上進(jìn)行嵌入。
參考文獻(xiàn):
[1] 陳歡慶,石成方,胡海燕,等.高含水油田精細(xì)油藏描述研究進(jìn)展[J].石油與天然氣地質(zhì),2018,39(6):1311-1322.
CHEN Huanqing, SHI Chengfang, HU Haiyan, et al. Advances in fine description of reservoir in high water-cut oilfield[J]. Oil Gas Geol, 2018,36(9):1311-1322.
[2] L?X R, REN X H. An interactive oil well production prediction method for sucker-rodpumps based ondynamometerdiagram[C/OL]//Proceedings of 2013 2nd International Conference on Measurement, Information and Control. IEEE,Harbin, China, August16-18,2013[2022-04-22].https://ieeexplore.ieee.org/abstract/document/6757910.
[3] 張凱,趙興剛,張黎明,等.智能油田開發(fā)中的大數(shù)據(jù)及智能優(yōu)化理論和方法研究現(xiàn)狀及展望[J].中國(guó)石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,44(4):28-38.
ZHANG Kai, ZHAO Xinggang, ZHANG Liming, et al. Current status and prospect for the research and application of big data and intelligent optimization methods in oilfield development[J]. Journal of China University of Petroleum (Edition of Natural Science), 2020,44(4):28-38.
[4] DALMEIDA A L, BERGIANTE N C R, de SOUZA FERREIRA G, et al. Digital transformation: a review on artificial intelligence techniques in drilling and production applications[J]. The International Journal of Advanced Manufacturing Technology, 2022,199(9/10):5553-5582.
[5] 張瑞,賈虎.基于多變量時(shí)間序列及向量自回歸機(jī)器學(xué)習(xí)模型的水驅(qū)油藏產(chǎn)量預(yù)測(cè)方法[J].石油勘探與開發(fā),2021,48(1):175-184.
ZHANG Rui, JIA Hu. Production performance forecasting method based on multivariate time series and vector autoregressive machine learning model for waterflooding reservoirs[J]. Petroleum Exploration and Development, 2021,48(1):175-184.
[6] 曹沖,程林松,張向陽(yáng),等.基于多變量小樣本的滲流代理模型及產(chǎn)量預(yù)測(cè)方法[J].力學(xué)學(xué)報(bào),2021,53(8):2345-2354.
CAO Chong, CHENG Linsong, ZHANG Xiangyang, et al. Seepage proxy model and production forecast method based on multivariate and small sample[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021,53(8):2345-2354.
[7] YOUSEF A M, KAVOUSI G P, ALNUAIMI M, et al. Predictive data analytics application for enhanced oil recovery in a mature field in the Middle East[J]. Petroleum Exploration and Development, 2020,47(2):393-399.
[8] 張國(guó)印,王志章,林承焰,等.基于小波變換和卷積神經(jīng)網(wǎng)絡(luò)的地震儲(chǔ)層預(yù)測(cè)方法及應(yīng)用[J].中國(guó)石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,44(4):83-93.
ZHANG Guoyin, WANG Zhizhang, LIN Chengyan, et al. Seismic reservoir prediction method based on wavelet transform and convolutional neural network and its application[J]. Journal of China University of Petroleum(Edition of Natural Science), 2020,44(4):83-93.
[9] 李宗民,李亞傳,赫俊民,等.專注智能油藏儲(chǔ)量預(yù)測(cè)的深度時(shí)空注意力模型[J].中國(guó)石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,44(4):77-82.
LI Zongmin, LI Yachuan, HE Junmin, et al. A deep spatio-temporal attention model focusing on intelligent reserve prediction[J]. Journal of China University of Petroleum(Edition of Natural Science), 2020,44(4):77-82.
[10] MAHZARI P, EMAMBAKHSH M, TEMIZEL C, et al. Oil production forecasting using deep learning for shale oil wells under variable gas-oil and water-oil ratios[J]. Petroleum Science and Technology, 2021,40(4):445-468.
[11] CHENG Y, YANG Y. Prediction of oil well production based on the time series model of optimized recursive neural network[J]. Petroleum Science and Technology, 2021,39(9/10):303-312.
[12] CHAIKINE I A, GATES I D. A machine learning model for predicting multistage horizontal well production[J]. Journal of Petroleum Science and Engineering, 2021,198:108133.
[13] ZHANG Y, HU J, ZHANG Q. Application of locality preserving projection-based unsupervised learning in predicting the oil production for low-permeability reservoirs[J]. SPE Journal, 2021,26(3):1302-1313.
[14] 鐘儀華,張志銀,朱海雙.特高含水期油田產(chǎn)量預(yù)測(cè)新方法[J].斷塊油氣田,2011,18(5):641-644.
ZHONG Yihua, ZHANG Zhiyin, ZHU Haishuang. A new method to predict production of oilfields in ultrahigh water-cut stage[J]. Fault-Block Oil & Gas Field, 2011,18(5):641-644.
[15] NEGASH B M, YAW A D. 基于人工神經(jīng)網(wǎng)絡(luò)的注水開發(fā)油藏產(chǎn)量預(yù)測(cè)[J]. 石油勘探與開發(fā), 2020,47(2):357-365.
NEGASH B M, YAW A D. Artificial neural network based production forecasting for a hydrocarbon reservoir under water injection[J]. Petroleum Exploration and Development, 2020,47(2):357-365.
[16] 王洪亮,穆龍新,時(shí)付更,等.基于循環(huán)神經(jīng)網(wǎng)絡(luò)的油田特高含水期產(chǎn)量預(yù)測(cè)方法[J].石油勘探與開發(fā),2020,47(5):1009-1015.
WANG Hongliang, MU Longxin, SHI Fugeng, et al. Production prediction at ultra-high water cut stage via recurrent neural network[J]. Petroleum Exploration and Development, 2020,47(5):1009-1015.
[17] ZHANG L, DOU H, WANG H, et al. Neural network optimized by genetic algorithm for predicting single well production in high water cut reservoir[C/OL]//2021 3rd International Conference on Intelligent Control, Measurement and Signal Processing and Intelligent OilField(ICMSP).IEEE,Xian,China,July23-25, 2021[2022-04-23].https://ieeexplore.ieee.org/abstract/document/9513395.
[18] 李杰訓(xùn),賈賀坤,宋揚(yáng),等.油井產(chǎn)量計(jì)量技術(shù)現(xiàn)狀與發(fā)展趨勢(shì)[J].石油學(xué)報(bào),2017,38(12):1434-1440.
LI Jiexun, JIA Hekun, SONG Yang, et al. Current technical status and development trend of oil well production measurement[J]. Acta Petrolei Sinica, 2017,38(12):1434-1440.
[19] 張乃祿,盛盟,顏瑾,等.集散式油井動(dòng)液面監(jiān)測(cè)井場(chǎng)集中監(jiān)控器研制[J].西安石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,35(3):110-115,121.
ZHANG Nailu, SHENG Meng, YAN Jin, et al. Development of centralized monitor for dynamic fluid level monitoring of oil wells[J]. Journal of Xian Shiyou University (Natural Science Edition), 2020,35(3):110-115,121.
[20] de WINTER J C F, GOSLING S D, POTTER J. Comparing the pearson and spearman correlation coefficients across distributions and sample sizes: a tutorial using simulations and empirical data[J]. Psychol Methods, 2016,21(3):273-290.
[21] 李翔宇,高憲文,侯延彬.基于示功圖的抽油井動(dòng)液面軟測(cè)量機(jī)理建模[J].控制工程,2018,25(3):464-471.
LI Xiangyu, GAO Xianwen, HOU Yanbin. Soft-sensor mechanism modeling for dynamic fluid level of beam pumping systems based on dynamometer card[J]. Control Engineering of China, 2018,25(3):464-471.
[22] 趙懷軍,賀可可,胡定興,等.游梁式抽油機(jī)懸點(diǎn)載荷軟測(cè)量方法的研究[J].儀器儀表學(xué)報(bào),2021,42(9):160-171.
ZHAO Huaijun, HE Keke, HU Dingxing, et al. Research on the soft-sensing method of polished rod load of beam pumping unit[J]. Chinese Journal of Scientific Instrument, 2021,42(9):160-171.
[23] 胡秋萍,賈文強(qiáng),王力,等.基于電示功圖計(jì)算煤層氣井動(dòng)液面的方法[J].石油機(jī)械,2019,46(6):85-90.
HU Qiuping, JIA Wenqiang, WANG Li, et al. Method for calculating dynamic liquid surface of coalbed methane well based on electric indicator diagram[J]. China Petroleum Machinery, 2019,46(6):85-90.
[24] 張瑞超,陳德春,王欣輝,等.基于電功圖的油井動(dòng)液面及產(chǎn)液量預(yù)測(cè)[J].復(fù)雜油氣藏,2017,10(4):69-72.
ZHANG Ruichao, CHEN Dechun, WANG Xinhui, et al. Prediction of dynamic liquid level and liquid production rate of oil wells based on electrical diagrams[J]. Complex Hydrocarbon Reservoirs, 2017,10(4):69-72.
[25] TIAN C, FEI L, ZHENG W, et al. Deep learning on image denoising: an overview[J]. Neural Networks, 2020,131:251-275.
[26] XIU C, SU X. Composite convolutional neural network for noise deduction[J]. IEEE Access, 2019,7:117814-118728.
[27] AGBO B, AL-AQRABI H, HILL R, et al. Missing data imputation in the internet of things sensor networks[J]. Future Internet, 2022,14(5):143.
[28] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998,86(11):2278-2324.
[29] LI X, MA X, XIAO F, et al. Small-sample production prediction of fractured wells using multitask learning[J]. SPE Journal, 2022,27(3):1504-1519.
[30] ZHU Y, IIDUKA H. Unified algorithm framework for nonconvex stochastic optimization in deep neural networks[J]. IEEE Access, 2021,9:143807-143823.
[31] ZHUANG F, QI Z, DUAN K, et al. A comprehensive survey on transfer learning[J]. Proceedings of the IEEE, 2020,109(1):43-76.
[32] BECHERER N, PECARINA J, NYKL S, et al. Improving optimization of convolutional neural networks through parameter fine-tuning[J]. Neural Comput Appl, 2019,31(8):3469-3479.
[33] VRBANCIC G, PODGORELEC V. Transfer learning with adaptive fine-tuning[J]. IEEE Access, 2020,8:196197-196211.
[34] TANG J, DENG C, HUANG G B. Extreme learning machine for multilayer perceptron[J]. IEEE Trans Neural Netw Learn Syst, 2016,27(4):809-821.
[35] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C/OL]//Proceedings of the 3rd International Conference on Learning Representations, ICLR, San Diego, CA, USA, May 7-9, 2015[2022-04-30]. https://arxiv.org/abs/1409.1556.