• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    園藝作物果實蘋果酸代謝與轉運及其調控研究進展

    2023-12-29 18:12:19陳雷齊希梁石彩云董媛鑫宋露露劉聰利李明
    果樹學報 2023年12期
    關鍵詞:代謝園藝作物果實

    陳雷 齊希梁 石彩云 董媛鑫 宋露露 劉聰利 李明

    摘? ? 要:番茄、蘋果、梨、棗等園藝作物是典型的蘋果酸型果實,其果實酸度主要取決于液泡中蘋果酸的積累量。蘋果酸不僅決定果實的風味品質,還可作為呼吸底物為植物體提供必需的物質和能量,在調節(jié)植物細胞滲透勢、酸堿平衡、抗逆性等方面起著重要作用。蘋果酸代謝途徑比較復雜,涉及眾多結構催化酶的參與,而蘋果酸主要貯存于液泡中,從細胞質向液泡的跨膜運輸和儲存是復雜的生物學過程,需要多種轉運蛋白、質子泵的參與??偨Y了蘋果酸型果實酸度性狀遺傳研究、轉運蛋白及質子泵在蘋果酸跨膜轉運中的作用,并將轉錄因子對蘋果酸的代謝調控進行了概述,以深入理解蘋果酸代謝調控網(wǎng)絡,為園藝作物品質育種提供理論基礎。

    關鍵詞:園藝作物;果實;蘋果酸;代謝;質子泵;轉運蛋白;調控

    中圖分類號:S66 文獻標志碼:A 文章編號:1009-9980(2023)12-2598-12

    收稿日期:2023-07-10 接受日期:2023-09-25

    基金項目:國家自然科學基金青年基金項目(3210180675);中國農(nóng)業(yè)科學院創(chuàng)新工程專項經(jīng)費(CAAS-ASTIP-2023-ZFRI)

    作者簡介:陳雷,男,在讀碩士研究生,研究方向為果樹遺傳育種。E-mail:1416744170@qq.com

    *通信作者 Author for correspondence. E-mail:liming06@caas.cn;E-mail:liucongli@caas.cn

    Advances in research of malate metabolism and regulation in fruit of horticultural crops

    CHEN Lei, QI Xiliang, SHI Caiyun, DONG Yuanxin, SONG Lulu, LIU Congli*, LI Ming*

    (Zhengzhou Fruit Research Institute, CAAS, Zhengzhou 450009, Henan, China)

    Abstract: Acidity is an important part of the sensory quality of fruit. Malic acid is the main organic acid in ripe fruits of tomatoes, apples, pears, and jujubes. Malic acid not only determines fruit acidity and quality but also has multiple important functions in the plant. Malate is well known as a key intermediate in the tricarboxylic acid (TCA) cycle and is imported into mitochondria as a respiratory substrate. Malate also participates the glyoxalate cycle pathway and is closely related to plant primary metabolism, carbon cycling, and carbohydrate accumulation. Malate plays an important role in regulating the osmotic potential, pH balance, and stress resistance in horticultural crops. Thus, it is of important theoretical significance and practical value for high-quality breeding programs as well as the study of the mechanism underlying malic acid biosynthesis and transport in fruits. Malic acid is synthesized in the cytoplasm, accumulated in the vacuole during the early stages of fruit development, and used as a respiratory substrate during fruit ripening. Malate accumulation is affected by synthesis, transport, and metabolism, and involves the participation of numerous catalytic enzymes. Malate metabolism is a complex biological system influenced not only by genetic factors but also by environmental factors, agronomic practices, and post-harvest treatments. In the cytoplasm of fruit, glycogen is converted to phosphoenolpyruvate (PEP) through the glycolytic pathway. PEP is carboxylated by phosphoenolpyruvate carboxylase (PEPC) to produce oxaloacetate (OAA), which is the first step of malic acid synthesis. Then, malate synthesis is catalyzed by cytosolic NAD-dependent malate dehydrogenase (cyMDH) and cytosolic NADP-dependent malic enzyme (cyME). The cyMDH is a key enzyme involved in malate synthesis and catalyzes the conversion reaction from OAA to malate, while cyME is an important malate-degrading enzyme that catalyzes the conversion of malate to pyruvate in the cytoplasm. In addition, malate accumulation is regulated by transmembrane transport between the vacuole and cytoplasm. The transmembrane transport of malic acid requires not only a proton pump to provide energy but also the assistance of channel proteins or transmembrane transporters. The main vacuolar transporters, such as the tonoplast-localized malate transporter (tDT) and aluminum-activated malate transporter (ALMT), participate in the transmembrane transport and accumulation of malate in the fruit. Among the ALMT family members, ALMT9 is the most widely studied gene. Apple Ma1 gene is a key malate transporter responsible for differences in malic acid content between wild and cultivated fruits. SlALMT9 is considered to be responsible for variation in malate content in the fruit among tomato genotypes. VvALMT9, a homolog of AtALMT9 in grapes, is a vacuolar malate channel that mediates the accumulation of malate and tartrate in the vacuoles of grape berries. Tonoplast proton pumps such as vacuolar-type H+-ATPase (V-ATPase, VHA), vacuolar-type H+-pumping pyrophosphatase (V-PPase, VHP), and P-ATPase (PHA) generate the driving force for vacuolar acidification by transporting protons across the membrane into the vacuole. In petunia flowers, the P-type proton pump genes PhPH1 and PhPH5 interact with each other and form a complex to promote vacuolar acidification. MdPH1 and MdPH5, homologs of PhPH1 and PhPH5 in apples, have been identified and shown to be involved in vacuolar acidification and malate accumulation. Another P-type proton pump gene Ma10 in apples was found to be significantly correlated with malic acid accumulation, explaining about 8% of the variation in fruit acidity phenotypes in natural apple populations. Increasing evidences showed that transcription factors, such as MYB, bHLH, WRKY, and ERF family members, participate in the regulation of malate transporters and proton pumps. In apples, MdMYB1, MdMYB44, and MdMYB73 regulate malate accumulation and vacuolar acidification in fruits by activating or repressing the promoter activities of the malate transporter and proton pump genes. Apart from MYB transcription factors, other transcription factors, such as bHLH and WRKY, are also involved in the regulation of malic acid accumulation and vacuolar acidification. In petunia, AN1 (bHLH transcription factor) can form a complex with AN11-PH4 to positively regulate vacuolar acidification and thus affects pH. In apples, MdbHLH3, a homolog of AN1 regulates malate accumulation in fruit by directly activating the expression of the malate dehydrogenase gene MdcyMDH. MdbHLH3 forms a complex with MdMYB1 to promote pulp anthocyanin and malate accumulation. In tomatoes, SlWRKY42 directly binds to the promoter of SlALMT9, repressing its transcription, and thereby inhibiting malate accumulation in tomato fruit. ZjWRKY7 transcription factor activates the transcription of ZjALMT4 by the W-box region of the high-acidity genotype in sour jujube, thereby promoting malate accumulation, whereas the binding ability was weakened in jujube. This paper summarizes the mechanism of malate accumulation in horticultural crops, such as tomato, apple, pear, and jujube, and provides an overview of the role of transporters, proton pumps, and upstream transcription factors responsible for malate accumulation and vacuolar acidification, which will provide a theoretical basis for quality breeding in horticultural crops.

    Key words: Horticultural crops; Fruit; Malate; Metabolism; Proton pump; Transporter protein; Regulation

    有機酸是影響園藝作物果實風味品質的重要因素,番茄、蘋果、梨、棗等園藝作物屬于蘋果酸型果實,蘋果酸是成熟果實有機酸的主要成分,其果實酸度主要取決于液泡中蘋果酸的積累量。蘋果酸不但決定著果實的風味品質,同時作為呼吸代謝底物參與到細胞質的糖酵解、線粒體中三羧酸循環(huán)(TCA)、乙醛酸循環(huán)等過程,為植物體提供能量物質[1-2]。此外,蘋果酸對果實花青苷具有共色作用,可以通過增強花青苷的穩(wěn)定性影響果實色澤形成[3-4]。目前研究表明,液泡膜蘋果酸轉運蛋白與質子泵對蘋果酸跨液泡膜轉運起重要作用[5-7]。蘋果酸轉運蛋白主要負責蘋果酸的跨液泡膜轉運[8];而質子泵將H+轉運到液泡內,促使液泡內外形成較大的pH梯度和電化學梯度,為蘋果酸跨液泡膜運輸提供動力[9]。筆者結合前人研究,從果實酸度遺傳學研究、蘋果酸合成降解途徑、蘋果酸轉運蛋白和質子泵類型及功能、轉錄調控因子等方面進行總結,闡述蘋果酸代謝轉運機制,對園藝作物優(yōu)質品種的選育具有重要理論意義與應用價值。

    1 植物蘋果酸功能

    蘋果酸主要以蘋果酸酯的形式廣泛存在植物體中,分布于根、莖、葉、果實等多種組織器官,不但決定果實風味和品質,同時作為呼吸代謝的底物參與細胞質的糖酵解、線粒體中三羧酸循環(huán)(TCA)、乙醛酸循環(huán)等過程,為植物體提供能量物質。此外,蘋果酸還參與植物體內pH平衡、植物細胞滲透勢調節(jié)等代謝過程[1-2]。植物根系分泌的蘋果酸,可以解除鋁離子的毒害作用,促進對營養(yǎng)成分的吸收,為根際土壤微生物提供良好的環(huán)境[10]。在蘋果和棗中研究發(fā)現(xiàn),野生型果實蘋果酸含量顯著高于栽培型品種,這種現(xiàn)象可能是自然選擇的結果,果實中較高的酸度水平能夠幫助植物抵御外界不良環(huán)境而生存下來[7,10-12]。

    2 園藝作物果實蘋果酸遺傳學水平研究進展

    在園藝作物中,果實酸度屬于數(shù)量性狀遺傳,受自身和外界等多種因素的影響,其中遺傳因素是影響果實酸度的重要因素。以桃、蘋果、番茄和杏為代表的蘋果酸型果實在有關果實酸度的遺傳研究中表明,果實酸度由多個基因協(xié)同控制,遺傳機制較為復雜??刂铺夜麑嵥岫鹊闹餍Щ蛭挥诘?號染色體頂端,又命名為D位點,且低酸為顯性性狀[13];Wang等[14]結合全基因組關聯(lián)分析和BSA-seq技術發(fā)現(xiàn)第5號染色體上存在調控桃果實有機酸積累的主效基因PpTST1。在蘋果中,多數(shù)研究者一致認為蘋果果實酸含量由一對主效基因(Ma/ma)和其他多基因控制,位于16號染色體頂端的Ma位點是控制蘋果成熟果實酸度的主效QTL,其中編碼鋁誘導的蘋果酸轉運蛋白的Ma1基因是主效基因,且相對于ma1具有不完全顯性特征,顯性純合體Ma1/Ma1為高酸,雜合體Ma1/ma1表現(xiàn)為中酸,在同一基因型內株系間表現(xiàn)出連續(xù)性酸度變異,則是多基因控制的結果[5,15-16];除Ma1基因外,在多個遺傳群體中均檢測到位于8號染色體的另一個主效QTL位點,其中編碼P型質子泵的Ma10基因對果實蘋果酸的積累起重要作用[17]。Sauvage等[18]利用163份番茄種質中的19種主要代謝物和5995個SNPs進行mGWAS研究,發(fā)現(xiàn)第6號染色體的SNP位點與果實蘋果酸含量相關。Ye等[6]結合全基因組關聯(lián)分析和BSA技術進一步證實第6號染色體上存在調控果實蘋果酸的主效基因SlALMT9,該基因與蘋果Ma1基因具有較高的同源性。Dondini等[19]基于F1群體進行QTL定位,發(fā)現(xiàn)杏果實酸度是多基因控制的數(shù)量性狀,在4、5、6、7、8號染色體上均檢測到QTL位點。

    綜上所述,蘋果酸型果實酸度有兩種遺傳方式:一種是主效基因控制的數(shù)量性狀,高酸/中酸/低酸由一對主效基因控制,低酸性狀的顯隱性因樹種而異;另一種是多基因控制的數(shù)量性狀,多數(shù)品種雜交后代果實酸度性狀表現(xiàn)出連續(xù)變異。

    3 園藝作物果實蘋果酸合成與降解

    在果實發(fā)育前期,蘋果酸在細胞質中合成,在液泡中積累;在果實發(fā)育后期,蘋果酸從液泡中釋放出來,在細胞質中降解。蘋果酸代謝途徑比較復雜,涉及眾多酶參與(圖1):葉片經(jīng)光合作用制造的光合產(chǎn)物,通過韌皮部運輸?shù)焦麑?。在果實細胞質中,糖通過糖酵解途徑生成磷酸烯醇式丙酮酸(PEP),PEP經(jīng)磷酸烯醇式丙酮酸羧化酶(PEPC)羧化后生成草酰乙酸(OAA),這是蘋果酸合成第一步,OAA在NAD-蘋果酸脫氫酶(NAD-cyMDH)的催化下形成蘋果酸[20]。部分蘋果酸被轉運到液泡中儲存,形成果實風味品質的重要組成因素。PEP和NAD-cyMDH是蘋果酸合成的關鍵酶[21-22]。對不同酸度類型的桃[23]、蘋果[24]、枇杷[25]、杏[26]果實分析發(fā)現(xiàn),PEPC雖然催化蘋果酸的合成,但其表達量和酶活性與果實中蘋果酸含量沒有顯著相關性,在蘋果愈傷和番茄中超表達MdcyMDH會導致蘋果酸含量顯著增加,同時誘導蘋果酸代謝相關基因上調表達,表明MdcyMDH直接參與蘋果酸合成[27]。

    在果實成熟后期,部分蘋果酸通過跨膜轉運從液泡釋放出來,在細胞質內降解后重新合成PEP。降解過程關鍵酶包括磷酸烯醇式丙酮酸羧激酶(PEPCK)和蘋果酸酶(NADP-cytME)。一方面,蘋果酸可以通過NADP-cytME催化脫羧形成丙酮酸,再由丙酮酸正磷酸鹽二激酶(PPDK)反向催化生成PEP;另一方面,蘋果酸還可以通過NAD-cyMDH反向轉化為OAA,然后在PEPCK的作用下生成PEP。PEP是糖酵解和糖異生作用的中間產(chǎn)物,當果肉細胞內沒有足夠的葡萄糖進行糖酵解時,PEP可在果糖1,6-二磷酸酶和葡萄糖激酶等的作用下反向合成葡萄糖,實現(xiàn)果實蘋果酸向可溶性糖的轉變,此轉變過程通過糖異生途徑來實現(xiàn)[28-30]。

    4 園藝作物果實蘋果酸轉運

    蘋果酸主要貯存于液泡中,液泡中的跨膜轉運與果實酸度密切相關,迄今為止,控制果實蘋果酸含量的關鍵基因多為蘋果酸跨膜轉運相關基因。蘋果酸的跨膜轉運不僅需要質子泵來提供能量,還需要蘋果酸轉運蛋白和離子通道蛋白的協(xié)助,目前研究較多的是液泡膜二羧酸轉運蛋白(tonoplast dicarboxylate transporter,tDT/TDT)和鋁誘導的蘋果酸轉運蛋白(aluminum-activated malate transporter,ALMT)(表1)。

    4.1 蘋果酸轉運蛋白

    擬南芥液泡膜二羧酸轉運蛋白(AttDT)是最早發(fā)現(xiàn)的一類具有蘋果酸轉運特性的蛋白,定位于液泡膜上,主要參與蘋果酸在液泡和細胞質之間的跨膜轉運,還參與調節(jié)植物細胞pH動態(tài)平衡[37]。現(xiàn)已在番茄(SlTDT)[34]、柑橘(CsCit1)[38]、梨(PbrTDT1)[39]等園藝作物中克隆到AttDT的同源基因。在擬南芥中過表達AttDT顯著提高了葉片蘋果酸含量,但降低了檸檬酸含量[40]。在番茄中同源過表達番茄SlTDT和異源過表達梨PbrTDT1后顯著提高了番茄果實蘋果酸含量,但降低了檸檬酸含量,說明其與擬南芥AttDT具有相似功能[34,39]。柑橘CsCit1則屬于檸檬酸/H+同向轉運載體,主要介導檸檬酸從液泡流出[38]。

    4.2 蘋果酸離子通道蛋白

    鋁誘導的蘋果酸轉運蛋白(ALMT)是普遍存在于植物體內的一類陰離子通道蛋白,其部分成員能夠參與到蘋果酸跨膜轉運[6,15,41]。擬南芥ALMT家族被分為3個亞家族,其中ALMTⅡ家族成員是一類位于液泡膜上、具有蘋果酸鹽轉運功能的通道蛋白,已經(jīng)發(fā)現(xiàn)參與蘋果酸轉運的成員有AtALMT6和AtALMT9[42-43],其中ALMT9是發(fā)現(xiàn)最早且被廣泛研究的液泡膜蘋果酸通道蛋白[44]。在葡萄中,AtALMT9同源基因VvALMT9被證明可以調控果實蘋果酸和酒石酸積累[35]。在蘋果中,控制果實酸度的主效候選基因Ma1編碼ALMT,其編碼框尾端單堿基G突變?yōu)锳時,翻譯提前終止,少了84個氨基酸,造成編碼的蛋白質不完整,喪失蘋果酸轉運功能,不利于有機酸積累,導致低酸性狀形成[41]。番茄中控制果實酸度的主要候選基因SlALMT9同樣編碼ALMT蛋白。SlALMT9基因啟動子區(qū)GTC插入/缺失與自然群體中番茄果實蘋果酸含量完全連鎖[6]。棗中導致果實蘋果酸含量自然變異的主要候選基因ZjALMT4編碼ALMT蛋白。ZjALMT4基因啟動子區(qū)W-box元件中存在SNP位點,在高酸型酸棗中,ZjWRKY7轉錄因子與ZjALMT4啟動子W-box元件相結合,正向調控其轉錄,促進蘋果酸積累;而栽培棗中W-box位點突變后降低ZjWRKY7與之結合的能力,導致蘋果酸積累減少。在栽培棗長期馴化過程中低酸突變基因型被選擇固定下來[7]。番茄SlALMT9基因、葡萄VvALMT9基因、蘋果Ma1基因與棗ZjALMT4基因序列同源性較高,表明園藝作物果實蘋果酸代謝調控具有一定的保守性。

    4.3 其他參與蘋果酸轉運的蛋白

    除tDT和ALMT兩種蘋果酸轉運蛋白之外,最近一個編碼液泡膜糖轉運蛋白的PpTST1基因在桃中被證明與果實酸度有關。前人研究表明,液泡膜糖轉運蛋白TST是負責細胞質葡萄糖向液泡的跨膜運輸,部分成員還具備蔗糖轉運功能[45-46]。我國科學家通過全基因組關聯(lián)分析確定了控制桃果實非酸/酸含量的關鍵基因PpTST1,該基因第三個外顯子區(qū)的單堿基突變被證實與桃果實有機酸含量連鎖。在桃和番茄中超量表達PpTST1His導致果實總糖含量增加、有機酸含量減少,同時導致蘋果酸轉運相關基因下調表達,表明PpTST1具備參與桃果實有機酸和糖積累的雙重功能[14]。

    4.4 質子泵對蘋果酸跨膜轉運的作用

    質子泵在液泡積累有機酸的過程中起著重要作用。目前植物中與酸度有關的是位于液泡膜上的V型[V-H+-ATPase(VHA)和V-H+-PPase(VHP)]和P型質子泵[P-H+-ATPase(PHA)][47-51]。

    4.4.1 V型質子泵 V型質子泵VHA和VHP分別通過水解ATP或PPi產(chǎn)生能量,可將H+從細胞質轉運到液泡致使液泡酸化,也能夠為次級轉運蛋白的跨膜運輸提供能量[9,52]。VHA結構較為復雜,是由10多個不同亞基組成的復合物,而VHP僅由單一多肽組成[48,53]。然而,關于VHA和VHP在蘋果酸積累方面的研究較少。Hu等[54]在蘋果中過表達VHA亞基MdVHA-B1發(fā)現(xiàn)果實蘋果酸含量升高,鹽脅迫處理誘導MdVHA-B1蛋白磷酸化從而驅動蘋果酸向液泡運輸致使果肉細胞蘋果酸含量升高[55]。Yao等[52]發(fā)現(xiàn)MdVHP1過表達顯著促進轉基因蘋果愈傷組織與番茄果實中Na和蘋果酸鹽積累。Krebs等[56]研究表明擬南芥VHA突變株的葉片pH顯著高于野生型,同時突變VHA和VHP后突變體葉片pH顯著升高,說明在擬南芥中VHA和VHP共同調控著有機酸的積累,值得注意的是,在同時缺乏V-ATPase和V-PPase活性的突變體中,液泡仍保留著酸化能力,這說明可能還有其他因素參與液泡有機酸的積累[57]。

    4.4.2 P型質子泵 P型質子泵是另外一類參與質子轉運和液泡酸化的質子泵家族,其中P3亞家族主要參與維持液泡內外的pH平衡和提供跨膜運輸驅動力[58-59]。位于擬南芥細胞膜上的P型質子泵基因AHA10最先被證實參與液泡形成和酸化過程[60]。在矮牽?;ㄖ?,F(xiàn)araco等[61]證實質子泵基因PhPH1和PhPH5可以相互作用形成復合體,對液泡中有機酸的積累有調控作用,使花瓣呈現(xiàn)不同的顏色;蘋果中PhPH1和PhPH5同源基因MdPH1和MdPH5可能參與了液泡酸化和蘋果酸積累[33],研究還發(fā)現(xiàn)蘋果中另外一個P型質子泵基因Ma10表達量與蘋果酸的積累顯著相關,可解釋蘋果自然群體果實酸度8%左右的表型變異[31];此外,在檸檬酸型果實柑橘中也發(fā)現(xiàn)了類似矮牽牛的酸度調控機制,定位于液泡膜上的P型質子泵基因CitPH1和CitPH5/CsPH8對液泡中酸的積累有調控作用[62-64]。擬南芥AHA10基因、矮牽牛PhPH5基因、蘋果Ma10基因與柑橘CsPH8基因序列同源性較高,表明液泡膜上P型質子泵基因在參與有機酸積累調控方面具有一定的保守性。

    5 園藝作物果實蘋果酸代謝和轉運的調控

    5.1 轉錄因子對園藝作物果實蘋果酸代謝和轉運的調控

    越來越多研究表明蘋果酸轉運蛋白和質子泵相關基因的表達受到MYB、bHLH、WRKY多種轉錄因子的調控[6,21,33,48,65-68]。

    5.1.1 R2R3-MYB轉錄因子 在蘋果中,R2R3-MYB轉錄因子MdMYB1/10、MdMYB44和MdMYB73通過直接調控液泡膜蘋果酸轉運蛋白和質子泵基因表達來調控果實蘋果酸積累和液泡酸化[33,66-67]。其中MdMYB1/10和MdMYB73是正調控因子,而MdMYB44是負調控因子,它們分別作用于不同的下游基因。MdMYB1直接結合并激活質子泵基因MdVHA-B1、MdVHA-B2、MdVHA-E和MdVHP1表達,促進蘋果酸在液泡中積累[66]。MdMYB73直接激活下游質子泵基因MdVHA-A、MdVHP1和蘋果酸轉運蛋白MdALMT9,從而促進果實液泡的酸化[33]。MdMYB44通過抑制Ma1、MdVHA-A3、MdVHA-D2、Ma10和MaALMT9啟動子活性,負調控蘋果果實蘋果酸積累,MdMYB44啟動子區(qū)2個遺傳變異位點被證實與蘋果果實蘋果酸含量顯著相關[66]。同時,MYB轉錄因子還可以與WD40蛋白和bHLH轉錄因子形成MBW蛋白復合體,通過直接結合蘋果酸轉運蛋白相關基因和液泡型質子泵基因啟動子,轉錄激活或抑制其表達,最終影響蘋果酸含量[33,66-67]。

    5.1.2 bHLH和WRKY轉錄因子 近年,除了MYB轉錄因子外,bHLH和WRKY轉錄因子在有機酸代謝中的功能也被發(fā)掘[6-7,36,62,69-70]。在矮牽牛中,AN1(bHLH轉錄因子)可以與AN11-PH4形成復合體正向調節(jié)液泡酸化,從而影響pH[47,71]。在蘋果中,AN1的同源基因MdbHLH3可以直接激活蘋果酸脫氫酶基因MdcyMDH表達,促進果實蘋果酸積累,也可以與MdMYB1形成復合體,促進果肉花青素和蘋果酸積累[21,67]。在柑橘中,AN1的同源基因CitAN1可以與CitPH4形成復合體直接激活P型質子泵基因CitPH1和CitPH5表達,CitAN1基因突變會導致柑橘果實酸度降低[62]。在擬南芥中,AtWRKY46轉錄因子通過負調控AtALMT1基因表達,調控蘋果酸跨膜轉運[72]。在矮牽牛中,編碼WRKY的PH3基因能夠被AN11-AN1-PH4復合物誘導轉錄,通過形成PH3-AN11-AN1-PH4復合物,誘導P型質子泵基因PhPH5轉錄從而控制液泡酸度[60]。在番茄中,SlWRKY42轉錄因子通過結合W-box元件來負調控SlALMT9表達,抑制番茄果實蘋果酸積累[6]。在棗中,ZjWRKY7轉錄因子通過結合W-box元件正調控ZjALMT4表達,促進酸棗果實蘋果酸積累,而栽培棗中ZjWRKY7與ZjALMT4的結合能力較弱[7]。

    5.2 外界環(huán)境和栽培條件對園藝作物果實蘋果酸的調控

    園藝作物果實蘋果酸的積累受很多因素的影響,包括溫度、水分、光照、礦物營養(yǎng)及土壤鹽分脅迫等[20,73]。溫度是影響果實蘋果酸積累和代謝的關鍵因素,其對園藝作物果實蘋果酸含量的影響因樹種而異,在桃、蘋果等果實發(fā)育或者貯藏期間環(huán)境溫度升高導致果實蘋果酸含量降低,而草莓果實發(fā)育過程暴露在較高溫度下果實蘋果酸含量升高[74-77];在葡萄和獼猴桃中研究發(fā)現(xiàn),溫度對果實蘋果酸積累的影響因發(fā)育時期而異,果實發(fā)育前期暴露在較高溫度下果實蘋果酸含量升高,但在果實發(fā)育后期暴露在較高溫度下果實蘋果酸含量減少[78-80]。水分是影響果實蘋果酸代謝的另一關鍵因子。研究表明,在大多數(shù)情況下,果實發(fā)育過程中水分供應量與成熟果實蘋果酸含量呈負相關[81]。在蘋果、葡萄等果實發(fā)育過程中,適度干旱脅迫會提高果實中可溶性糖和蘋果酸含量[2,82-83]。光照度與蘋果酸積累關系密切,在藍莓、葡萄、蘋果等研究中發(fā)現(xiàn),光周期延長或光照增強會降低果實蘋果酸含量,如蘋果成熟時樹冠上部和外圍的果實酸度較低[84-86],葡萄套袋后造成的弱光脅迫抑制蘋果酸降解,導致果實蘋果酸含量增加[87]。適當增施Ca、P、K肥可降低果實蘋果酸含量,而微量元素如鐵、銅的缺乏同樣也能夠使果實酸度升高[88-89]。

    綜上所述,園藝作物果實蘋果酸代謝是一個復雜的過程,外部環(huán)境條件對果實蘋果酸含量的影響錯綜復雜,因此,園藝作物果實蘋果酸的含量受自身遺傳因素、環(huán)境條件和栽培條件的共同影響。

    6 總結與展望

    通過數(shù)十年遺傳學研究和多組學技術的應用,目前在以番茄、蘋果、梨、棗等為代表的蘋果酸型果實園藝作物中研究發(fā)現(xiàn),果實酸含量是一種數(shù)量性狀,受多種因素(自身和外界)的影響,而遺傳因素是影響果實酸度的重要因素,其中位于液泡膜上的蘋果酸轉運蛋白與質子泵對蘋果酸跨液泡膜轉運起到重要作用,蘋果酸轉運蛋白和質子泵相關基因的轉錄水平受到多種轉錄因子的調控。綜合已有的研究內容,未來研究領域重點可以集中在以下幾個方面:(1)利用正向遺傳學與反向遺傳學研究相結合的技術手段開展果實蘋果酸代謝基因挖掘及功能分析;(2)開發(fā)果實酸度性狀相關分子標記,用于分子標記輔助育種;(3)挖掘調控蘋果酸代謝的轉錄因子,解析蘋果酸代謝機制;(4)研究環(huán)境因子(如溫度、水分、光照等)對蘋果酸代謝和轉運的調控機制。

    參考文獻 References:

    [1] FERNIE A R,CARRARI F,SWEETLOVE L J. Respiratory metabolism:Glycolysis,the TCA cycle and mitochondrial electron transport[J]. Current Opinion in Plant Biology,2004,7(3):254-261.

    [2] SWEETMAN C,DELUC L G,CRAMER G R,F(xiàn)ORD C M,SOOLE K L. Regulation of malate metabolism in grape berry and other developing fruits[J]. Phytochemistry,2009,70(11/12):1329-1344.

    [3] CAI D B,LI X S,CHEN J L,JIANG X W,MA X Q,SUN J X,TIAN L M,VIDYARTHI S K,XU J W,PAN Z L,BAI W B. A comprehensive review on innovative and advanced stabilization approaches of anthocyanin by modifying structure and controlling environmental factors[J]. Food Chemistry,2022,366:130611.

    [4] LV X R,LI L L,LU X M,WANG W X,SUN J F,LIU Y Q,MU J L,MA Q Y,WANG J. Effects of organic acids on color intensification,thermodynamics,and copigmentation interactions with anthocyanins[J]. Food Chemistry,2022,396:133691.

    [5] MA B Q,LIAO L,ZHENG H Y,CHEN J,WU B H,OGUTU C,LI S H,KORBAN S S,HAN Y P. Genes encoding aluminum-activated malate transporter II and their association with fruit acidity in apple[J]. The Plant Genome,2015,8(3):1-14.

    [6] YE J,WANG X,HU T X,ZHANG F X,WANG B,LI C X,YANG T X,LI H X,LU Y E,GIOVANNONI J J,ZHANG Y Y,YE Z B. An InDel in the promoter of Al-ACTIVATED MALATE TRANSPORTER9 selected during tomato domestication determines fruit malate contents and aluminum tolerance[J]. The Plant Cell,2017,29(9):2249-2268.

    [7] ZHANG C M,GENG Y Q,LIU H X,WU M J,BI J X,WANG Z T,DONG X C,LI X G. Low-acidity ALUMINUM-DEPENDENT MALATE TRANSPORTER4 genotype determines malate content in cultivated jujube[J]. Plant Physiology,2023,191(1):414-427.

    [8] SHIRATAKE K,MARTINOIA E. Transporters in fruit vacuoles[J]. Plant Biotechnology,2007,24(1):127-133.

    [9] MARTINOIA E,MAESHIMA M,NEUHAUS H E. Vacuolar transporters and their essential role in plant metabolism[J]. Journal of Experimental Botany,2007,58(1):83-102.

    [10] FERNIE A R,MARTINOIA E. Malate. Jack of all trades or master of a few?[J]. Phytochemistry,2009,70(7):828-832.

    [11] 馬百全. 蘋果資源果實糖酸性狀評估及酸度性狀的候選基因關聯(lián)分析[D]. 武漢:中國科學院武漢植物園,2016.

    MA Baiquan. Comparative assessment of sugar and acid characteristics and candidate gene assocaiton analysis for acidity in apple germplasm[D]. Wuhan:Wuhan Botanical Garden,Chinese Academy of Sciences,2016.

    [12] 劉孟軍,王玖瑞. 新中國果樹科學研究70年:棗[J]. 果樹學報,2019,36(10):1369-1381.

    LIU Mengjun,WANG Jiurui. Fruit scientific research in New China in the past 70 years:Chinese jujube[J]. Journal of Fruit Science,2019,36(10):1369-1381.

    [13] CAO K,LI Y,DENG C H,GARDINER S E,ZHU G R,F(xiàn)ANG W C,CHEN C W,WANG X W,WANG L R. Comparative population genomics identified genomic regions and candidate genes associated with fruit domestication traits in peach[J]. Plant Biotechnology Journal,2019,17(10):1954-1970.

    [14] WANG Q,CAO K,CHENG L L,LI Y,GUO J,YANG X W,WANG J,KHAN I A,ZHU G R,F(xiàn)ANG W C,CHEN C W,WANG X W,WU J L,XU Q,WANG L R. Multi-omics approaches identify a key gene,PpTST1,for organic acid accumulation in peach[J]. Horticulture Research,2022,9:uhac026.

    [15] BAI Y,DOUGHERTY L,LI M J,F(xiàn)AZIO G,CHENG L L,XU K N. A natural mutation-led truncation in one of the two aluminum-activated malate transporter-like genes at the Ma locus is associated with low fruit acidity in apple[J]. Molecular Genetics and Genomics,2012,287(8):663-678.

    [16] JIA D J,SHEN F,WANG Y,WU T,XU X F,ZHANG X Z,HAN Z H. Apple fruit acidity is genetically diversified by natural variations in three hierarchical epistatic genes:MdSAUR37,MdPP2CH and MdALMTII[J]. The Plant Journal,2018,95(3):427-443.

    [17] MA B Q,ZHAO S,WU B H,WANG D M,PENG Q,OWITI A,F(xiàn)ANG T,LIAO L,OGUTU C,KORBAN S S,LI S H,HAN Y P. Construction of a high density linkage map and its application in the identification of QTLs for soluble sugar and organic acid components in apple[J]. Tree Genetics & Genomes,2016,12(1):1-10.

    [18] SAUVAGE C,SEGURA V,BAUCHET G,STEVENS R,DO P T,NIKOLOSKI Z,F(xiàn)ERNIE A R,CAUSSE M. Genome-wide association in tomato reveals 44 candidate loci for fruit metabolic traits[J]. Plant Physiology,2014,165(3):1120-1132.

    [19] DONDINI L,DOMENICHINI C,DONG Y H,GENNARI F,BASSI D,F(xiàn)OSCHI S,LAMA M,ADAMI M,DE FRANCESCHI P,CERVELLATI C,BERGONZONI L,ALESSANDRI S,TARTARINI S. Quantitative trait loci mapping and identification of candidate genes linked to fruit acidity in apricot (Prunus armeniaca L.)[J]. Frontiers in Plant Science,2022,13:838370.

    [20] ETIENNE A,G?NARD M,LOBIT P,MBEGUI?-A-MB?GUI? D,BUGAUD C. What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells[J]. Journal of Experimental Botany,2013,64(6):1451-1469.

    [21] YU J Q,GU K D,SUN C H,ZHANG Q Y,WANG J H,MA F F,YOU C X,HU D G,HAO Y J. The apple bHLH transcription factor MdbHLH3 functions in determining the fruit carbohydrates and malate[J]. Plant Biotechnology Journal,2021,19(2):285-299.

    [22] BER?TER J. Carbohydrate metabolism in two apple genotypes that differ in malate accumulation[J]. Journal of Plant Physiology,2004,161(9):1011-1029.

    [23] MOING A,ROTHAN C,SVANELLA L,JUST D,DIAKOU P,RAYMOND P,GAUDILL?RE J P,MONET R. Role of phosphoenolpyruvate carboxylase in organic acid accumulation during peach fruit development[J]. Physiologia Plantarum,2000,108(1):1-10.

    [24] YAO Y X,LI M,LIU Z,YOU C X,WANG D M,ZHAI H,HAO Y J. Molecular cloning of three malic acid related genes MdPEPC,MdVHA-A,MdcyME and their expression analysis in apple fruits[J]. Scientia Horticulturae,2009,122(3):404-408.

    [25] CHEN F X,LIU X H,CHEN L S. Developmental changes in pulp organic acid concentration and activities of acid-metabolising enzymes during the fruit development of two loquat (Eriobotrya japonica Lindl.) cultivars differing in fruit acidity[J]. Food Chemistry,2009,114(2):657-664.

    [26] 陳美霞,趙從凱,陳學森,郝會軍,張憲省. 杏果實發(fā)育過程中有機酸積累與相關代謝酶的關系[J]. 果樹學報,2009,26(4):471-474.

    CHEN Meixia,ZHAO Congkai,CHEN Xuesen,HAO Huijun,ZHANG Xiansheng. Relationship between accumulation of organic acid and organic acid-metabolizing enzymes during apricot fruit development[J]. Journal of Fruit Science,2009,26(4):471-474

    [27] YAO Y X,LI M,ZHAI H,YOU C X,HAO Y J. Isolation and characterization of an apple cytosolic malate dehydrogenase gene reveal its function in malate synthesis[J]. Journal of Plant Physiology,2011,168(5):474-480.

    [28] WU W F,CHEN F X. Malate transportation and accumulation in fruit cell[J]. Endocytobiosis and Cell Research,2016,27(2):107-112.

    [29] FAIT A,HANHINEVA K,BELEGGIA R,DAI N,ROGACHEV I,NIKIFOROVA V J,F(xiàn)ERNIE A R,AHARONI A. Reconfiguration of the achene and receptacle metabolic networks during strawberry fruit development[J]. Plant Physiology,2008,148(2):730-750.

    [30] KATZ E,BOO K H,KIM H Y,EIGENHEER R A,PHINNEY B S,SHULAEV V,NEGRE-ZAKHAROV F,SADKA A,BLUMWALD E. Label-free shotgun proteomics and metabolite analysis reveal a significant metabolic shift during citrus fruit development[J]. Journal of Experimental Botany,2011,62(15):5367-5384.

    [31] MA B Q,LIAO L,F(xiàn)ANG T,PENG Q,OGUTU C,ZHOU H,MA F W,HAN Y P. A Ma10 gene encoding P-type ATPase is involved in fruit organic acid accumulation in apple[J]. Plant Biotechnology Journal,2019,17(3):674-686.

    [32] 張燕子. 不同蘋果糖酸組成及蘋果酸轉運體功能研究[D]. 楊凌:西北農(nóng)林科技大學,2010.

    ZHANG Yanzi. Carbohydrates and organic acids composition of different apple genotypes & the role of malate transporter[D]. Yangling:Northwest A & F University,2010.

    [33] HU D G,LI Y Y,ZHANG Q Y,LI M,SUN C H,YU J Q,HAO Y J. The R2R3-MYB transcription factor MdMYB73 is involved in malate accumulation and vacuolar acidification in apple[J]. The Plant Journal,2017,91(3):443-454.

    [34] LIU R L,LI B Q,QIN G Z,ZHANG Z Q,TIAN S P. Identification and functional characterization of a tonoplast dicarboxylate transporter in tomato (Solanum lycopersicum)[J]. Frontiers in Plant Science,2017,8:186.

    [35] DE ANGELI A,BAETZ U,F(xiàn)RANCISCO R,ZHANG J B,CHAVES M M,REGALADO A. The vacuolar channel VvALMT9 mediates malate and tartrate accumulation in berries of Vitis vinifera[J]. Planta,2013,238(2):283-291.

    [36] ALABD A,CHENG H Y,AHMAD M,WU X Y,PENG L,WANG L,YANG S L,BAI S L,NI J B,TENG Y W. Abre-binding factor 3-wrky dna-binding protein 44 module promotes salinity-induced malate accumulation in pear[J]. Plant Physiology,2023,192(3):1982-1996.

    [37] HURTH M A,SUH S J,KRETZSCHMAR T,GEIS T,BREGANTE M,GAMBALE F,MARTINOIA E,NEUHAUS H E. Impaired pH homeostasis in Arabidopsis lacking the vacuolar dicarboxylate transporter and analysis of carboxylic acid transport across the tonoplast[J]. Plant Physiology,2005,137(3):901-910.

    [38] SHIMADA T,NAKANO R,SHULAEV V,SADKA A,BLUMWALD E. Vacuolar citrate/H+ symporter of citrus juice cells[J]. Planta,2006,224(2):472-480.

    [39] 許林林. 梨液泡膜上PbrALMT9,PbrTDT1和PbrVHA-c4基因調控有機酸積累的功能研究[D]. 南京:南京農(nóng)業(yè)大學,2018.

    XU Linlin. Functional analysis of tonoplast-localized genes,PbrALMT9,PbrTDT1 and PbrVHA-c4,regulate the accumulation of organic acids in pear[D]. Nanjing:Nanjing Agricultural University,2018.

    [40] FREI B,EISENACH C,MARTINOIA E,HUSSEIN S,CHEN X Z,ARRIVAULT S,NEUHAUS H E. Purification and functional characterization of the vacuolar malate transporter tDT from Arabidopsis[J]. Journal of Biological Chemistry,2018,293(11):4180-4190.

    [41] LI C L,DOUGHERTY L,COLUCCIO A E,MENG D,EL-SHARKAWY I,BOREJSZA-WYSOCKA E,LIANG D,PI?EROS M A,XU K N,CHENG L L. Apple ALMT9 requires a conserved C-terminal domain for malate transport underlying fruit acidity[J]. Plant Physiology,2020,182(2):992-1006.

    [42] MEYER S,SCHOLZ-STARKE J,DE ANGELI A,KOVERMANN P,BURLA B,GAMBALE F,MARTINOIA E. Malate transport by the vacuolar AtALMT6 channel in guard cells is subject to multiple regulation[J]. The Plant Journal,2011,67(2):247-257.

    [43] KOVERMANN P,MEYER S,H?RTENSTEINER S,PICCO C,SCHOLZ-STARKE J,RAVERA S,LEE Y,MARTINOIA E. The Arabidopsis vacuolar malate channel is a member of the ALMT family[J]. The Plant Journal,2007,52(6):1169-1180.

    [44] DE ANGELI A,ZHANG J B,MEYER S,MARTINOIA E. AtALMT9 is a malate-activated vacuolar chloride channel required for stomatal opening in Arabidopsis[J]. Nature Communications,2013,4:1804.

    [45] SCHULZ A,BEYHL D,MARTEN I,WORMIT A,NEUHAUS E,POSCHET G,B?TTNER M,SCHNEIDER S,SAUER N,HEDRICH R. Proton-driven sucrose symport and antiport are provided by the vacuolar transporters SUC4 and TMT1/2[J]. The Plant Journal,2011,68(1):129-136.

    [46] CHENG R,CHENG Y S,L? J H,CHEN J Q,WANG Y Z,ZHANG S L,ZHANG H P. The gene PbTMT4 from pear (Pyrus bretschneideri) mediates vacuolar sugar transport and strongly affects sugar accumulation in fruit[J]. Physiologia Plantarum,2018,164(3):307-319.

    [47] VERWEIJ W,SPELT C,DI SANSEBASTIANO G P,VERMEER J,REALE L,F(xiàn)ERRANTI F,KOES R,QUATTROCCHIO F. An H+ P-ATPase on the tonoplast determines vacuolar pH and flower colour[J]. Nature Cell Biology,2008,10(12):1456-1462.

    [48] HUANG X Y,WANG C K,ZHAO Y W,SUN C H,HU D G. Mechanisms and regulation of organic acid accumulation in plant vacuoles[J]. Horticulture Research,2021,8(1):227.

    [49] GAO M,ZHAO H Y,ZHENG L T,ZHANG L H,PENG Y J,MA W F,TIAN R,YUAN Y Y,MA F W,LI M J,MA B Q. Overexpression of apple Ma12,a mitochondrial pyrophosphatase pump gene,leads to malic acid accumulation and the upregulation of malate dehydrogenase in tomato and apple calli[J]. Horticulture Research,2022,9:uhab053.

    [50] MARTINOIA E. Vacuolar transporters - companions on a longtime journey[J]. Plant Physiology,2018,176(2):1384-1407.

    [51] 石彩云,劉麗,魏志峰,高登濤,劉永忠. 園藝植物質子泵及其對有機酸積累調控的研究進展[J]. 園藝學報,2022,49(12):2611-2621.

    SHI Caiyun,LIU Li,WEI Zhifeng,GAO Dengtao,LIU Yongzhong. Research progress of proton pumps and their regulation in organic acid accumulation in horticultural plants[J]. Acta Horticulturae Sinica,2022,49(12):2611-2621.

    [52] YAO Y X,DONG Q L,YOU C X,ZHAI H,HAO Y J. Expression analysis and functional characterization of apple MdVHP1 gene reveals its involvement in Na+,malate and soluble sugar accumulation[J]. Plant Physiology and Biochemistry,2011,49(10):1201-1208.

    [53] REA P A,KIM Y,SARAFIAN V,POOLE R J,DAVIES J M,SANDERS D. Vacuolar H+-translocating pyrophosphatases:A new category of ion translocase[J]. Trends in Biochemical Sciences,1992,17(9):348-353.

    [54] HU D G,SUN M H,SUN C H,LIU X,ZHANG Q Y,ZHAO J,HAO Y J. Conserved vacuolar H+-ATPase subunit B1 improves salt stress tolerance in apple calli and tomato plants[J]. Scientia Horticulturae,2015,197:107-116.

    [55] HU D G,SUN C H,SUN M H,HAO Y J. MdSOS2L1 phosphorylates MdVHA-B1 to modulate malate accumulation in response to salinity in apple[J]. Plant Cell Reports,2016,35(3):705-718.

    [56] KREBS M,BEYHL D,G?RLICH E,AL-RASHEID K A S,MARTEN I,STIERHOF Y D,HEDRICH R,SCHUMACHER K. Arabidopsis V-ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation[J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107(7):3251-3256.

    [57] KRIEGEL A,ANDR?S Z,MEDZIHRADSZKY A,KR?GER F,SCHOLL S,DELANG S,PATIR-NEBIOGLU M G,GUTE G,YANG H B,MURPHY A S,PEER W A,PFEIFFER A,KREBS M,LOHMANN J U,SCHUMACHER K. Job sharing in the endomembrane system:Vacuolar acidification requires the combined activity of V-ATPase and V-PPase[J]. The Plant Cell,2015,27(12):3383-3396.

    [58] ZHANG Y X,LI Q H,XU L L,QIAO X,LIU C X,ZHANG S L. Comparative analysis of the P-type ATPase gene family in seven Rosaceae species and an expression analysis in pear (Pyrus bretschneideri Rehd.)[J]. Genomics,2020,112(3):2550-2563.

    [59] LI Y B,PROVENZANO S,BLIEK M,SPELT C,APPELHAGEN I,DE FARIA L M,VERWEIJ W,SCHUBERT A,SAGASSER M,SEIDEL T,WEISSHAAR B,KOES R,QUATTROCCHIO F. Evolution of tonoplast P-ATPase transporters involved in vacuolar acidification[J]. New Phytologist,2016,211(3):1092-1107.

    [60] VERWEIJ W,SPELT C E,BLIEK M,DE VRIES M,WIT N,F(xiàn)ARACO M,KOES R,QUATTROCCHIO F M. Functionally similar WRKY proteins regulate vacuolar acidification in Petunia and hair development in Arabidopsis[J]. The Plant Cell,2016,28(3):786-803.

    [61] FARACO M,SPELT C,BLIEK M,VERWEIJ W,HOSHINO A,ESPEN L,PRINSI B,JAARSMA R,TARHAN E,DE BOER A H,DI SANSEBASTIANO G P,KOES R,QUATTROCCHIO F M. Hyperacidification of vacuoles by the combined action of two different P-ATPases in the tonoplast determines flower color[J]. Cell Reports,2014,6(1):32-43.

    [62] STRAZZER P,SPELT C E,LI S J,BLIEK M,F(xiàn)EDERICI C T,ROOSE M L,KOES R,QUATTROCCHIO F M. Hyperacidification of Citrus fruits by a vacuolar proton-pumping P-ATPase complex[J]. Nature Communications,2019,10:744.

    [63] SHI C Y,HUSSAIN S B,YANG H,BAI Y X,KHAN M A,LIU Y Z. CsPH8,a P-type proton pump gene,plays a key role in the diversity of citric acid accumulation in citrus fruits[J]. Plant Science,2019,289:110288.

    [64] SHI C Y,SONG R Q,HU X M,LIU X,JIN L F,LIU Y Z. Citrus PH5-like H(+)-ATPase genes:Identification and transcript analysis to investigate their possible relationship with citrate accumulation in fruits[J]. Frontiers in Plant Science,2015,6:135.

    [65] JIA D J,WU P,SHEN F,LI W,ZHENG X D,WANG Y Z,YUAN Y B,ZHANG X Z,HAN Z H. Genetic variation in the promoter of an R2R3-MYB transcription factor determines fruit malate content in apple (Malus domestica Borkh.)[J]. Plant Physiology,2021,186(1):549-568.

    [66] HU D G,SUN C H,MA Q J,YOU C X,CHENG L L,HAO Y J. MdMYB1 regulates anthocyanin and malate accumulation by directly facilitating their transport into vacuoles in apples[J]. Plant Physiology,2016,170(3):1315-1330.

    [67] ZHANG L H,MA B Q,WANG C Z,CHEN X Y,RUAN Y L,YUAN Y Y,MA F W,LI M J. MdWRKY126 modulates malate accumulation in apple fruit by regulating cytosolic malate dehydrogenase (MdMDH5)[J]. Plant Physiology,2022,188(4):2059-2072.

    [68] XIONG T T,TAN Q Q,LI S S,MAZARS C,GALAUD J P,ZHU X Y. Interactions between calcium and ABA signaling pathways in the regulation of fruit ripening[J]. Journal of Plant Physiology,2021,256:153309.

    [69] AMATO A,CAVALLINI E,WALKER A R,PEZZOTTI M,BLIEK M,QUATTROCCHIO F,KOES R,RUPERTI B,BERTINI E,ZENONI S,TORNIELLI G B. The MYB5-driven MBW complex recruits a WRKY factor to enhance the expression of targets involved in vacuolar hyper-acidification and trafficking in grapevine[J]. The Plant Journal,2019,99(6):1220-1241.

    [70] AMATO A,CAVALLINI E,ZENONI S,F(xiàn)INEZZO L,BEGHELDO M,RUPERTI B,TORNIELLI G B. A grapevine TTG2-like WRKY transcription factor is involved in regulating vacuolar transport and flavonoid biosynthesis[J]. Frontiers in Plant Science,2017,7:1979.

    [71] SPELT C,QUATTROCCHIO F,MOL J,KOES R. ANTHOCYANIN1 of petunia controls pigment synthesis,vacuolar pH,and seed coat development by genetically distinct mechanisms[J]. The Plant Cell,2002,14(9):2121-2135.

    [72] DING Z J,YAN J Y,XU X Y,LI G X,ZHENG S J. WRKY46 functions as a transcriptional repressor of ALMT1,regulating aluminum-induced malate secretion in Arabidopsis[J]. The Plant Journal,2013,76(5):825-835.

    [73] CEUSTERS J,BORLAND A M,DE PROFT M P. Drought adaptation in plants with crassulacean acid metabolism involves the flexible use of different storage carbohydrate pools[J]. Plant Signaling & Behavior,2009,4(3):212-214.

    [74] LOBIT P,GENARD M,SOING P,HABIB R. Modelling malic acid accumulation in fruits:Relationships with organic acids,potassium,and temperature[J]. Journal of Experimental Botany,2006,57(6):1471-1483.

    [75] KWEON H J,KANG I K,KIM M J,LEE J,MOON Y S,CHOI C,CHOI D G,WATKINS C B. Fruit maturity,controlled atmosphere delays and storage temperature affect fruit quality and incidence of storage disorders of ‘Fuji apples[J]. Scientia Horticulturae,2013,157:60-64.

    [76] OLMEDO P,ZEPEDA B,DELGADO-RIOSECO J,LEIVA C,MORENO A A,SAGREDO K,BLANCO-HERRERA F,PEDRESCHI R,INFANTE R,MENESES C,CAMPOS-VARGAS R. Metabolite profiling reveals the effect of cold storage on primary metabolism in nectarine varieties with contrasting mealiness[J]. Plants,2023,12(4):766.

    [77] WANG S Y,CAMP M J. Temperatures after bloom affect plant growth and fruit quality of strawberry[J]. Scientia Horticulturae,2000,85(3):183-199.

    [78] RICHARDSON A C,MARSH K B,BOLDINGH H L,PICKERING A H,BULLEY S M,F(xiàn)REARSON N J,F(xiàn)ERGUSON A R,THORNBER S E,BOLITHO K M,MACRAE E A. High growing temperatures reduce fruit carbohydrate and vitamin C in kiwifruit[J]. Plant,Cell & Environment,2004,27(4):423-435.

    [79] LAKSO A N,KLIEWER W M. The influence of temperature on malic acid metabolism in grape berries. II. Temperature responses of net dark CO2 fixation and malic acid pools[J]. American Journal of Enology and Viticulture,1978,29(3):145-149.

    [80] SWEETMAN C,SADRAS V O,HANCOCK R D,SOOLE K L,F(xiàn)ORD C M. Metabolic effects of elevated temperature on organic acid degradation in ripening Vitis vinifera fruit[J]. Journal of Experimental Botany,2014,65(20):5975-5988.

    [81] WU B H,G?NARD M,LESCOURRET F,GOMEZ L,LI S H. Influence of assimilate and water supply on seasonal variation of acids in peach (cv. Suncrest)[J]. Journal of the Science of Food and Agriculture,2002,82(15):1829-1836.

    [82] MA W F,LI Y B,NAI G J,LIANG G P,MA Z H,CHEN B H,MAO J. Changes and response mechanism of sugar and organic acids in fruits under water deficit stress[J]. PeerJ,2022,10:e13691.

    [83] WANG Y J,LIU L,WANG Y,TAO H X,F(xiàn)AN J L,ZHAO Z Y,GUO Y P. Effects of soil water stress on fruit yield,quality and their relationship with sugar metabolism in ‘Gala apple[J]. Scientia Horticulturae,2019,258:108753.

    [84] SIM I,SUH D H,SINGH D,DO S G,MOON K H,LEE J H,KU K M,LEE C H. Unraveling metabolic variation for blueberry and chokeberry cultivars harvested from different geo-climatic regions in Korea[J]. Journal of Agricultural and Food Chemistry,2017,65(41):9031-9040.

    [85] RESHEF N,WALBAUM N,AGAM N,F(xiàn)AIT A. Sunlight modulates fruit metabolic profile and shapes the spatial pattern of compound accumulation within the grape cluster[J]. Frontiers in Plant Science,2017,8:70.

    [86] 張振英,宋來慶,劉美英,趙玲玲,唐巖,孫燕霞,姜中武. 郁閉果園不同部位光照條件對煙富3號蘋果果實品質的影響[J]. 山東農(nóng)業(yè)科學,2013,45(9):42-44.

    ZHANG Zhenying,SONG Laiqing,LIU Meiying,ZHAO Lingling,TANG Yan,SUN Yanxia,JIANG Zhongwu. Analysis on apple fruit quality of Yanfu 3 under different light conditions in closing orchard[J]. Shandong Agricultural Sciences,2013,45(9):42-44.

    [87] DEBOLT S,RISTIC R,ILAND P G,F(xiàn)ORD C M. Altered light interception reduces grape berry weight and modulates organic acid biosynthesis during development[J]. HortScience,2008,43(3):957-961.

    [88] BAI Q,SHEN Y Y,HUANG Y. Advances in mineral nutrition transport and signal transduction in Rosaceae fruit quality and postharvest storage[J]. Frontiers in Plant Science,2021,12:620018.

    [89] ZHANG W,ZHANG X,WANG Y F,ZHANG N S,GUO Y P,REN X L,ZHAO Z Y. Potassium fertilization arrests malate accumulation and alters soluble sugar metabolism in apple fruit[J]. Biology Open,2018,7(12):bio024745.

    猜你喜歡
    代謝園藝作物果實
    云南省農(nóng)業(yè)科學院園藝作物研究所
    辣椒雜志(2021年4期)2021-04-14 08:28:18
    園藝作物栽培中相關技術問題
    花卉(2020年20期)2020-01-09 15:19:03
    園藝作物栽培中相關的技術問題
    植物生長調節(jié)劑在園藝作物上的應用
    色素上皮衍生因子與胰島素抵抗的相關性
    有機肥對火龍果不同批次果實生長與品質的影響
    天津薊縣軟棗獼猴桃營養(yǎng)品質分析
    黃桃栽培技術
    玉女煎治療消渴胃熱熾盛證的研究進展
    護理干預對多囊卵巢綜合征患者體重和代謝的影響
    秋霞在线观看毛片| 女人十人毛片免费观看3o分钟| 婷婷六月久久综合丁香| 哪个播放器可以免费观看大片| 亚洲精品亚洲一区二区| 国产伦精品一区二区三区视频9| 午夜a级毛片| 日本一本二区三区精品| 人人妻人人澡人人爽人人夜夜 | 99久国产av精品| 嫩草影院入口| 搡老妇女老女人老熟妇| 国产精品免费一区二区三区在线| 亚洲国产欧美在线一区| 欧美日韩在线观看h| 在线观看av片永久免费下载| 国产精品福利在线免费观看| 婷婷色综合大香蕉| 国产蜜桃级精品一区二区三区| 久久精品国产清高在天天线| 亚洲熟妇中文字幕五十中出| a级毛片免费高清观看在线播放| 草草在线视频免费看| 亚州av有码| 听说在线观看完整版免费高清| 成人午夜高清在线视频| 免费观看的影片在线观看| 精品人妻熟女av久视频| 赤兔流量卡办理| 精品一区二区三区人妻视频| 亚洲国产欧美人成| 99热这里只有是精品在线观看| 天堂av国产一区二区熟女人妻| 欧美三级亚洲精品| 床上黄色一级片| 亚洲av免费高清在线观看| 男女那种视频在线观看| 99久久久亚洲精品蜜臀av| 精品午夜福利在线看| 春色校园在线视频观看| 亚洲丝袜综合中文字幕| 自拍偷自拍亚洲精品老妇| 狂野欧美激情性xxxx在线观看| 久99久视频精品免费| 亚洲三级黄色毛片| 男人舔奶头视频| 国产一区二区亚洲精品在线观看| a级毛色黄片| 国产午夜精品一二区理论片| 国产av在哪里看| 国产视频首页在线观看| 91精品国产九色| 国产探花极品一区二区| 亚洲成人中文字幕在线播放| 最近中文字幕高清免费大全6| 十八禁国产超污无遮挡网站| 国产极品精品免费视频能看的| 免费电影在线观看免费观看| 美女cb高潮喷水在线观看| 一本精品99久久精品77| 三级国产精品欧美在线观看| 久久精品夜夜夜夜夜久久蜜豆| 精品久久久久久久久av| 黄片wwwwww| 欧美人与善性xxx| 国产爱豆传媒在线观看| 男人舔女人下体高潮全视频| 综合色av麻豆| 久99久视频精品免费| 国产 一区 欧美 日韩| 在线播放无遮挡| 国产成人精品久久久久久| 波多野结衣高清无吗| 26uuu在线亚洲综合色| 美女黄网站色视频| a级毛片免费高清观看在线播放| 欧美xxxx黑人xx丫x性爽| 日韩 亚洲 欧美在线| 亚洲精品乱码久久久v下载方式| 天堂av国产一区二区熟女人妻| 中文亚洲av片在线观看爽| 国产精品福利在线免费观看| 九色成人免费人妻av| 国产成人a∨麻豆精品| 国产单亲对白刺激| 国产成人精品一,二区 | 久久精品影院6| 美女内射精品一级片tv| 色视频www国产| 亚洲av成人精品一区久久| 成人高潮视频无遮挡免费网站| 又粗又爽又猛毛片免费看| 免费不卡的大黄色大毛片视频在线观看 | 国产精品日韩av在线免费观看| 午夜免费激情av| 成人亚洲精品av一区二区| 亚洲成av人片在线播放无| 寂寞人妻少妇视频99o| 热99在线观看视频| 亚洲精品粉嫩美女一区| 中国美女看黄片| 嘟嘟电影网在线观看| 国产欧美日韩精品一区二区| 熟女电影av网| 色噜噜av男人的天堂激情| 亚洲无线在线观看| 成人无遮挡网站| 国产淫片久久久久久久久| 亚洲久久久久久中文字幕| 久久精品国产亚洲av涩爱 | 在线观看午夜福利视频| 亚洲精品456在线播放app| 免费av观看视频| 不卡一级毛片| 日韩中字成人| 青春草亚洲视频在线观看| 国产精品久久久久久精品电影小说 | av又黄又爽大尺度在线免费看 | 久久人人爽人人爽人人片va| 亚洲aⅴ乱码一区二区在线播放| 少妇人妻精品综合一区二区 | 久久久久久九九精品二区国产| 精品国产三级普通话版| 欧美一区二区亚洲| 日本欧美国产在线视频| 亚洲欧美精品综合久久99| 波多野结衣巨乳人妻| 亚洲电影在线观看av| www日本黄色视频网| 成人漫画全彩无遮挡| 麻豆国产av国片精品| 久久久久久久久久久丰满| 国产免费男女视频| 久久精品人妻少妇| 日韩一本色道免费dvd| av又黄又爽大尺度在线免费看 | 亚洲一级一片aⅴ在线观看| 欧美激情在线99| 国产人妻一区二区三区在| 久久精品国产鲁丝片午夜精品| 亚洲,欧美,日韩| 国产乱人视频| 久久中文看片网| 免费观看人在逋| 中文字幕熟女人妻在线| 久久九九热精品免费| 夜夜夜夜夜久久久久| 成人美女网站在线观看视频| 国内精品一区二区在线观看| 日韩av不卡免费在线播放| 久久中文看片网| 97热精品久久久久久| 久久久国产成人精品二区| 成人综合一区亚洲| 亚洲第一区二区三区不卡| 日韩精品有码人妻一区| 欧美日韩乱码在线| 可以在线观看的亚洲视频| 中文字幕人妻熟人妻熟丝袜美| 精品少妇黑人巨大在线播放 | 国产极品天堂在线| 国产亚洲91精品色在线| 精品久久国产蜜桃| 欧美一区二区国产精品久久精品| 亚洲va在线va天堂va国产| 亚洲人成网站在线播| 色5月婷婷丁香| 久久精品人妻少妇| 亚洲欧洲日产国产| 免费观看的影片在线观看| 蜜桃久久精品国产亚洲av| 亚洲成av人片在线播放无| 波野结衣二区三区在线| 亚洲成人精品中文字幕电影| 丰满乱子伦码专区| 成人性生交大片免费视频hd| 又黄又爽又刺激的免费视频.| 国产精品一区二区三区四区免费观看| 2021天堂中文幕一二区在线观| or卡值多少钱| 三级毛片av免费| 国产亚洲av片在线观看秒播厂 | 国内精品美女久久久久久| 亚洲欧美成人综合另类久久久 | 两个人视频免费观看高清| 夜夜夜夜夜久久久久| 久久亚洲国产成人精品v| 亚洲av中文av极速乱| 国产精品免费一区二区三区在线| 少妇猛男粗大的猛烈进出视频 | 亚洲三级黄色毛片| 看十八女毛片水多多多| av国产免费在线观看| 91久久精品国产一区二区三区| 欧美日韩乱码在线| 久99久视频精品免费| 亚洲无线观看免费| 麻豆成人av视频| 悠悠久久av| 国产一区二区亚洲精品在线观看| 亚洲av免费高清在线观看| 丝袜喷水一区| 国产精品.久久久| 看非洲黑人一级黄片| 中国国产av一级| 免费观看的影片在线观看| 精品日产1卡2卡| 欧美+日韩+精品| 久久欧美精品欧美久久欧美| 国产成年人精品一区二区| 男插女下体视频免费在线播放| 精品久久久久久成人av| 国产精品不卡视频一区二区| 又粗又爽又猛毛片免费看| 欧美一区二区国产精品久久精品| 国产麻豆成人av免费视频| 天堂网av新在线| 你懂的网址亚洲精品在线观看 | 国产精品久久久久久精品电影| 国产精品久久久久久av不卡| 性欧美人与动物交配| av福利片在线观看| 亚洲综合色惰| 青青草视频在线视频观看| 最近2019中文字幕mv第一页| 亚洲av成人精品一区久久| av.在线天堂| 高清日韩中文字幕在线| 18禁裸乳无遮挡免费网站照片| 老女人水多毛片| 成人特级黄色片久久久久久久| 亚洲国产欧洲综合997久久,| 性色avwww在线观看| 老师上课跳d突然被开到最大视频| 亚洲人成网站高清观看| 国产伦理片在线播放av一区 | 久久99蜜桃精品久久| 欧美一区二区亚洲| 啦啦啦啦在线视频资源| 大香蕉久久网| 国产蜜桃级精品一区二区三区| 久久午夜福利片| 精品人妻一区二区三区麻豆| 九九在线视频观看精品| 看非洲黑人一级黄片| 九九热线精品视视频播放| 国产麻豆成人av免费视频| 小蜜桃在线观看免费完整版高清| 男的添女的下面高潮视频| 亚洲av免费在线观看| 男人的好看免费观看在线视频| 成人美女网站在线观看视频| 成年女人看的毛片在线观看| 久久精品国产清高在天天线| 久久6这里有精品| 欧美丝袜亚洲另类| 亚洲成av人片在线播放无| 黄片无遮挡物在线观看| 国产高清有码在线观看视频| 特大巨黑吊av在线直播| 岛国毛片在线播放| 久久精品国产亚洲av香蕉五月| а√天堂www在线а√下载| 国产精品蜜桃在线观看 | 菩萨蛮人人尽说江南好唐韦庄 | 亚洲国产欧美人成| 最近的中文字幕免费完整| av免费观看日本| 波多野结衣高清作品| 亚洲成人久久爱视频| 免费av观看视频| 久久国产乱子免费精品| av视频在线观看入口| 亚洲久久久久久中文字幕| 免费av不卡在线播放| 日韩欧美三级三区| 久久久久网色| 黄色欧美视频在线观看| av在线蜜桃| 亚洲无线在线观看| 桃色一区二区三区在线观看| 久久亚洲国产成人精品v| 久久人人精品亚洲av| 91在线精品国自产拍蜜月| 午夜精品国产一区二区电影 | 国产精品一区二区三区四区免费观看| 在线观看一区二区三区| 亚洲av熟女| 麻豆乱淫一区二区| 99久久精品一区二区三区| 成人毛片a级毛片在线播放| 亚洲无线在线观看| 免费看av在线观看网站| 色综合色国产| 男人舔女人下体高潮全视频| 久久午夜福利片| 青春草视频在线免费观看| 亚洲精品久久久久久婷婷小说 | 一区福利在线观看| 美女cb高潮喷水在线观看| 欧美变态另类bdsm刘玥| 日本免费一区二区三区高清不卡| 黄色视频,在线免费观看| 久久精品国产99精品国产亚洲性色| 久久久久久久久久久免费av| 色吧在线观看| 51国产日韩欧美| 亚洲国产日韩欧美精品在线观看| 热99在线观看视频| 久久国内精品自在自线图片| 天堂影院成人在线观看| 三级国产精品欧美在线观看| 噜噜噜噜噜久久久久久91| 日本三级黄在线观看| 天堂中文最新版在线下载 | 一级毛片电影观看 | 欧美xxxx黑人xx丫x性爽| 亚洲av成人精品一区久久| 日韩欧美 国产精品| 亚洲最大成人av| 国产精品久久电影中文字幕| 亚洲欧美精品自产自拍| av在线天堂中文字幕| 中文字幕制服av| 午夜福利在线观看免费完整高清在 | 日韩av在线大香蕉| 国产成人a区在线观看| 亚洲精品亚洲一区二区| 99国产精品一区二区蜜桃av| 最近最新中文字幕大全电影3| 国产乱人视频| 91久久精品国产一区二区三区| 欧美成人精品欧美一级黄| 日日摸夜夜添夜夜添av毛片| 久久婷婷人人爽人人干人人爱| 国内精品宾馆在线| 日韩成人伦理影院| 免费av毛片视频| 午夜激情福利司机影院| 黄色配什么色好看| 久久精品国产清高在天天线| 亚洲成人久久爱视频| 亚洲国产精品合色在线| 亚洲一级一片aⅴ在线观看| 国产淫片久久久久久久久| 特级一级黄色大片| 国内揄拍国产精品人妻在线| 国内精品宾馆在线| 尾随美女入室| 99久久精品热视频| 国产麻豆成人av免费视频| 国产精品一区二区三区四区免费观看| 国产精品国产三级国产av玫瑰| 麻豆精品久久久久久蜜桃| 大香蕉久久网| 国产精品一区二区三区四区久久| 亚洲成a人片在线一区二区| 欧美日韩国产亚洲二区| 久久这里只有精品中国| 久久久久网色| 国产黄片美女视频| 波多野结衣高清作品| 美女高潮的动态| 精品一区二区三区人妻视频| 成人漫画全彩无遮挡| 国产乱人偷精品视频| 91午夜精品亚洲一区二区三区| 亚洲av一区综合| 午夜福利成人在线免费观看| 一级黄色大片毛片| 亚洲欧洲日产国产| 欧美成人免费av一区二区三区| 夜夜看夜夜爽夜夜摸| 久久久久久大精品| 亚洲国产精品国产精品| 亚洲精品日韩在线中文字幕 | 联通29元200g的流量卡| 久久精品国产自在天天线| 亚洲av免费高清在线观看| 久久久久免费精品人妻一区二区| 97超视频在线观看视频| 美女高潮的动态| 国产熟女欧美一区二区| 哪里可以看免费的av片| 成熟少妇高潮喷水视频| 日本免费一区二区三区高清不卡| 美女内射精品一级片tv| 国产精品99久久久久久久久| av又黄又爽大尺度在线免费看 | 久久国内精品自在自线图片| 成人永久免费在线观看视频| 久久久久久久久大av| 夜夜夜夜夜久久久久| 全区人妻精品视频| av在线播放精品| 亚洲欧美日韩高清在线视频| 欧美日本亚洲视频在线播放| 国产精品女同一区二区软件| 观看免费一级毛片| av免费观看日本| 三级毛片av免费| 黄色日韩在线| 中文字幕熟女人妻在线| 国产色爽女视频免费观看| 天堂影院成人在线观看| 中文欧美无线码| 国产真实乱freesex| 久久久久久久久久久免费av| a级毛片免费高清观看在线播放| 99热这里只有是精品50| 免费观看a级毛片全部| 国产美女午夜福利| 亚洲最大成人中文| 丰满乱子伦码专区| 国产色爽女视频免费观看| 黄片wwwwww| 99热6这里只有精品| 在线观看66精品国产| 嫩草影院精品99| 久久久久久久亚洲中文字幕| 午夜a级毛片| 国产美女午夜福利| 你懂的网址亚洲精品在线观看 | 亚洲精品久久国产高清桃花| 天天一区二区日本电影三级| 少妇的逼好多水| 午夜久久久久精精品| 免费观看a级毛片全部| a级毛色黄片| 久久久久久九九精品二区国产| 久久综合国产亚洲精品| 黄色欧美视频在线观看| 国产亚洲5aaaaa淫片| 男人和女人高潮做爰伦理| 99视频精品全部免费 在线| 精品免费久久久久久久清纯| 国产精品野战在线观看| 99久久中文字幕三级久久日本| 麻豆精品久久久久久蜜桃| 一区二区三区高清视频在线| 一区二区三区免费毛片| 特级一级黄色大片| 九九热线精品视视频播放| 成人综合一区亚洲| 热99在线观看视频| 免费看av在线观看网站| 日本免费一区二区三区高清不卡| 免费观看的影片在线观看| 一卡2卡三卡四卡精品乱码亚洲| 亚洲欧美日韩无卡精品| 熟女人妻精品中文字幕| 在线a可以看的网站| 亚洲七黄色美女视频| 国产午夜精品一二区理论片| 亚州av有码| 亚洲精品乱码久久久v下载方式| 亚洲av中文字字幕乱码综合| 黄片wwwwww| 秋霞在线观看毛片| 一进一出抽搐gif免费好疼| 久久午夜福利片| www.av在线官网国产| 丰满乱子伦码专区| 国产亚洲av片在线观看秒播厂 | 精品欧美国产一区二区三| 伦理电影大哥的女人| 偷拍熟女少妇极品色| 免费av观看视频| 国产亚洲91精品色在线| 国产在视频线在精品| 看非洲黑人一级黄片| 亚洲一区高清亚洲精品| 国产女主播在线喷水免费视频网站 | 青春草视频在线免费观看| 国产精品久久久久久精品电影| 中出人妻视频一区二区| 久久精品人妻少妇| 男人的好看免费观看在线视频| 日韩国内少妇激情av| 一边亲一边摸免费视频| 久久久久久久久久久丰满| 久久国产乱子免费精品| 欧美xxxx性猛交bbbb| 国产成人精品久久久久久| 免费观看的影片在线观看| 三级男女做爰猛烈吃奶摸视频| 搡老妇女老女人老熟妇| 人人妻人人看人人澡| 国产一区二区激情短视频| 老女人水多毛片| 少妇丰满av| 国产精品美女特级片免费视频播放器| 一级黄色大片毛片| 亚洲五月天丁香| 天天一区二区日本电影三级| 青春草亚洲视频在线观看| 成人综合一区亚洲| 国产成年人精品一区二区| 国产精品久久电影中文字幕| 国产午夜精品久久久久久一区二区三区| 日韩高清综合在线| h日本视频在线播放| av视频在线观看入口| 欧美人与善性xxx| 国产精品女同一区二区软件| 成人欧美大片| 久久精品影院6| 啦啦啦观看免费观看视频高清| 九九久久精品国产亚洲av麻豆| 久久久国产成人精品二区| 日本五十路高清| 精品人妻熟女av久视频| 国产精品久久久久久久电影| 国产精品女同一区二区软件| 18+在线观看网站| 欧美一区二区国产精品久久精品| 国产av麻豆久久久久久久| 国产男人的电影天堂91| 国产成人a区在线观看| 我的女老师完整版在线观看| 99久国产av精品| 欧美日本亚洲视频在线播放| 麻豆精品久久久久久蜜桃| 99国产极品粉嫩在线观看| 一本一本综合久久| 伦理电影大哥的女人| 我要搜黄色片| 亚洲精华国产精华液的使用体验 | 国产探花在线观看一区二区| 精品国产三级普通话版| 午夜福利成人在线免费观看| 日本色播在线视频| 女的被弄到高潮叫床怎么办| 欧美日本亚洲视频在线播放| a级毛色黄片| 神马国产精品三级电影在线观看| 国产真实乱freesex| 亚洲一区二区三区色噜噜| 国产精品嫩草影院av在线观看| 亚洲中文字幕日韩| 亚洲欧美清纯卡通| 国产熟女欧美一区二区| 99riav亚洲国产免费| 网址你懂的国产日韩在线| 嫩草影院新地址| 国产成人一区二区在线| 麻豆一二三区av精品| 亚洲av免费在线观看| 精品久久久久久久久久免费视频| 男女做爰动态图高潮gif福利片| 精品久久久久久久久久久久久| 亚洲综合色惰| 国产在视频线在精品| 日韩三级伦理在线观看| 精品久久久噜噜| 久久久久久国产a免费观看| 亚洲欧美成人精品一区二区| 嫩草影院精品99| 熟妇人妻久久中文字幕3abv| 两个人视频免费观看高清| 网址你懂的国产日韩在线| 亚洲五月天丁香| 国产亚洲精品久久久久久毛片| 日韩高清综合在线| 特级一级黄色大片| 国产高清视频在线观看网站| 又爽又黄a免费视频| 精品一区二区免费观看| 国产亚洲欧美98| 99久久久亚洲精品蜜臀av| 简卡轻食公司| ponron亚洲| 国产真实乱freesex| 亚洲精品自拍成人| 成年免费大片在线观看| 国产av在哪里看| 麻豆av噜噜一区二区三区| 99国产极品粉嫩在线观看| 免费看av在线观看网站| 哪个播放器可以免费观看大片| 嘟嘟电影网在线观看| 国产午夜精品久久久久久一区二区三区| 国产视频内射| 村上凉子中文字幕在线| 麻豆av噜噜一区二区三区| av免费观看日本| 久久精品国产亚洲av天美| 久久久成人免费电影| 中文字幕人妻熟人妻熟丝袜美| 深夜精品福利| 又黄又爽又刺激的免费视频.| 欧美一区二区国产精品久久精品| 欧美+日韩+精品| 六月丁香七月| 国产免费一级a男人的天堂| 在线免费观看不下载黄p国产| 国产精品无大码| 久久久久久久久久久丰满| 欧美精品国产亚洲| 国产伦精品一区二区三区四那| 18禁在线播放成人免费| 白带黄色成豆腐渣| 日韩高清综合在线| 91久久精品电影网| 又爽又黄无遮挡网站| 久久精品国产清高在天天线| 国产激情偷乱视频一区二区| 日本免费a在线| 亚洲人成网站在线播放欧美日韩| 久99久视频精品免费| 最好的美女福利视频网| 欧美另类亚洲清纯唯美| 国产精品免费一区二区三区在线| 波多野结衣巨乳人妻| 亚洲欧美日韩卡通动漫|