• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Genomic location of Gb1, a unique gene conferring wheat resistance to greenbug biotype F

    2023-12-29 04:03:18XingyngXuGenqioLiGuihuBiBrettCrverRuolinBinAmyBernroSottArmstrong
    The Crop Journal 2023年5期

    Xingyng Xu,Genqio Li ,Guihu Bi ,Brett F.Crver ,Ruolin Bin ,Amy Bernro ,J.Sott Armstrong

    a USDA-ARS Wheat,Peanut,and Other Field Crop Research Unit,Stillwater,OK 74075,USA

    b USDA-ARS Hard Winter Wheat Genetics Research Unit,Manhattan,KS 66506,USA

    c Department of Agronomy,Kansas State University,Manhattan,KS 66506,USA

    d Department of Plant and Soil Sciences,Oklahoma State University,Stillwater,OK 74078,USA

    Keywords: Wheat Greenbug resistance gene Gb1 KASP markers Linkage analysis Genotyping-by-sequencing

    ABSTRACT Greenbug(Schizaphis graminum,Rondani)is a serious insect pest in many wheat growing regions and has been infesting cereal crops in the USA for over a century.Continuous occurrence of new greenbug biotypes makes it essential to explore all greenbug resistant sources available to manage this pest. Gb1, a recessive greenbug resistance gene in DS28A,confers resistance to several economically important greenbug biotypes and is the only gene found to be resistant to greenbug biotype F.A set of 174 F2:3 lines from the cross DS28A×Custer was evaluated for resistance to greenbug biotype F in 2020 and 2022.Selective genotyping of the corresponding F2 population using single nucleotide polymorphism(SNP)markers generated by genotyping-by-sequencing (GBS) led to the identification of a candidate genomic region for Gb1.Thus,SSR markers previously mapped in this region were used to genotype the entire F2 population,and kompetitive allele specific PCR (KASP) markers were also developed from SNPs in the target region.Gb1 was placed in the terminal region of the short arm of chromosome 1A,and its location was confirmed in a second population derived from the cross DS28A×PI 697274.The combined data analysis from the two mapping populations delimited Gb1 to a <1 Mb interval between 13,328,200 and 14,241,426 bp on 1AS.

    1.Introduction

    Greenbug [Schizaphis graminum(Rondani)] has been reported worldwide with wide distribution in southern Europe,the Middle East,central western and central Asia,Africa,and North and South America [1,2].Wheat infestations have occurred for more than a century in the USA [3].When heavy infestations occur in fall to early spring,the growth of wheat plants can be seriously inhibited or even killed,which can lead to significant yield losses [4].The yield losses,which are largely dependent on infested aphid number and infestation period,mainly result from reduced spike number m-2and seed number per spike with a mean of 0.51 kg ha-1per greenbug-day in years having normal precipitation and 1.17 kg ha-1per greenbug-day under severe drought condition[5].Moreover,greenbug is also a common vector of barley yellow dwarf virus [6],a serious viral disease to wheat production.

    Enormous efforts directed to searching for greenbug resistance led to the discovery of several greenbug resistance genes in wheat.Among them,Gb1is the first wheat greenbug resistance gene initially identified from the hexaploid wheat accession Dickinson Selection 28A (DS28A) and the landrace PI 70715 (formerly CI 9058) in the 1950s [7].Other wheat greenbug resistance genes includeGb2andGb6from rye [8,9],Gb5fromT.speltoides[10],andGb3,Gb4,Gb7,andGb8fromAe.tauschii[11-14].In addition,a few temporarily named genes such asGba,Gbb,Gbc,Gbd,Gbx1,andGbzwere identified fromAe.tauschii[15,16],and another one,Gby,was discovered from Sando’s selection 4040,a line derived from multiple crosses including one between Chinese Spring(T.aestivum)andLophopyrum ponticum(Podp.)A.Love[17].

    Many greenbug biotypes have been identified,and each of them shows avirulence to only a few resistance genes.For example,greenbug biotype B is avirulent toGb2andGb6,whereas biotypeGis avirulent to onlyGb6[18].Given that greenbug biotypes often vary across field environments,pyramiding multiple greenbug resistance genes is imperative for breeding durable greenbug resistant cultivars.Advances in wheat genomics,especially release of the Chinese Spring reference genome sequence[19],make it feasible to develop molecular markers closely linked to these genes and tag them in wheat breeding.Currently,all greenbug resistance genes exceptGb1have been mapped to specific genomic regions[10,11,12,14,20,21],and high-throughput molecular markers are available for some of these genes [20,22].

    Genetic diversity is essential to sustaining human life,on which global food security largely depends.Currently,Gb3,which confers resistance to greenbug biotypes C,E,H,I,and K,but susceptibility to biotypes B,F,G,NY,FL1,SC and KS1 [18],has been widely deployed in experimental and commercial germplasm in the USA.More greenbug resistance genes,especially those conferring resistance to greenbug biotypes virulent toGb3,are urgently needed to broaden genetic diversity and provide durable greenbug resistance.

    Gb1confers resistance to several critical biotypes and is the only gene providing resistance to greenbug biotype F.However,Gb1is a recessive gene and thus not amenable to traditional phenotypic selection in early generations.Therefore,marker-assisted selection is needed to improve selection efficiency withGb1in wheat breeding populations.The objectives of this study were to determine the chromosome location ofGb1and develop genomic tools for selection of the gene in cultivar development.

    2.Materials and methods

    2.1.Plant materials

    An F2population and 174 F2:3lines derived from DS28A × Custer,and an F2population and 219 F2:3lines from DS28A × PI 697274 (formerly PI 595379-1),were used to mapGb1.DS28A and PI 697274 carryGb1andGb8,respectively,while Custer,released by Oklahoma State University in 1994,is highly susceptible to greenbug.DS28A is a spring wheat with some degree of cold hardiness [7].PI 697274 is susceptible to greenbug biotype F.In addition,86 experimental wheat lines from the 2019-2020 USDA-ARS Hard Winter Wheat Regional Performance Nursery (https://www.ars.usda.gov/plains-area/lincoln-ne/wheatsorghum-and-forage-research/docs/hard-winter-wheat-regionalnursery-program/research/)were used to evaluate the usefulness of KASP markers developed in this study.

    2.2.Evaluation of F2:3 lines to greenbug infestation

    The DS28A×Custer F2:3population was evaluated for response to greenbug biotype F in 2020 and 2022 at the USDA-ARS Wheat,Peanut,and Other Field Crop Research Unit.The DS28A × PI 697274 F2:3population was evaluated for response to greenbug biotype F in 2022 using the same protocol to confirm mapping results from the DS28A × Custer cross.

    Greenbug biotype F,which is virulent to all known greenbug resistance genes exceptGb1,was cultured on barley cultivar Eight-Twelve (PI 537437).About 60 seeds were planted into 15-cm pots filled with sand.The culture plants,which were enclosed in a cylindrical plastic cage fitted with muslin cloth ventilation on the top and sides,were infested with about 50 greenbug aphids at the two-leaf stage.These plants were used to infest the test plants following four weeks of aphid development.

    The greenbug phenotyping assay was conducted in a greenhouse supplied with daylight of 16 h at 22 ± 2 °C using a randomized complete block design with two replicates.In each replicate,15 seeds per line were planted in three cells of a 73-cell growing tray filled with Sunshine Red-earth growing mix (Growing Systems,Inc.).The resistant(DS28A)and susceptible(Custer)controls were planted in one and two cells,respectively,in each tray.The culture plants with abundant greenbugs were placed close to each row of the test plantlets one day after their emergence.Each plant was initially infested with about 10 to 15 aphids and scored using a binary scale after two weeks infestation when the susceptible control died,in which asymptomatic healthy plants were rated as resistant and plants that turned yellow or completely died were rated as susceptible.Genotypes of F2plants were inferred from phenotypes of their corresponding F2:3progenies.

    2.3.Selective genotyping of the F2 population derived from DS28A × Custer

    Plant leaves were taken from each F2plant at the two-leaf stage and freeze-dried in a lyophilizer (Sp Scientific) for two days.The dried leaves were ground at 1500 r min-1for 1 min using a MiniG Automated Tissue Homogenizer (SPEXSamplePrep).Genomic DNA was extracted using a method described by Dubcovsky et al.[23]and normalized to 10 ng μL-1.Together with two parents,a subset of 36 F2DNA samples were randomly chosen to develop GBSderived SNP markers following Xu et al.[20],leading to the identification of a large set of genome-wide SNPs.The Excel ‘‘count”function was used to reveal the distribution of DS28A and Custer alleles at each SNP locus in the F2sub-population.A candidate genomic region that may harborGb1was then identified.

    2.4.Genotyping the DS28A × Custer F2 population using simple sequence repeat (SSR) markers

    Selective genotyping of F2plants revealed a genomic region thatGb1may reside.Therefore,SSR markers previously mapped in this region were selected to genotype the entire F2population using a previously described protocol based on a LI-COR 4300 DNA analyzer[14],and theGb1gene was subsequently mapped to a specific interval.

    2.5.Development of kompetitive allele specific PCR (KASP) markers

    GBS-SNPs in the target region were selected to develop KASP markers in the DS28A × Custer F2population.Primers were designed using the PolyMarker program(http://www.polymarker.info),which blasted the target sequences against the wheat reference sequence IWGSC RefSeq v2.1 [19] to identify unique GBSSNPs in the target region for marker development.The newly developed KASP markers,designated with prefix ‘‘stars-KASP”(Stillwater,ARS) and numbered consecutively,were tested using two parents and a subset of 36 F2DNA samples.KASP markers that distinguished the two parental alleles and heterozygous genotypes were selected to genotype the entire F2population using a protocol based on the ABI ViiA7 Real-time PCR system (Thermo Fisher Scientific,Waltham,MA,USA).In brief,a 5 μL PCR mixture was prepared using the OT2-Pipitting Robot (Opentrons,New York,NY,USA) with each reaction containing 10 ng genomic DNA,2.5 μL KASP-TF V4.0 2X Master Mix with Low Rox (Biosearch Technologies),6 mmol L-1of each allele-specific primer,and 15 mmol L-1of the common primer.The PCR started at 30 °C for 1 min and 94 °C for 15 min,followed by 40 cycles of 94 °C for 20 s and 60°C for 1 min,with a final step of 30°C for 1 min.KASP data were scored using the ABI ViiA 7 software.

    2.6.Linkage analysis

    MAPMAKER 3.0 software[24]was employed to conduct linkage analysis using the Kosambi function[25]to convert recombination frequency to genetic distance in centimorgan (cM).A logarithm of the odds (LOD) score of 3.0 was used as the threshold for linkage detection.MapChart 2.2 software [26] was used to draw the linkage map.In addition,the goodness-of-fit test was performed to determine whether the observed phenotypic data fit the expected segregation ratio in F2.

    3.Results

    3.1.Responses of DS28A × Custer F2:3 lines to greenbug biotype F

    The two parents and their 174 F2:3progenies derived from DS28A×Custer were evaluated for responses to greenbug biotype F.DS28A showed high resistance without obvious plant-tissue damage,while Custer died after two weeks’ infestation.Thirty and 51 F2:3lines exhibited homogeneous resistance and homogeneous susceptibility,respectively,and the remaining 93 lines segregated for resistance and susceptibility.The χ2test indicated single-gene segregation in the population with the expected 1:2:1 segregation ratio atP>0.05 (χ2=5.64;df=2).

    3.2.Selective genotyping of the DS28A × Custer F2 population

    Thirty-six F2plants were randomly selected from the DS28A × Custer population and genotyped using the GBS approach.The F2:3phenotypic data implied 7 homozygous resistant,5 homozygous susceptible,and 24 heterozygousGb1genotypes.A total of 116,176 SNPs were identified,with 35,042-75,160 SNPs per plant.A subset of 58,088 SNPs with minor allele frequency greater than 0.2 was analyzed.Of these,one SNP,designatedS1A_2619907219,was likely associated withGb1,as evidenced by the fact thatS1A_2619907219co-segregated withGb1in 34 of the 36 F2plants.All resistant and susceptible F2plants carried DS28A and Custer alleles,respectively,and all but two heterozygous F2plants carried both alleles at this SNP locus.This indicated thatGb1should reside close toS1A_26199072,located at 26,199,072 bp in the short arm of chromosome 1A.

    3.3.Mapping of the greenbug resistance gene Gb1

    A set of SSR markers previously mapped on chromosome 1A were evaluated for polymorphism between the two parents,and 13 polymorphic SSRs,of which nine were recently developed in our lab(Table S1),were subsequently used to genotype the F2population.Linkage analysis indicated thatGb1was 4.9 cM proximal toXwmc818and 24.2 cM distal toXstars948(Fig.1).Further searching the primer sequences ofXwmc818against the IWGSC RefSeq v2.1 revealed its reverse primer sequence at 13,328,177-13,328,200 b p.Therefore,Gb1resides in a 21-Mb interval between 13,328,200(Xwmc818) and 34,345,763 bp (Xstars948) in the IWGSC RefSeq v2.1.

    There were 156 GBS-SNPs in the target genomic region(3,328,200-34,345,763 bp).These SNPs were examined,and primers were designed to convert a subset of them to KASP markers.However,only five of them,namelyXstars-KASP184,Xstars-KASP190,Xstars-KASP194,Xstars-KASP199,andXstars-KASP205(Table S2) generated robust data,with the other primers failing to amplify PCR products from DS28A.This indicated significant sequence variability between DS28A and Chinese Spring in this region.These five markers were used to genotype the F2population.Linkage mapping based on KASP and SSR markers placedGb1in a 4 Mb-interval between 13,328,177 bp (Xwmc818) and 17,413,030 bp (Xstars-KASP184) (Fig.1).

    3.4.Confirming the chromosome location of Gb1 in the DS28A × PI 697274 population

    Of the markers flankingGb1,Xwmc818is a dominant marker that cannot amplify PCR products from DS28A,and the genetic distance betweenGb1andXstars-KASP184is over 10 cM.Therefore,we further phenotyped 219 F2:3lines from DS28A × PI 697274,with the aim to confirm the genomic location ofGb1and develop additional markers worthy of selection.Genotyping the two parents withGb1-flanking markers found that onlyXstars-KASP190was polymorphic between DS28A and PI 697274.Deep sequencing of the two parents identified 43,233 GBS-SNPs,with 14 in the interval harboringGb1(between 13,328,177 bp and 17,413,030 bp).One SNP at 14,241,426 bp was successfully converted to a KASP marker (Xstars-KASP170),while the others were not converted due to either sequence variation among genotypes or lack of fitness of sequences flanking the SNPs to design primers.Linkage analysis indicated thatGb1was 5.2 and 6.7 cM distal toXstars-KASP170andXstars-KASP190,respectively (Fig.1).Combining data from the two mapping populations,we conclude thatGb1resides in an interval of 913,326 bp on 1AS between 13,328,200(Xwmc818)and 14,241,426 bp(Xstars-KASP170)(Fig.1).

    3.5.Distribution of DS28A alleles at four KASP marker loci in U.S.Wheat breeding lines

    To determine the usefulness of SNP markers flankingGb1for breeding applications,86 experimental wheat lines from the 2019-2020 USDA-ARS Hard Winter Wheat Regional Performance Nursery were genotyped usingXstars-KASP170,Xstars-KASP184,Xstars-KASP190,andXstars-KASP194.Our results indicated that 20.0%,14.1%,8.5%,and 27.2%of these lines carried the DS28A alleles at theXstars-KASP170,Xstars-KASP184,Xstars-KASP190,andXstars-KASP194loci,respectively.Given that most contemporary breeding lines carry the alternative alleles at these loci,polymorphism is expected at one or more KASP loci in most breeding populations derived from DS28A and U.S.wheat accessions.Therefore,these markers should be useful for trackingGb1in marker-assisted breeding.

    4.Discussion

    Gb1is the first greenbug resistance gene identified in wheat[7].Unfortunately,Gb1has never been used in cultivar development because a new greenbug strain overcame the gene soon after its discovery[27].The new greenbug strain virulent toGb1was found in a greenhouse in Stillwater,OK and designated as greenbug biotype B,presuming that naturally occurring greenbugs in the field were avirulent toGb1,thus constituting biotype A.Likely,the loss of effectiveness to greenbug biotype B and other biotypes identified in earlier years led to the perception thatGb1was overcome by new greenbug biotypes and therefore unworthy for wheat breeding.However,further study found that the occurrence of new greenbug biotypes is a result of natural genetic variability maintained on non-cultivated grass hosts rather than a result of selective pressure from exposure to deployed resistant cultivars or hybrids [28].Recent studies indicated thatGb1confers resistance to many economically important greenbug biotypes such as A,F,J,NY,KS1,KS2,TX1,TX2,TX3,TX4,TX5,TX6,TX7,TX10,WY81 and WY12 MC[18,29],and is the only gene conferring resistance to biotype F.Therefore,Gb1remains a valuable greenbug resistance gene for breeding wheat cultivars with a wide spectrum of resistance to greenbug.More importantly,Gb1is the only greenbug resistance gene that originated from bread wheat.Compared with those from wheat relatives,Gb1can be more easily used incultivar development,although pre-breeding is still needed to transferGb1to locally adapted breeding lines or cultivars because the yield and quality traits of DS28A and PI 70715 may not meet the requirements of modern wheat cultivars.

    SinceGb1is recessive,a marker-based scheme is more efficient to selectGb1than classical phenotypic selection in cultivar development.In this study,we mappedGb1to an interval of less than 1 Mb in the short arm of chromosome 1A and developed a few KASP markers linked toGb1,includingXstars-KASP170,Xstars-KASP184,Xstars-KASP190,andXstars-KASP194.The genetic distances betweenGb1and these markers ranged from 5.2 to 14.1 cM (Fig.1).Thus,reasonable selection accuracy should be achieved when these markers,especiallyXstars-KASP170,are used to tagGb1.However,our efforts to develop KASP markers co-segregating withGb1failed because of significant sequence variation between DS28A and Chinese Spring in the target region,evidenced by the fact that many primers based on Chinese Spring could not amplify a PCR product from DS28A.Further sequencing the DS28A genome is ideal for developing markers more closely linked toGb1.

    Given that each greenbug resistance gene confers resistance to only a few greenbug biotypes and new biotypes continue to emerge,marker-assisted gene pyramiding is preferred to breed durable greenbug resistant cultivars.Of the known greenbug resistance genes,Gb7was identified from a synthetic hexaploid wheat line W 7984 [12],and KASP markers closely linked toGb7,synopGBS773-KASP and synopGBS1141-KASP,were developed for breeding applications [22].Gb5was originally identified in the wheat-T.speltoidestranslocation segment 7S#1 that is about 702.28-717.54 Mb in length and accounts for 96.4% of chromosome 7A[10,20].Deleterious linkage drag associated with this long alien chromosome segment madeGb5unworthy in wheat breeding.However,the development of 7S#1L,a shortened wheat-T.speltoidestranslocation that reduced theT.speltoidessegment to 79.5-87.8 Mb,makesGb5a usable source of resistance in cultivar development [20,30].Three KASP markers specific to the wheat-T.speltoides7A-7S translocation segment 7S#1L (KASP-Gb5-1,KASPGb5-2,andKASP-Gb5-3) have been developed and can be used to selectGb5[20].

    Gb2andGb6were transferred from rye cv ‘‘Insave” to wheat lines‘‘Amigo”and‘‘CRS1201”,respectively,by the 1AL.1RS translocation,and both genes reside in the satellite region of the 1RS chromosome arm,withGb6distal toGb2[21].More recently,a KASP marker,KASP-1RS-1,was developed[31]to target the 1RS chromosome arm whereGb2andGb6reside.This marker has the potential to effectively selectGb2andGb6.In addition,Gb3is allelic toGb4and they were mapped to the long arm of chromosome 7D.AFLP,STS,and CAPS markers closely linked toGb3were developed[11,32].Similarly,SSR markers associated withGb8are available[14].Currently,a project aimed at developing durable greenbug resistant cultivars by pyramiding these greenbug resistance genes has been initiated.The KASP markers developed in this and previous studies lay a solid foundation for this project,and further development of KASP markers forGb3andGb8is essential for the success of this project.

    CRediT authorship contribution statement

    Xiangyang Xu:Conceptualization,Supervision,Formal analysis,Writing-original draft.Genqiao Li:Investigation,Formal analysis,Writing-review&editing.Guihua Bai:Conceptualization,Supervision,Writing -review &editing.Brett F.Carver:Resources,Writing -review &editing.Ruolin Bian:Data curation,Software,Writing-review &editing.Amy Bernardo:Investigation,Writing-review &editing.J.Scott Armstrong:Resources,Writing -review &editing.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This study was supported by the USDA ARS CRIS Project(3072-21000-009-00D).Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the USDA.The USDA is an equal opportunity provider and employer.

    Appendix A.Supplementary data

    Supplementary data for this article can be found online at https://doi.org/10.1016/j.cj.2023.02.002.

    国产一区二区三区在线臀色熟女 | 成人国产av品久久久| 国产免费av片在线观看野外av| 色94色欧美一区二区| 亚洲精品自拍成人| 婷婷丁香在线五月| 搡老熟女国产l中国老女人| 亚洲精品中文字幕在线视频| 亚洲成人国产一区在线观看| 中亚洲国语对白在线视频| 成人国语在线视频| 欧美日韩国产mv在线观看视频| 丝袜在线中文字幕| 在线永久观看黄色视频| 免费女性裸体啪啪无遮挡网站| 一区二区av电影网| 国产人伦9x9x在线观看| av免费在线观看网站| 国产又爽黄色视频| 欧美激情高清一区二区三区| 国产精品秋霞免费鲁丝片| 黄色怎么调成土黄色| 亚洲中文字幕日韩| 一进一出好大好爽视频| 欧美精品人与动牲交sv欧美| 久久久久国产一级毛片高清牌| 搡老熟女国产l中国老女人| 中文字幕精品免费在线观看视频| 乱人伦中国视频| 国产一区二区激情短视频| 亚洲熟女精品中文字幕| 9色porny在线观看| 日韩中文字幕欧美一区二区| 欧美午夜高清在线| 电影成人av| 精品午夜福利视频在线观看一区 | 久久av网站| 麻豆av在线久日| 亚洲精品国产一区二区精华液| 国产精品久久久久成人av| 人人妻,人人澡人人爽秒播| 国产精品.久久久| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜免费鲁丝| 少妇粗大呻吟视频| 欧美日本中文国产一区发布| 麻豆国产av国片精品| 我的亚洲天堂| 婷婷成人精品国产| www.999成人在线观看| 欧美乱妇无乱码| 久久影院123| 老司机在亚洲福利影院| 精品人妻在线不人妻| 精品福利永久在线观看| 大片电影免费在线观看免费| 久久久久网色| 精品一区二区三卡| 久久99一区二区三区| 欧美一级毛片孕妇| 亚洲一区中文字幕在线| 午夜福利乱码中文字幕| 少妇裸体淫交视频免费看高清 | 90打野战视频偷拍视频| 久久这里只有精品19| 男男h啪啪无遮挡| 亚洲全国av大片| 国产一区二区激情短视频| 国产精品美女特级片免费视频播放器 | 一区二区三区激情视频| 热99久久久久精品小说推荐| 男女边摸边吃奶| 十分钟在线观看高清视频www| 最近最新中文字幕大全电影3 | 国产精品久久久人人做人人爽| 18禁美女被吸乳视频| 精品久久蜜臀av无| 美女国产高潮福利片在线看| 国产淫语在线视频| a级毛片在线看网站| 高清在线国产一区| 成人特级黄色片久久久久久久 | www.精华液| 国产精品一区二区精品视频观看| 国产欧美日韩一区二区三| 桃红色精品国产亚洲av| 人人妻人人添人人爽欧美一区卜| 午夜视频精品福利| 大香蕉久久网| 日韩一卡2卡3卡4卡2021年| 黑人操中国人逼视频| videos熟女内射| 国产伦人伦偷精品视频| 熟女少妇亚洲综合色aaa.| 下体分泌物呈黄色| 欧美激情 高清一区二区三区| 国产精品偷伦视频观看了| 人人妻人人添人人爽欧美一区卜| 在线亚洲精品国产二区图片欧美| 国产免费现黄频在线看| 成人国产av品久久久| 亚洲欧美一区二区三区黑人| 午夜久久久在线观看| 久热爱精品视频在线9| 国产精品国产av在线观看| 又大又爽又粗| 精品国产乱子伦一区二区三区| 亚洲国产成人一精品久久久| 国产成人精品在线电影| 可以免费在线观看a视频的电影网站| 热99国产精品久久久久久7| 亚洲国产看品久久| 这个男人来自地球电影免费观看| 色视频在线一区二区三区| 亚洲国产成人一精品久久久| 精品国产一区二区三区久久久樱花| 国产97色在线日韩免费| 老熟妇乱子伦视频在线观看| 一进一出好大好爽视频| 欧美人与性动交α欧美精品济南到| 国产1区2区3区精品| 亚洲av成人不卡在线观看播放网| 国产伦人伦偷精品视频| √禁漫天堂资源中文www| 国产视频一区二区在线看| 人妻一区二区av| 美女主播在线视频| 咕卡用的链子| 午夜福利乱码中文字幕| 久久九九热精品免费| 看免费av毛片| 午夜免费成人在线视频| 国产成人精品无人区| 黄色丝袜av网址大全| 国产成人欧美| 黄色视频,在线免费观看| 老司机午夜福利在线观看视频 | 久久精品国产亚洲av高清一级| 国产激情久久老熟女| 国产亚洲av高清不卡| 亚洲精品美女久久久久99蜜臀| 国产极品粉嫩免费观看在线| 欧美人与性动交α欧美软件| 国产精品久久久人人做人人爽| 成年人黄色毛片网站| 国产成人免费无遮挡视频| 精品人妻1区二区| 满18在线观看网站| 丰满迷人的少妇在线观看| 亚洲全国av大片| 51午夜福利影视在线观看| 高清在线国产一区| 999久久久国产精品视频| 中文字幕另类日韩欧美亚洲嫩草| 午夜久久久在线观看| 在线观看www视频免费| 久久久国产精品麻豆| 精品久久蜜臀av无| 精品国产亚洲在线| 极品教师在线免费播放| 国产成人啪精品午夜网站| 精品一区二区三区视频在线观看免费 | 91九色精品人成在线观看| 美女午夜性视频免费| 18在线观看网站| 少妇猛男粗大的猛烈进出视频| 久久久国产欧美日韩av| 久久精品成人免费网站| 在线观看免费高清a一片| 亚洲国产毛片av蜜桃av| 99riav亚洲国产免费| 亚洲色图综合在线观看| 国产精品久久久av美女十八| 高清毛片免费观看视频网站 | 操出白浆在线播放| 欧美国产精品va在线观看不卡| 一进一出好大好爽视频| 日本一区二区免费在线视频| 色老头精品视频在线观看| 亚洲第一青青草原| 日本撒尿小便嘘嘘汇集6| 曰老女人黄片| 国产午夜精品久久久久久| 少妇的丰满在线观看| 亚洲精品成人av观看孕妇| 亚洲久久久国产精品| 最新在线观看一区二区三区| 国产精品亚洲一级av第二区| 亚洲中文av在线| 久久久久久亚洲精品国产蜜桃av| 九色亚洲精品在线播放| 性高湖久久久久久久久免费观看| 亚洲avbb在线观看| 老汉色∧v一级毛片| 中文字幕另类日韩欧美亚洲嫩草| 久久久久精品国产欧美久久久| 欧美日韩亚洲高清精品| 男女之事视频高清在线观看| 久久人妻av系列| 91字幕亚洲| 狠狠婷婷综合久久久久久88av| 国产精品久久电影中文字幕 | 丝瓜视频免费看黄片| 欧美老熟妇乱子伦牲交| 色94色欧美一区二区| 国产亚洲精品久久久久5区| 欧美成狂野欧美在线观看| 成人影院久久| 国产精品熟女久久久久浪| 黑人巨大精品欧美一区二区蜜桃| 91精品三级在线观看| 丝袜人妻中文字幕| av片东京热男人的天堂| 久久国产亚洲av麻豆专区| 激情视频va一区二区三区| 欧美黄色片欧美黄色片| 大香蕉久久成人网| 最新美女视频免费是黄的| 少妇 在线观看| 少妇被粗大的猛进出69影院| 99在线人妻在线中文字幕 | 国产伦人伦偷精品视频| bbb黄色大片| 国产单亲对白刺激| 久久精品亚洲精品国产色婷小说| 激情在线观看视频在线高清 | av在线播放免费不卡| 亚洲七黄色美女视频| 91麻豆av在线| 久久久久网色| 一区二区日韩欧美中文字幕| 欧美在线一区亚洲| 法律面前人人平等表现在哪些方面| 亚洲欧美精品综合一区二区三区| 久久亚洲精品不卡| 热99re8久久精品国产| av免费在线观看网站| 国产一区二区三区在线臀色熟女 | 午夜老司机福利片| 一边摸一边做爽爽视频免费| 中文字幕另类日韩欧美亚洲嫩草| 亚洲 欧美一区二区三区| 男女无遮挡免费网站观看| 日本一区二区免费在线视频| 在线观看免费视频日本深夜| 天堂中文最新版在线下载| 国产99久久九九免费精品| 午夜福利乱码中文字幕| 免费不卡黄色视频| 999精品在线视频| 亚洲国产精品一区二区三区在线| 少妇猛男粗大的猛烈进出视频| 热99久久久久精品小说推荐| 中文字幕色久视频| 亚洲国产成人一精品久久久| 最近最新免费中文字幕在线| 高清欧美精品videossex| 老汉色av国产亚洲站长工具| 国产成人啪精品午夜网站| av天堂在线播放| 国产精品偷伦视频观看了| 欧美国产精品va在线观看不卡| 国产在线免费精品| 精品第一国产精品| 亚洲国产看品久久| 桃花免费在线播放| 欧美日韩亚洲高清精品| 99riav亚洲国产免费| 亚洲va日本ⅴa欧美va伊人久久| 国产精品九九99| 在线播放国产精品三级| 天天影视国产精品| 亚洲国产av新网站| 飞空精品影院首页| 桃红色精品国产亚洲av| www日本在线高清视频| 啦啦啦 在线观看视频| 老司机福利观看| 自线自在国产av| 久久九九热精品免费| 欧美日韩av久久| 亚洲九九香蕉| 黄色毛片三级朝国网站| 精品乱码久久久久久99久播| 午夜久久久在线观看| 国产野战对白在线观看| 国产欧美日韩综合在线一区二区| 日韩中文字幕欧美一区二区| av超薄肉色丝袜交足视频| 91九色精品人成在线观看| 99国产精品免费福利视频| 国产精品欧美亚洲77777| 在线观看人妻少妇| bbb黄色大片| 热re99久久精品国产66热6| 精品福利永久在线观看| 我要看黄色一级片免费的| 国产三级黄色录像| 黄色a级毛片大全视频| 两个人免费观看高清视频| 亚洲成a人片在线一区二区| 飞空精品影院首页| 两性夫妻黄色片| 在线观看66精品国产| 亚洲av日韩在线播放| 精品少妇内射三级| 99在线人妻在线中文字幕 | 欧美精品亚洲一区二区| 高清黄色对白视频在线免费看| 精品高清国产在线一区| 欧美精品高潮呻吟av久久| 亚洲精品自拍成人| 啦啦啦 在线观看视频| 成年人黄色毛片网站| 91精品国产国语对白视频| 久久久国产欧美日韩av| 国产免费福利视频在线观看| 国产高清videossex| 飞空精品影院首页| 久久精品国产亚洲av高清一级| 91大片在线观看| 自线自在国产av| 交换朋友夫妻互换小说| 看免费av毛片| 搡老岳熟女国产| 国产色视频综合| 美国免费a级毛片| 热99久久久久精品小说推荐| 久久香蕉激情| 欧美国产精品va在线观看不卡| 宅男免费午夜| 亚洲人成伊人成综合网2020| 国产欧美日韩精品亚洲av| 69精品国产乱码久久久| 国产精品1区2区在线观看. | 久久久精品区二区三区| 一个人免费在线观看的高清视频| 高清av免费在线| 丝袜在线中文字幕| 精品免费久久久久久久清纯 | 亚洲av片天天在线观看| 日韩视频在线欧美| 欧美精品一区二区免费开放| 757午夜福利合集在线观看| 欧美激情极品国产一区二区三区| 老司机福利观看| 国产欧美日韩一区二区三区在线| 五月开心婷婷网| 91麻豆av在线| 好男人电影高清在线观看| 国产免费福利视频在线观看| 搡老乐熟女国产| 成人av一区二区三区在线看| 俄罗斯特黄特色一大片| 欧美中文综合在线视频| 国产一区二区三区视频了| 极品教师在线免费播放| www.熟女人妻精品国产| 自线自在国产av| 人成视频在线观看免费观看| 国产精品电影一区二区三区 | 午夜福利一区二区在线看| 亚洲国产看品久久| 一级,二级,三级黄色视频| 国产在视频线精品| 成人免费观看视频高清| 久久久精品94久久精品| 97在线人人人人妻| 欧美乱妇无乱码| 手机成人av网站| 91成年电影在线观看| 久久国产精品人妻蜜桃| 自线自在国产av| 男女边摸边吃奶| 国产成+人综合+亚洲专区| 国产精品.久久久| 色视频在线一区二区三区| 亚洲国产看品久久| 精品熟女少妇八av免费久了| 欧美成人午夜精品| 免费女性裸体啪啪无遮挡网站| av国产精品久久久久影院| 国产精品久久久人人做人人爽| 亚洲成国产人片在线观看| 国产欧美日韩一区二区三区在线| 久久免费观看电影| 在线观看舔阴道视频| 亚洲精品国产精品久久久不卡| 色尼玛亚洲综合影院| 极品少妇高潮喷水抽搐| 亚洲精品自拍成人| 国产在视频线精品| 国产91精品成人一区二区三区 | 动漫黄色视频在线观看| 满18在线观看网站| 热re99久久国产66热| 国产免费av片在线观看野外av| 国产极品粉嫩免费观看在线| 亚洲欧美日韩另类电影网站| 日韩欧美免费精品| 50天的宝宝边吃奶边哭怎么回事| 国产xxxxx性猛交| bbb黄色大片| 婷婷成人精品国产| 久久免费观看电影| 高清欧美精品videossex| 成人免费观看视频高清| 91老司机精品| 在线观看免费视频网站a站| 免费在线观看黄色视频的| 亚洲色图av天堂| 国产成人精品在线电影| 国产男女内射视频| 十八禁高潮呻吟视频| 男人操女人黄网站| 欧美精品啪啪一区二区三区| 99国产精品免费福利视频| 夫妻午夜视频| 亚洲国产毛片av蜜桃av| 国产欧美日韩综合在线一区二区| 国产亚洲av高清不卡| 亚洲av第一区精品v没综合| 男男h啪啪无遮挡| 深夜精品福利| 亚洲国产中文字幕在线视频| 十八禁高潮呻吟视频| 最黄视频免费看| 国产日韩欧美视频二区| 交换朋友夫妻互换小说| 黄网站色视频无遮挡免费观看| 这个男人来自地球电影免费观看| 在线 av 中文字幕| 叶爱在线成人免费视频播放| 啦啦啦中文免费视频观看日本| 国产精品国产av在线观看| 91麻豆av在线| 韩国精品一区二区三区| 18在线观看网站| 欧美激情久久久久久爽电影 | 久9热在线精品视频| 麻豆成人av在线观看| 亚洲国产精品一区二区三区在线| 亚洲国产欧美网| 啦啦啦 在线观看视频| 国产aⅴ精品一区二区三区波| 99精品在免费线老司机午夜| 国产欧美日韩一区二区三| 淫妇啪啪啪对白视频| 亚洲精品国产精品久久久不卡| 欧美日韩国产mv在线观看视频| 18禁美女被吸乳视频| 在线 av 中文字幕| 黄色视频,在线免费观看| 少妇猛男粗大的猛烈进出视频| 成年人免费黄色播放视频| 国产成人精品久久二区二区免费| 最近最新中文字幕大全免费视频| 亚洲成人免费电影在线观看| 操出白浆在线播放| 国产一区有黄有色的免费视频| 夫妻午夜视频| 亚洲精品美女久久av网站| 中文字幕高清在线视频| 国产福利在线免费观看视频| 精品国产超薄肉色丝袜足j| 国产极品粉嫩免费观看在线| 免费少妇av软件| av一本久久久久| 欧美日本中文国产一区发布| 高清欧美精品videossex| 中亚洲国语对白在线视频| 久久婷婷成人综合色麻豆| 色婷婷av一区二区三区视频| 两个人免费观看高清视频| 高潮久久久久久久久久久不卡| 一个人免费在线观看的高清视频| 美女国产高潮福利片在线看| 亚洲色图 男人天堂 中文字幕| 精品人妻1区二区| 国产男女内射视频| 久久久久精品人妻al黑| 女人爽到高潮嗷嗷叫在线视频| cao死你这个sao货| 妹子高潮喷水视频| 十分钟在线观看高清视频www| 80岁老熟妇乱子伦牲交| 免费一级毛片在线播放高清视频 | 老司机在亚洲福利影院| 日本av免费视频播放| 亚洲精品在线观看二区| 美女扒开内裤让男人捅视频| 精品少妇黑人巨大在线播放| 美国免费a级毛片| 夜夜爽天天搞| 婷婷成人精品国产| 国产精品亚洲av一区麻豆| 考比视频在线观看| 久久 成人 亚洲| 亚洲精品中文字幕一二三四区 | 无人区码免费观看不卡 | 两个人看的免费小视频| 久久国产精品大桥未久av| 亚洲午夜精品一区,二区,三区| 久久性视频一级片| av天堂在线播放| √禁漫天堂资源中文www| 在线天堂中文资源库| av不卡在线播放| a在线观看视频网站| 久久精品国产a三级三级三级| 法律面前人人平等表现在哪些方面| 日本黄色日本黄色录像| 国产精品熟女久久久久浪| 欧美精品一区二区免费开放| tube8黄色片| 一级毛片电影观看| 色94色欧美一区二区| 午夜激情av网站| 在线观看免费日韩欧美大片| 新久久久久国产一级毛片| www.熟女人妻精品国产| 精品久久久久久久毛片微露脸| 国产精品98久久久久久宅男小说| 精品国产乱码久久久久久小说| 国产xxxxx性猛交| 亚洲精品久久午夜乱码| 满18在线观看网站| 久久久久久久大尺度免费视频| 亚洲综合色网址| 国产在线视频一区二区| 美女国产高潮福利片在线看| 欧美日韩一级在线毛片| 亚洲精品久久成人aⅴ小说| 亚洲 欧美一区二区三区| 国产福利在线免费观看视频| 久久久久久久大尺度免费视频| 大片电影免费在线观看免费| 亚洲精品国产精品久久久不卡| 激情在线观看视频在线高清 | 美女福利国产在线| 久久免费观看电影| 人人妻,人人澡人人爽秒播| 久久久久精品国产欧美久久久| 亚洲人成77777在线视频| 久热爱精品视频在线9| 精品一区二区三区四区五区乱码| 久久精品国产亚洲av香蕉五月 | 日本五十路高清| 国产aⅴ精品一区二区三区波| 国产有黄有色有爽视频| 日韩中文字幕欧美一区二区| 久久精品国产99精品国产亚洲性色 | 久久久久久久久久久久大奶| 成人国产一区最新在线观看| √禁漫天堂资源中文www| 美女高潮喷水抽搐中文字幕| 一级毛片女人18水好多| 80岁老熟妇乱子伦牲交| videosex国产| 一区二区三区国产精品乱码| 精品久久久久久久毛片微露脸| av电影中文网址| 亚洲精品中文字幕一二三四区 | 另类亚洲欧美激情| 91大片在线观看| 日韩视频一区二区在线观看| 亚洲三区欧美一区| 精品久久蜜臀av无| 国产三级黄色录像| 精品少妇一区二区三区视频日本电影| 亚洲成a人片在线一区二区| 欧美黄色片欧美黄色片| 免费日韩欧美在线观看| 18禁黄网站禁片午夜丰满| 久热这里只有精品99| 午夜91福利影院| 欧美精品一区二区免费开放| 国产不卡一卡二| 国产成人精品久久二区二区免费| 桃红色精品国产亚洲av| 免费少妇av软件| 国产免费视频播放在线视频| 最新的欧美精品一区二区| tube8黄色片| 一级毛片精品| 电影成人av| 97在线人人人人妻| 黄色a级毛片大全视频| 国产福利在线免费观看视频| 18禁观看日本| 成人18禁高潮啪啪吃奶动态图| 亚洲av第一区精品v没综合| 久久久久久久国产电影| 高清在线国产一区| 狠狠婷婷综合久久久久久88av| 亚洲国产欧美日韩在线播放| 午夜成年电影在线免费观看| 亚洲九九香蕉| 少妇粗大呻吟视频| 正在播放国产对白刺激| 免费观看av网站的网址| 亚洲专区中文字幕在线| 最近最新中文字幕大全电影3 | 黄片大片在线免费观看| 日韩视频在线欧美| 9191精品国产免费久久| tocl精华| 午夜福利一区二区在线看| 我要看黄色一级片免费的| 国产精品美女特级片免费视频播放器 | 午夜老司机福利片| 日韩欧美三级三区| 下体分泌物呈黄色| 最新在线观看一区二区三区| 亚洲精品国产精品久久久不卡|