• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Laser-Induced Graphene Conductive Fabric Decorated with Copper Nanoparticles for Electromagnetic Interference Shielding Application

    2023-12-28 08:47:24LIUWanling劉琬玲CHENChunhui陳春暉HAIWenqing海文清BISiyi畢思伊JIANGJinhua蔣金華SHAOHuiqi邵慧奇SHAOGuangwei邵光偉FUShaoju付少舉CHENNanliang陳南梁

    LIU Wanling(劉琬玲), CHEN Chunhui(陳春暉), HAI Wenqing(海文清), BI Siyi(畢思伊)*, JIANG Jinhua(蔣金華), SHAO Huiqi(邵慧奇), SHAO Guangwei(邵光偉), FU Shaoju(付少舉), CHEN Nanliang(陳南梁)*

    1 Shanghai Frontier Science Research Center for Modern Textiles, College of Textiles, Donghua University, Shanghai 201620, China

    2 Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China

    Abstract:To meet the demands for flexible electromagnetic interference(EMI) shielding materials, a type of conductive fabric is prepared by generating three-dimensional(3D) porous laser-induced graphene (LIG) in situ on the surface of the aramid fabric (AF) and then electroless plating copper. After LIG treatment, the porous AF demonstrates admirable conductivity due to the generation of graphene. The superior surface resistance of the conductive fabric can reach 1.57 Ω/sq after copper deposition, and the average EMI shielding effectiveness (SE) can reach 34.3 dB in a frequency range of 8.2 to 12.4 GHz, with the EMW absorption accounting for about 80%. The proposed technology provides a new idea for preparation of flexible EMI shielding materials.

    Key words:laser-induced graphene (LIG); electroless plating; aramid fabric (AF); electromagnetic interference (EMI)

    0 Introduction

    The emergence of the Internet and related electronic products relying on electromagnetic waves (EMWs) to transmit information over long distances has brought people into a more convenient and efficient life[1-2]. Meanwhile, electromagnetic radiation caused by excessive use of electronic equipment has aroused people’s concern[3-4]. EMW pollution not only disturbs the normal operation of instruments but also harms human tissues and organs[5-6]. Therefore, it is important to develop electromagnetic interference (EMI) shielding materials with high shielding effectiveness (SE). When EMWs act on shielding materials, the shielding response is associated with different wavelengths of EMWs which can be divided into reflection, absorption and transmission according to the action mechanism. In terms of Schelkunoff theory, the classical theory of EMI shielding, the shielding effects of shielding materials on EMWs mainly include reflection loss on the surface and the interface between different components of materials, absorption loss inside materials and multiple reflection attenuation[7-9].

    At present, EMI shielding materials are mainly divided into metal materials and non-metal materials. Metals including copper, cobalt, nickel,etc. are reflected-dominant materials, and non-metal materials including carbonic materials, conductive polymers, MXenes,etc.are absorption-dominant materials[10-12]. The metal block has prominent shielding performance but is heavy, and thus does not meet the requirement of lightweight. While carbonic materials such as graphene, carbon nanotubes and graphene oxide have low density but undesirable EMI SE. As a result, the combination of carbonic materials and metals is supposed to reduce weight and achieve a high EMI SE. However, the existing methods of graphene preparation like the mechanical stripping method, the redox method, the chemical vapor deposition method and the electrochemical method are complex and inefficient, and may cause environmental pollution[13-14], which are common problems to be solved.

    In 2014, Linetal.[15]first irradiated the surface of a commercial polyimide film with a CO2laser. The high temperature generated by the CO2laser led to surface carbonization of the polymer, and other components were released in the form of gas, thus producing three-dimensional (3D) porous laser-induced graphene (LIG). Wangetal.[16]proved that no catalyst was needed in LIG preparation, and the quality of LIG was only related to laser power. There are also many researches on flexible sensors and filtration materials of LIG[17-20]. In terms of EMI shielding, Li[21]used the laser to prepare LIG on a polyether-ether-ketone (PEEK) plate and carbon fiber/PEEK (CF/PEEK) composite, which significantly improved the EMI shielding performance of the material. Yuetal.[22]used polybenzoxazine as the precursor to prepare LIG and then used a solvent-free method to prepare LIG/Fe3O4composite, achieving both lightweight and admirable EMI shielding performance. Yinetal.[23]prepared 3D LIG on a polyimide substrate, and then modified nickel nanoparticles (NPs) in the LIG network to make thin films. The SE of the prepared sample is better than that of most carbon-based and nickel-based EMI shielding materials. Hence, laser induction is an economical, convenient and green method for graphene preparation. In addition, the generated 3D porous structure is beneficial to SE improvement[24].

    As mentioned above, the metal block is heavy, while the metallic film is an alternative with the advantage of being lightweight. The thin metallic film is easily adhered to various conductive and insulated substrates like metal, paper, textiles, wood,etc.through magnetron sputtering, electroless plating, vapor deposition, electroplating,etc.[25-29], among which electroless plating is widely used due to its advantages such as uniform coating, strong adhesion and easy operation. Consequently, electroless plating on LIG is considered as an effective strategy to generate a synergistic effect on the enhancement of SE.

    In this work, the surface of the aramid fabric (AF) is treated by the laser to generate 3D porous graphene. The influences of the laser power and the filling spacing on the quality of graphene are explored and the corresponding microstructures are characterized by scanning electron microscopy (SEM) and Raman spectroscopy. Electroless copper plating is performed to enhance the conductivity and EMI shielding properties of the fabric. The influence of electroless plating time is discussed, and X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and SEM characterizations are performed to demonstrate the microstructures. The prepared fabric displays a high EMI SE, which indicates a brilliant future in EMI shielding applications.

    1 Experiments

    1.1 Materials

    The AF (aramid 1414 needled nonwoven fabric) with 288 g/m2area density, 2.8 mm thickness and 1.5 m width was purchased from Changzhou Hualike New Material Co., Ltd., China. All chemicals (analytically pure) were purchased from Sinopharm Chemical Reagent Co., Ltd., China, and used without further purification.

    1.2 Sample characterization

    A scanning electron microscope (SU8010, TM3000, HITACHI, Japan) was used to observe the microscopic morphology of the samples. The quality of LIG was evaluated by using a laser micro-Raman spectrometer (Via-Reflex, Renishaw, UK). A four-probe tester (ST2258C, Suzhou Jingge Electronic Co., Ltd., China) was used to measure the square resistance of the samples after laser induction and electroless plating. The square resistance was measured five times to obtain an average value. An X-ray photoelectron spectroscope (Escalab250Xi, ThermoFisher Scientific, USA) was used to test the elements and valence states of the samples. The metallic crystal structure of the electroless plating samples was analyzed by using an X-ray diffractometer (Bruker D8 ADVANCE, Bruker, Germany). A vector network analyzer (PNA-N5244A, Agilent, USA) was used to test the EMI shielding performances of the samples.

    1.3 Sample preparation

    1.3.1LIGgeneration

    1)The AF was cut into a square with a size of 4 cm×4 cm, and ultrasonically cleaned with deionized water and ethanol for 5 min to remove impurities and oil stains on the fabric.

    2)The LIG was obtained by etching on the sample using a laser engraving machine (K6 Pro, Shanghai Diaotu Industrial Co., Ltd., China). The laser power was set at 1.2, 1.8, 2.4 and 3.0 W, respectively, and the filling spacing was set at 0.05, 0.20, 0.35 and 0.50 mm.

    1.3.2Synthesisofcopper-coatedcompositefabric

    1)The laser-treated graphene aramid fabric (GAF) was soaked in NiSO4solution for Ni2+ions absorption. The GAF that absorbed Ni2+ions was labeled as GAF-Ni2+.

    2)GAF-Ni2+was then soaked in NaBH4solution which was used as a reducing agent to reduce Ni2+ions to Ni0NPs at room temperature for 20 min. The GAF that absorbed Ni0was labeled as GAF-Ni0.

    3)Copper electroless plating was conducted by immersing GAF-Ni0in the electroless plating solution composed of 5 g/L CuSO4, 0.75 g/L NiSO4, 25 g/L KNaC4H4O6, 5 g/L NaOH, 3.75 g/L Na2CO3and 1 mol/L HCHO at 40 ℃ for 10, 20, 30 and 60 min, respectively. Ultimately, the obtained samples were rinsed with deionized water and dried in an oven at 60 ℃, which were labeled as CuGAF-10, CuGAF-20, CuGAF-30 and CuGAF-60, respectively. The AF electroless-plated for 60 min(without laser-treatment) were labeled as CuAF-60.

    2 Results and Discussion

    2.1 LIG characterization

    Microscopic images of GAF surfaces with different filling spacing values (at 3 W laser power) are shown in Fig.1. During the etching process, the laser is carved in one direction, and the spacing of the etched fringe can be changed by adjusting the filling spacing. When the filling spacing is 0.05 mm (Fig.1(a)), there is no obvious fringe on the fabric surface, and the spacing between the lines cannot be seen under the microscope. With the increase of the filling spacing, the fringe appears on the fabric surface and the spacing between the fringes gradually increases, and the generated LIG is less, which is consistent with the operation mode of the laser during etching(Figs.1(b)-1(d)).

    Fig.1 Electronic microscope images of GAF samples with different filling spacing values: (a) 0.05 mm; (b) 0.20 mm; (c) 0.35 mm; (d) 0.50 mm

    The pristine AF (Fig.2(a)) shows a smooth surface. The fibers on the surface of AF were carbonized by laser treatment and accompanied by the release of gaseous products, developing a 3D porous structure. As shown in Figs.2(b)-2(e), the degree of fiber breakage on the fabric surface increases, and more cavities are generated with the increase of laser power. More heat is accumulated due to stronger laser power, which leads to greater fiber destruction on the surface and a better degree of carbonization. Thus superior quality of LIG and a 3D porous structure are generated.

    Fig.2 SEM images of samples: (a) AF; (b)-(e): GAF samples obtained at the laser power of 1.2, 1.8, 2.4 and 3.0 W, respectively

    Fig.3 Raman spectra of samples: (a) AF; (b) GAF samples obtained at different laser power values

    Fig.4 XPS spectra of samples: (a) wide-scan spectra of AF and GAF; (b) C 1s core-level spectra of AF; (c) C 1s core-level spectra of GAF

    Figure 5 shows the changes in surface resistance of the GAF samples after laser treatment. When the filling spacing increases, the square resistance of the GAF sample increases from 0.15 kΩ/sq to 2.60 kΩ/sq (Fig.5(a)). This is because the distance between each conductive graphene line increases with the increase of filling spacing, which results in more discontinuous conductive paths. The laser power is another significant factor for conductivity, and the higher laser power leads to better carbonization quality. Figure 5(b) shows that the minimum square resistance (0.15 kΩ/sq) of the GAF sample is achieved under the conditions of 3.0 W laser power and 0.05 mm filling spacing.

    Fig.5 Relationship between square resistance and different parameters: (a) filling spacing; (b) laser power

    2.2 Electroless plating characterization

    The GAF samples were treated with NiSO4solution and then reduced by NaBH4before electroless plating. The SEM images of the samples before and after reduction are shown in Figs. 6(a) and 6(b). Before reduction, the fibers of GAF-Ni2+(Fig.6(a)) maintain the appearance of holes on the surface after laser treatment, and nickel sulfate can be seen uniformly attached to the fiber surface. After reduction, catalytic sites appear obviously on the fiber surface of GAF-Ni0and the distribution of catalytic sites is uniform. These catalytic sites promote the chemical deposition of metals, which is conducive to the density of the coating. Fabric samples with different plating time (CuGAF-10, CuGAF-20, CuGAF-30 and CuGAF-60) are selected to analyze micro-morphologies as shown in Figs. 6(c)-6(e). When the electroless plating time is 10 min (Fig.6(c)), some grains initially appear on the surface of CuGAF-10, and the grains are discontinuous. With the increase of electroless plating time, the grains become bigger, and the surface is gradually covered by the metal layer. After 60 min plating (Fig.6(f)), it is obvious that a dense metal coating is formed on the surface of CuGAF-60. Metal particles areinsitugrown at the dispersed and uniform catalytic sites on the graphene surface, and finally, a continuous and dense coating is formed.

    Fig.6 SEM images of samples: (a) GAF-Ni2+; (b) GAF-Ni0; (c) CuGAF-10; (d) CuGAF-20; (e) CuGAF-30; (f) CuGAF-60

    The surface elements and their states of the fabric samples before electroless plating were studied by XPS. The corresponding XPS spectra are demonstrated in Fig.7(a). The Ni 2p signal at about 857.0 eV[31]is observed in the spectra of GAF-Ni2+and GAF-Ni0. High-resolution Ni 2p XPS spectra are further analyzed in Figs. 7(b) and 7(c).

    Fig.7 XPS spectra of samples: (a) full spectra; (b) Ni 2p core-level spectra of GAF-Ni2+; (c) Ni 2p core-level spectra of GAF-Ni0

    Fig.8 XRD patterns of samples with different plating time

    For GAF-Ni2+(Fig.7 (b)), the Ni 2p signal can be decomposed into Ni2+peak and the satellite peak of Ni (Nisatpeak) at 857.2 eV and 863.7 eV[31], respectively. As shown in Fig.7(c), afterinsitureduction with NaBH4, a new Ni0peak appears at 855.9 eV but Ni2+peak still exists, indicating that some Ni2+ions are reduced to Ni0NPs. It can be seen from the above analysis that Ni0NPs formed on the fabric surface are not only the activator of electroless plating but also the anchor point of metallic coating.

    Figure 8 shows XRD patterns of samples with different electroless plating time (10, 20, 30 and 60 min). Bragg reflections at 2θof 43.3°, 50.5° and 74.2° are indexed to Cu (111), Cu (200) and Cu (220) of the hexagonal close-packed (HCP) phase according to the powder diffraction profile (PDF#01-070-3039). The characteristic lattice parameters of Cu meeta=b=c=0.361 3 nm. According to Scherrer’s formula, the mean crystalline sizedis expressed as

    d=kλ/(Bcosθ),

    (1)

    wherekis the Scherrer constant (0.89);λis the wavelength of Cu Kα(0.154 nm);Bis the full width at half maximum (FWHM) at 2θ;θis the Bragg angle.

    The calculated grain sizes of Cu NPs are 0.7, 1.0, 15.0 and 23.0 nm corresponding to the plating time of 10, 20, 30 and 60 min, respectively. With the increase of electroless plating time, Cu NPs deposit on the fabric surface and their grain sizes increase gradually.

    The square resistance of samples with different electroless plating time (10, 20, 30 and 60 min) is measured as shown in Fig.9. It can be observed that the surface resistance values of the samples significantly decrease from 12.36 Ω/sq to 2.59 Ω/sq when the electroless copper plating time increases from 10 min to 60 min.

    Fig.9 Square resistance of samples with different plating time

    2.3 EMI shielding performance

    EMI SE can be expressed as the sum of reflection loss (SE-R), absorption loss (SE-A) and internal multiple reflection loss (SE-M) of incident EMWs. When EMI SE exceeds 15 dB, the contribution of the SE-M is small and negligible[32]. The SE-R is due to an impedance mismatch between air and shielding material. A high conductive barrier shows a large impedance mismatch at the interface, resulting in the reflection loss of incident EMWs. The SE-A is the result of dielectric loss and magnetic loss.

    As shown in Fig.10, SE, SE-R and SE-A values of CuGAF samples are higher than those of CuAF-60 and GAF samples in X-band (frequency range: 8.2-12.4 GHz). This is because 3D porous LIG with low conductivity has certain EMI shielding properties. After electroless plating, a metallic layer is deposited on the surface of GAF, and the metal grain can also be attached to the inside of the pores of the damaged fibers. When the incident EMWs are transmitted to the CuGAF surface, the good conductivity of the CuGAF surface causes impedance mismatch, and part of the EMWs are reflected into free space[33]. The incident EMWs are further attenuated and absorbed thanks to the multiple reflections caused by the porous structure and the interface polarization caused by the defects on CuGAF. With the increase of electroless plating time, more Cu NPs are deposited on the fabric surface and in fiber pores, and the shielding effect becomes better.

    Fig.10 EMI shielding performance of samples: (a) SE; (b) SE-R; (c) SE-A

    As shown in Figs. 10 (a) and 10(c), the SE peaks and SE-A peaks are obvious when the electroless plating time is 20, 30 and 60 min, which may be caused by pores between the etched fibers and several parallel planes formed between the pores. EMWs can be reflected repeatedly between two parallel planes to produce multiple coherent reflected waves. When the reflected waves are in the same phase, phase interference is developed. The improvement of SE level is due to the occurrence of phase-length interference caused by the in-phase reflection of EMWs. When electroless plating time increases, the thickness of the shielding layer does not match the distance of phase-length interference. Moreover, due to the parallel resonance absorption and phase-length interference of parallel planes, the absorption peaks of CuGAF are sharp, and the EMI SE values of CuGAF samples are desirable at specific frequencies[34].

    In theory, higher conductivity leads to more reflection loss, resulting in an enhanced EMI SE value. Figure 10 (b) shows SE-R changes in various CuGAF samples. In Fig.10 (b), the curve of the sample treated only by electroless plating (CuAF-60) shows a downward trend with increasing frequency due to the impedance matching between air and the sample.

    When the electroless plating time reaches 60 min, the average SE and SE-A of CuGAF-60 are 34.3 and 28.1 dB respectively in X-band. The calculated absorption ratio (SE-A/SE) is 81.9%, and the shielding efficiency[35]is 99.9%. In addition, it is worth noting that the highest SE value of CuGAF-60 is about 80 dB at 10.9 GHz. The EMI SE values of CuGAF-60 and other shielding materials[36-38]are summarized in Table 1 and it can be seen that CuGAF-60 prepared in this work demonstrates relatively high EMI SE value in X-band.

    Table 1 EMI SE values of CuGAF-60 sample and other shielding materials

    3 Conclusions

    In this study, the LIG is generated on the surface of the AF by laser etching, which is confirmed by Raman and XPS characterization. A cost-effective electroless plating method is then used to obtain the superior conductive Cu coating on GAF. The optimal laser parameters (the laser power is 3.0 W, and the filling spacing is 0.05 mm) are determined by square resistance measurements to obtain a better conductivity (1.57 Ω/sq). By using SEM, XPS and XRD, it is confirmed that with the extension of electroless plating time, more Cu NPs are deposited on the surface of GAF, thus forming a dense coating. EMI SE values of CuGAF samples with different electroless plating time are tested. As a result, the EMI SE of CuGAF-60 can reach 34.3 dB in X-band, and its absorption accounts for 81.9%. The proposed technology provides a new idea for the processing and manufacturing of EMI shielding materials.

    人人妻人人添人人爽欧美一区卜| 动漫黄色视频在线观看| 亚洲人成伊人成综合网2020| 电影成人av| 在线观看免费日韩欧美大片| 一级作爱视频免费观看| 99香蕉大伊视频| 亚洲人成伊人成综合网2020| 大香蕉久久成人网| 别揉我奶头~嗯~啊~动态视频| 久9热在线精品视频| 欧美丝袜亚洲另类 | 国产精品 国内视频| 亚洲精品粉嫩美女一区| 久久久国产欧美日韩av| 在线观看舔阴道视频| netflix在线观看网站| 91成年电影在线观看| 无遮挡黄片免费观看| 日韩欧美国产一区二区入口| 成人av一区二区三区在线看| 亚洲 欧美 日韩 在线 免费| 国产精品亚洲一级av第二区| 国产亚洲av高清不卡| 亚洲精品在线美女| 91成人精品电影| 国产黄a三级三级三级人| 国产成人影院久久av| 精品久久蜜臀av无| 老司机亚洲免费影院| 国产男靠女视频免费网站| 亚洲中文av在线| 成人黄色视频免费在线看| 丰满人妻熟妇乱又伦精品不卡| 亚洲国产精品合色在线| 在线观看一区二区三区| 夜夜爽天天搞| 正在播放国产对白刺激| 在线观看66精品国产| 日韩精品免费视频一区二区三区| 久久精品国产亚洲av高清一级| 99久久精品国产亚洲精品| 日日爽夜夜爽网站| 亚洲国产欧美日韩在线播放| 免费高清视频大片| 18禁黄网站禁片午夜丰满| 脱女人内裤的视频| 成人av一区二区三区在线看| 亚洲狠狠婷婷综合久久图片| x7x7x7水蜜桃| 无限看片的www在线观看| 亚洲精品一区av在线观看| 久久久国产精品麻豆| 精品熟女少妇八av免费久了| 久久国产精品人妻蜜桃| 男男h啪啪无遮挡| 国产精品乱码一区二三区的特点 | 怎么达到女性高潮| 精品久久久久久成人av| 丰满人妻熟妇乱又伦精品不卡| 丁香六月欧美| 亚洲午夜理论影院| 欧美乱色亚洲激情| 手机成人av网站| 久久国产精品影院| 国产99白浆流出| 亚洲精品在线观看二区| 国产精品久久久人人做人人爽| 国产精品一区二区三区四区久久 | 国产单亲对白刺激| 精品久久蜜臀av无| 制服人妻中文乱码| 可以在线观看毛片的网站| 好看av亚洲va欧美ⅴa在| 久久国产精品影院| 国产欧美日韩一区二区三区在线| 国产深夜福利视频在线观看| 日韩 欧美 亚洲 中文字幕| 国产精品免费一区二区三区在线| 美女高潮到喷水免费观看| 99国产综合亚洲精品| 十八禁人妻一区二区| 久久影院123| 一级黄色大片毛片| 亚洲,欧美精品.| 高清毛片免费观看视频网站 | www.自偷自拍.com| 老司机亚洲免费影院| 亚洲少妇的诱惑av| 免费观看人在逋| 婷婷丁香在线五月| 亚洲成人免费电影在线观看| 国产三级黄色录像| 国产成人欧美在线观看| 麻豆成人av在线观看| 国产av一区二区精品久久| 母亲3免费完整高清在线观看| 高清av免费在线| 久久久久国产精品人妻aⅴ院| 亚洲国产毛片av蜜桃av| 欧美成人性av电影在线观看| av天堂久久9| 亚洲中文字幕日韩| 88av欧美| 亚洲欧美激情综合另类| 在线国产一区二区在线| 国产xxxxx性猛交| 亚洲七黄色美女视频| 亚洲欧美精品综合久久99| 又黄又爽又免费观看的视频| 欧美黄色片欧美黄色片| 欧美人与性动交α欧美精品济南到| 脱女人内裤的视频| 国产精品影院久久| 国内毛片毛片毛片毛片毛片| 国产成人欧美在线观看| a级毛片黄视频| 国产免费av片在线观看野外av| 午夜福利在线观看吧| 国产aⅴ精品一区二区三区波| 亚洲欧美激情在线| 国产成年人精品一区二区 | 女人高潮潮喷娇喘18禁视频| 中文字幕人妻丝袜制服| svipshipincom国产片| 亚洲欧美日韩另类电影网站| 美女高潮喷水抽搐中文字幕| 亚洲人成伊人成综合网2020| 欧美精品亚洲一区二区| 19禁男女啪啪无遮挡网站| 国产熟女午夜一区二区三区| 热re99久久国产66热| av天堂在线播放| 中文字幕人妻丝袜制服| 国产人伦9x9x在线观看| 黑人巨大精品欧美一区二区蜜桃| 久久人妻熟女aⅴ| 国产精品久久电影中文字幕| 一进一出抽搐gif免费好疼 | 丰满饥渴人妻一区二区三| 成年人免费黄色播放视频| 三级毛片av免费| 高清欧美精品videossex| 在线观看免费视频网站a站| a级毛片在线看网站| 国产高清videossex| 欧美日韩黄片免| 国产黄a三级三级三级人| 性少妇av在线| 一二三四在线观看免费中文在| 久久中文看片网| 99在线视频只有这里精品首页| 免费一级毛片在线播放高清视频 | 黄频高清免费视频| 丰满人妻熟妇乱又伦精品不卡| 热re99久久精品国产66热6| 美女高潮到喷水免费观看| 国产精品亚洲av一区麻豆| 欧美日韩av久久| 午夜福利,免费看| 国产欧美日韩综合在线一区二区| 色老头精品视频在线观看| 国产一卡二卡三卡精品| 性少妇av在线| 亚洲熟女毛片儿| 日韩三级视频一区二区三区| 成人三级做爰电影| 亚洲精品在线美女| 18禁美女被吸乳视频| 国产av一区在线观看免费| 丝袜在线中文字幕| 男女下面插进去视频免费观看| 国产人伦9x9x在线观看| 欧美+亚洲+日韩+国产| 免费女性裸体啪啪无遮挡网站| 法律面前人人平等表现在哪些方面| 激情视频va一区二区三区| 五月开心婷婷网| 狂野欧美激情性xxxx| 在线观看66精品国产| 国产三级黄色录像| 高清av免费在线| 在线观看www视频免费| 成人免费观看视频高清| 高清在线国产一区| 亚洲专区中文字幕在线| 一夜夜www| 欧美大码av| 每晚都被弄得嗷嗷叫到高潮| 久久人妻熟女aⅴ| 久久影院123| 国产深夜福利视频在线观看| 免费看十八禁软件| 丝袜美足系列| 欧美老熟妇乱子伦牲交| 亚洲成国产人片在线观看| 亚洲欧美激情在线| 亚洲人成77777在线视频| 美女扒开内裤让男人捅视频| 伊人久久大香线蕉亚洲五| 黄频高清免费视频| 色综合欧美亚洲国产小说| 国产精品久久久久成人av| 国产精品综合久久久久久久免费 | 91麻豆av在线| 国产伦一二天堂av在线观看| 最好的美女福利视频网| 两个人免费观看高清视频| 免费高清在线观看日韩| 高清毛片免费观看视频网站 | 女性被躁到高潮视频| 神马国产精品三级电影在线观看 | 国产精品偷伦视频观看了| 国产精品 欧美亚洲| 不卡一级毛片| 啪啪无遮挡十八禁网站| 美国免费a级毛片| 丰满的人妻完整版| 人人妻人人澡人人看| a级毛片黄视频| 亚洲精品美女久久久久99蜜臀| 首页视频小说图片口味搜索| 日本黄色视频三级网站网址| 91av网站免费观看| 亚洲在线自拍视频| 男女下面进入的视频免费午夜 | 99国产精品免费福利视频| 欧美黄色淫秽网站| 日本免费一区二区三区高清不卡 | 日韩欧美在线二视频| 日韩免费av在线播放| 久久久久久久久久久久大奶| 亚洲专区字幕在线| 一二三四社区在线视频社区8| 国产精品亚洲av一区麻豆| 精品一区二区三区视频在线观看免费 | a级片在线免费高清观看视频| 日本vs欧美在线观看视频| 变态另类成人亚洲欧美熟女 | 欧美黄色淫秽网站| 男人舔女人的私密视频| 黄片大片在线免费观看| 国产乱人伦免费视频| 亚洲av日韩精品久久久久久密| 国产成人啪精品午夜网站| 91字幕亚洲| 亚洲精华国产精华精| 精品高清国产在线一区| 国产欧美日韩一区二区三| 精品一区二区三区四区五区乱码| 一级黄色大片毛片| cao死你这个sao货| 99久久99久久久精品蜜桃| 国产91精品成人一区二区三区| e午夜精品久久久久久久| 丰满饥渴人妻一区二区三| 亚洲av第一区精品v没综合| 91老司机精品| 精品人妻在线不人妻| 国产成人av教育| 黄色成人免费大全| 亚洲一码二码三码区别大吗| 精品久久久精品久久久| 琪琪午夜伦伦电影理论片6080| 日本三级黄在线观看| 新久久久久国产一级毛片| 欧美成狂野欧美在线观看| 久久精品亚洲熟妇少妇任你| 国产一区二区三区在线臀色熟女 | 久久中文字幕一级| 看片在线看免费视频| 国产精品久久久人人做人人爽| 桃色一区二区三区在线观看| 伊人久久大香线蕉亚洲五| 又大又爽又粗| 亚洲欧美精品综合一区二区三区| 国产成人精品久久二区二区91| 中文字幕高清在线视频| www.999成人在线观看| 成年女人毛片免费观看观看9| 少妇粗大呻吟视频| 日韩大码丰满熟妇| 免费日韩欧美在线观看| 俄罗斯特黄特色一大片| 精品国内亚洲2022精品成人| 在线免费观看的www视频| 欧美成人免费av一区二区三区| 精品电影一区二区在线| 桃红色精品国产亚洲av| 少妇 在线观看| 免费女性裸体啪啪无遮挡网站| 一区二区三区国产精品乱码| 亚洲熟妇熟女久久| 欧美最黄视频在线播放免费 | 色综合欧美亚洲国产小说| 亚洲伊人色综图| 99在线视频只有这里精品首页| 国产亚洲av高清不卡| 99国产精品一区二区蜜桃av| 欧美日韩瑟瑟在线播放| 精品免费久久久久久久清纯| 在线观看舔阴道视频| 久久久水蜜桃国产精品网| 成人18禁在线播放| 久久精品国产亚洲av香蕉五月| 国产精品亚洲av一区麻豆| 久久人人97超碰香蕉20202| 在线观看免费日韩欧美大片| 国产亚洲精品久久久久久毛片| 大型av网站在线播放| 久久久久精品国产欧美久久久| 欧美日韩黄片免| 99热只有精品国产| 这个男人来自地球电影免费观看| 美女 人体艺术 gogo| 国产99久久九九免费精品| 精品一区二区三区视频在线观看免费 | 美女大奶头视频| av网站免费在线观看视频| www.熟女人妻精品国产| 久久国产精品影院| 亚洲av成人av| 欧美乱妇无乱码| 亚洲精品av麻豆狂野| 天天躁狠狠躁夜夜躁狠狠躁| 18美女黄网站色大片免费观看| av天堂久久9| 午夜视频精品福利| 日韩欧美免费精品| 久久久久国产一级毛片高清牌| 一级黄色大片毛片| 亚洲精华国产精华精| www日本在线高清视频| 国产一区二区三区在线臀色熟女 | 国产一区二区三区在线臀色熟女 | 男女下面进入的视频免费午夜 | 精品国产乱子伦一区二区三区| 精品国产超薄肉色丝袜足j| 久久久精品欧美日韩精品| 女人精品久久久久毛片| 97人妻天天添夜夜摸| 岛国视频午夜一区免费看| 国产精品成人在线| 99国产精品99久久久久| 亚洲欧美日韩无卡精品| 亚洲一区二区三区欧美精品| 欧美久久黑人一区二区| 伊人久久大香线蕉亚洲五| 嫩草影院精品99| 法律面前人人平等表现在哪些方面| 亚洲成人免费电影在线观看| 亚洲精品国产精品久久久不卡| 日本撒尿小便嘘嘘汇集6| 老司机亚洲免费影院| 美女高潮喷水抽搐中文字幕| 久久九九热精品免费| 日日爽夜夜爽网站| 日韩 欧美 亚洲 中文字幕| 成人国语在线视频| 亚洲国产精品999在线| 亚洲美女黄片视频| 欧美中文日本在线观看视频| 国产又爽黄色视频| 一级片'在线观看视频| 精品久久久久久,| 最新在线观看一区二区三区| 美女大奶头视频| 女人被狂操c到高潮| 精品人妻1区二区| 国产精品秋霞免费鲁丝片| 国产高清视频在线播放一区| 18禁黄网站禁片午夜丰满| 大型黄色视频在线免费观看| 国产麻豆69| 日韩欧美国产一区二区入口| 夜夜夜夜夜久久久久| 国产男靠女视频免费网站| av片东京热男人的天堂| 国产成人系列免费观看| 91麻豆av在线| 男女做爰动态图高潮gif福利片 | 精品国产乱子伦一区二区三区| 男女床上黄色一级片免费看| 窝窝影院91人妻| 在线天堂中文资源库| 精品国内亚洲2022精品成人| 国产一区二区三区综合在线观看| 在线观看免费高清a一片| 欧美黑人欧美精品刺激| av网站在线播放免费| 国产亚洲av高清不卡| 亚洲精品成人av观看孕妇| 欧美日韩国产mv在线观看视频| 亚洲男人天堂网一区| 操美女的视频在线观看| 不卡一级毛片| 国产精品久久久久久人妻精品电影| 亚洲精品久久午夜乱码| 亚洲成人精品中文字幕电影 | 国产成人欧美在线观看| 久久人人97超碰香蕉20202| 麻豆国产av国片精品| 又紧又爽又黄一区二区| 男女之事视频高清在线观看| 黑人操中国人逼视频| 99热只有精品国产| 首页视频小说图片口味搜索| 亚洲一区二区三区色噜噜 | 欧美乱妇无乱码| 91在线观看av| 国产精品二区激情视频| 自拍欧美九色日韩亚洲蝌蚪91| 欧美一区二区精品小视频在线| 18美女黄网站色大片免费观看| 中文字幕精品免费在线观看视频| 黄色视频不卡| 亚洲精品国产色婷婷电影| 久久人人精品亚洲av| 一区在线观看完整版| 亚洲午夜精品一区,二区,三区| 嫩草影院精品99| 日韩大尺度精品在线看网址 | 午夜免费观看网址| 国产精品永久免费网站| 中文字幕人妻丝袜一区二区| 在线国产一区二区在线| 狠狠狠狠99中文字幕| 一级a爱视频在线免费观看| 一区二区三区精品91| 12—13女人毛片做爰片一| 人人妻人人澡人人看| 亚洲美女黄片视频| 国产精品 欧美亚洲| 18禁国产床啪视频网站| 啦啦啦在线免费观看视频4| 亚洲狠狠婷婷综合久久图片| 亚洲一区中文字幕在线| 黄片大片在线免费观看| 97碰自拍视频| 中文字幕人妻熟女乱码| 夜夜看夜夜爽夜夜摸 | 免费观看精品视频网站| 极品人妻少妇av视频| 成人亚洲精品av一区二区 | 99热只有精品国产| 精品高清国产在线一区| 亚洲av第一区精品v没综合| 久久国产亚洲av麻豆专区| 欧美日韩亚洲综合一区二区三区_| 国产99久久九九免费精品| 亚洲av电影在线进入| 精品一区二区三区av网在线观看| 精品久久久久久久毛片微露脸| 成年女人毛片免费观看观看9| 久久国产乱子伦精品免费另类| 中文字幕另类日韩欧美亚洲嫩草| 午夜日韩欧美国产| 99国产精品一区二区蜜桃av| 亚洲专区字幕在线| 这个男人来自地球电影免费观看| 手机成人av网站| 日日干狠狠操夜夜爽| 一本综合久久免费| 免费看十八禁软件| 成人永久免费在线观看视频| 国产精品 国内视频| 国产一区二区三区视频了| 18禁裸乳无遮挡免费网站照片 | 国产精品免费视频内射| 男女下面插进去视频免费观看| 国产伦一二天堂av在线观看| 免费看十八禁软件| 手机成人av网站| 欧美乱妇无乱码| 婷婷精品国产亚洲av在线| 久久久国产成人免费| 久久人人精品亚洲av| x7x7x7水蜜桃| 男女做爰动态图高潮gif福利片 | 中文字幕另类日韩欧美亚洲嫩草| 亚洲专区国产一区二区| av有码第一页| 亚洲 欧美一区二区三区| 日本五十路高清| 99精品久久久久人妻精品| 亚洲中文日韩欧美视频| 亚洲片人在线观看| 国产黄色免费在线视频| 亚洲av成人一区二区三| 国产精品一区二区三区四区久久 | 无人区码免费观看不卡| 国产欧美日韩一区二区三区在线| 久久久国产成人免费| 亚洲精品在线美女| 久久久久久大精品| 免费一级毛片在线播放高清视频 | 中文亚洲av片在线观看爽| 夜夜爽天天搞| 三级毛片av免费| 精品国内亚洲2022精品成人| 精品国产超薄肉色丝袜足j| 女同久久另类99精品国产91| 国产真人三级小视频在线观看| 香蕉丝袜av| 精品日产1卡2卡| 亚洲中文字幕日韩| 一二三四社区在线视频社区8| 国产精品美女特级片免费视频播放器 | 国产麻豆69| 国产成+人综合+亚洲专区| 久久婷婷成人综合色麻豆| 久久99一区二区三区| 成人影院久久| 一本综合久久免费| 男女做爰动态图高潮gif福利片 | 久久久久久人人人人人| av有码第一页| 国产高清国产精品国产三级| 妹子高潮喷水视频| 亚洲精品美女久久av网站| 国内久久婷婷六月综合欲色啪| 亚洲三区欧美一区| 精品国产美女av久久久久小说| 国产区一区二久久| 曰老女人黄片| 国产又色又爽无遮挡免费看| 热99re8久久精品国产| 国产精品乱码一区二三区的特点 | 777久久人妻少妇嫩草av网站| 美女午夜性视频免费| 大香蕉久久成人网| 欧美日韩精品网址| 日本黄色日本黄色录像| 欧美中文日本在线观看视频| 亚洲三区欧美一区| 天堂动漫精品| 成人18禁在线播放| 久久精品91蜜桃| 午夜福利免费观看在线| 国产aⅴ精品一区二区三区波| 欧美亚洲日本最大视频资源| 久久香蕉国产精品| 亚洲国产中文字幕在线视频| 久久精品91蜜桃| 狠狠狠狠99中文字幕| 中出人妻视频一区二区| 欧美激情久久久久久爽电影 | 97超级碰碰碰精品色视频在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 最近最新免费中文字幕在线| 可以免费在线观看a视频的电影网站| 精品电影一区二区在线| 91av网站免费观看| 精品国内亚洲2022精品成人| 波多野结衣高清无吗| 久久人妻福利社区极品人妻图片| 丰满迷人的少妇在线观看| 在线观看www视频免费| 成年人免费黄色播放视频| 夜夜躁狠狠躁天天躁| 亚洲精品在线观看二区| a在线观看视频网站| 夜夜看夜夜爽夜夜摸 | 91精品三级在线观看| 成年女人毛片免费观看观看9| 国产精品亚洲一级av第二区| 亚洲一码二码三码区别大吗| 精品久久蜜臀av无| 国产伦一二天堂av在线观看| 一二三四社区在线视频社区8| 国产有黄有色有爽视频| 日本wwww免费看| 精品国产国语对白av| 少妇粗大呻吟视频| 国产一区二区激情短视频| 欧美色视频一区免费| a级毛片黄视频| 日韩 欧美 亚洲 中文字幕| 淫妇啪啪啪对白视频| 手机成人av网站| 精品人妻在线不人妻| 69av精品久久久久久| 级片在线观看| 少妇被粗大的猛进出69影院| 在线观看免费午夜福利视频| 男男h啪啪无遮挡| 日韩欧美一区二区三区在线观看| 操出白浆在线播放| 不卡av一区二区三区| 国产精品av久久久久免费| 91大片在线观看| 亚洲第一青青草原| 久久久精品国产亚洲av高清涩受| 欧美精品啪啪一区二区三区| 中文字幕人妻丝袜制服| 50天的宝宝边吃奶边哭怎么回事| 亚洲视频免费观看视频| 欧美黄色淫秽网站| 日本欧美视频一区| 国产激情久久老熟女| 少妇被粗大的猛进出69影院| 国产日韩一区二区三区精品不卡| 宅男免费午夜| 欧美久久黑人一区二区| 男女床上黄色一级片免费看| 日韩大尺度精品在线看网址 | 国产主播在线观看一区二区| 多毛熟女@视频| 日韩欧美三级三区| 久久青草综合色| 国产精品日韩av在线免费观看 | 国产熟女xx| 精品免费久久久久久久清纯| 一边摸一边抽搐一进一出视频| 久久久久久久久久久久大奶|