• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Laser-Induced Graphene Conductive Fabric Decorated with Copper Nanoparticles for Electromagnetic Interference Shielding Application

    2023-12-28 08:47:24LIUWanling劉琬玲CHENChunhui陳春暉HAIWenqing海文清BISiyi畢思伊JIANGJinhua蔣金華SHAOHuiqi邵慧奇SHAOGuangwei邵光偉FUShaoju付少舉CHENNanliang陳南梁

    LIU Wanling(劉琬玲), CHEN Chunhui(陳春暉), HAI Wenqing(海文清), BI Siyi(畢思伊)*, JIANG Jinhua(蔣金華), SHAO Huiqi(邵慧奇), SHAO Guangwei(邵光偉), FU Shaoju(付少舉), CHEN Nanliang(陳南梁)*

    1 Shanghai Frontier Science Research Center for Modern Textiles, College of Textiles, Donghua University, Shanghai 201620, China

    2 Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China

    Abstract:To meet the demands for flexible electromagnetic interference(EMI) shielding materials, a type of conductive fabric is prepared by generating three-dimensional(3D) porous laser-induced graphene (LIG) in situ on the surface of the aramid fabric (AF) and then electroless plating copper. After LIG treatment, the porous AF demonstrates admirable conductivity due to the generation of graphene. The superior surface resistance of the conductive fabric can reach 1.57 Ω/sq after copper deposition, and the average EMI shielding effectiveness (SE) can reach 34.3 dB in a frequency range of 8.2 to 12.4 GHz, with the EMW absorption accounting for about 80%. The proposed technology provides a new idea for preparation of flexible EMI shielding materials.

    Key words:laser-induced graphene (LIG); electroless plating; aramid fabric (AF); electromagnetic interference (EMI)

    0 Introduction

    The emergence of the Internet and related electronic products relying on electromagnetic waves (EMWs) to transmit information over long distances has brought people into a more convenient and efficient life[1-2]. Meanwhile, electromagnetic radiation caused by excessive use of electronic equipment has aroused people’s concern[3-4]. EMW pollution not only disturbs the normal operation of instruments but also harms human tissues and organs[5-6]. Therefore, it is important to develop electromagnetic interference (EMI) shielding materials with high shielding effectiveness (SE). When EMWs act on shielding materials, the shielding response is associated with different wavelengths of EMWs which can be divided into reflection, absorption and transmission according to the action mechanism. In terms of Schelkunoff theory, the classical theory of EMI shielding, the shielding effects of shielding materials on EMWs mainly include reflection loss on the surface and the interface between different components of materials, absorption loss inside materials and multiple reflection attenuation[7-9].

    At present, EMI shielding materials are mainly divided into metal materials and non-metal materials. Metals including copper, cobalt, nickel,etc. are reflected-dominant materials, and non-metal materials including carbonic materials, conductive polymers, MXenes,etc.are absorption-dominant materials[10-12]. The metal block has prominent shielding performance but is heavy, and thus does not meet the requirement of lightweight. While carbonic materials such as graphene, carbon nanotubes and graphene oxide have low density but undesirable EMI SE. As a result, the combination of carbonic materials and metals is supposed to reduce weight and achieve a high EMI SE. However, the existing methods of graphene preparation like the mechanical stripping method, the redox method, the chemical vapor deposition method and the electrochemical method are complex and inefficient, and may cause environmental pollution[13-14], which are common problems to be solved.

    In 2014, Linetal.[15]first irradiated the surface of a commercial polyimide film with a CO2laser. The high temperature generated by the CO2laser led to surface carbonization of the polymer, and other components were released in the form of gas, thus producing three-dimensional (3D) porous laser-induced graphene (LIG). Wangetal.[16]proved that no catalyst was needed in LIG preparation, and the quality of LIG was only related to laser power. There are also many researches on flexible sensors and filtration materials of LIG[17-20]. In terms of EMI shielding, Li[21]used the laser to prepare LIG on a polyether-ether-ketone (PEEK) plate and carbon fiber/PEEK (CF/PEEK) composite, which significantly improved the EMI shielding performance of the material. Yuetal.[22]used polybenzoxazine as the precursor to prepare LIG and then used a solvent-free method to prepare LIG/Fe3O4composite, achieving both lightweight and admirable EMI shielding performance. Yinetal.[23]prepared 3D LIG on a polyimide substrate, and then modified nickel nanoparticles (NPs) in the LIG network to make thin films. The SE of the prepared sample is better than that of most carbon-based and nickel-based EMI shielding materials. Hence, laser induction is an economical, convenient and green method for graphene preparation. In addition, the generated 3D porous structure is beneficial to SE improvement[24].

    As mentioned above, the metal block is heavy, while the metallic film is an alternative with the advantage of being lightweight. The thin metallic film is easily adhered to various conductive and insulated substrates like metal, paper, textiles, wood,etc.through magnetron sputtering, electroless plating, vapor deposition, electroplating,etc.[25-29], among which electroless plating is widely used due to its advantages such as uniform coating, strong adhesion and easy operation. Consequently, electroless plating on LIG is considered as an effective strategy to generate a synergistic effect on the enhancement of SE.

    In this work, the surface of the aramid fabric (AF) is treated by the laser to generate 3D porous graphene. The influences of the laser power and the filling spacing on the quality of graphene are explored and the corresponding microstructures are characterized by scanning electron microscopy (SEM) and Raman spectroscopy. Electroless copper plating is performed to enhance the conductivity and EMI shielding properties of the fabric. The influence of electroless plating time is discussed, and X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and SEM characterizations are performed to demonstrate the microstructures. The prepared fabric displays a high EMI SE, which indicates a brilliant future in EMI shielding applications.

    1 Experiments

    1.1 Materials

    The AF (aramid 1414 needled nonwoven fabric) with 288 g/m2area density, 2.8 mm thickness and 1.5 m width was purchased from Changzhou Hualike New Material Co., Ltd., China. All chemicals (analytically pure) were purchased from Sinopharm Chemical Reagent Co., Ltd., China, and used without further purification.

    1.2 Sample characterization

    A scanning electron microscope (SU8010, TM3000, HITACHI, Japan) was used to observe the microscopic morphology of the samples. The quality of LIG was evaluated by using a laser micro-Raman spectrometer (Via-Reflex, Renishaw, UK). A four-probe tester (ST2258C, Suzhou Jingge Electronic Co., Ltd., China) was used to measure the square resistance of the samples after laser induction and electroless plating. The square resistance was measured five times to obtain an average value. An X-ray photoelectron spectroscope (Escalab250Xi, ThermoFisher Scientific, USA) was used to test the elements and valence states of the samples. The metallic crystal structure of the electroless plating samples was analyzed by using an X-ray diffractometer (Bruker D8 ADVANCE, Bruker, Germany). A vector network analyzer (PNA-N5244A, Agilent, USA) was used to test the EMI shielding performances of the samples.

    1.3 Sample preparation

    1.3.1LIGgeneration

    1)The AF was cut into a square with a size of 4 cm×4 cm, and ultrasonically cleaned with deionized water and ethanol for 5 min to remove impurities and oil stains on the fabric.

    2)The LIG was obtained by etching on the sample using a laser engraving machine (K6 Pro, Shanghai Diaotu Industrial Co., Ltd., China). The laser power was set at 1.2, 1.8, 2.4 and 3.0 W, respectively, and the filling spacing was set at 0.05, 0.20, 0.35 and 0.50 mm.

    1.3.2Synthesisofcopper-coatedcompositefabric

    1)The laser-treated graphene aramid fabric (GAF) was soaked in NiSO4solution for Ni2+ions absorption. The GAF that absorbed Ni2+ions was labeled as GAF-Ni2+.

    2)GAF-Ni2+was then soaked in NaBH4solution which was used as a reducing agent to reduce Ni2+ions to Ni0NPs at room temperature for 20 min. The GAF that absorbed Ni0was labeled as GAF-Ni0.

    3)Copper electroless plating was conducted by immersing GAF-Ni0in the electroless plating solution composed of 5 g/L CuSO4, 0.75 g/L NiSO4, 25 g/L KNaC4H4O6, 5 g/L NaOH, 3.75 g/L Na2CO3and 1 mol/L HCHO at 40 ℃ for 10, 20, 30 and 60 min, respectively. Ultimately, the obtained samples were rinsed with deionized water and dried in an oven at 60 ℃, which were labeled as CuGAF-10, CuGAF-20, CuGAF-30 and CuGAF-60, respectively. The AF electroless-plated for 60 min(without laser-treatment) were labeled as CuAF-60.

    2 Results and Discussion

    2.1 LIG characterization

    Microscopic images of GAF surfaces with different filling spacing values (at 3 W laser power) are shown in Fig.1. During the etching process, the laser is carved in one direction, and the spacing of the etched fringe can be changed by adjusting the filling spacing. When the filling spacing is 0.05 mm (Fig.1(a)), there is no obvious fringe on the fabric surface, and the spacing between the lines cannot be seen under the microscope. With the increase of the filling spacing, the fringe appears on the fabric surface and the spacing between the fringes gradually increases, and the generated LIG is less, which is consistent with the operation mode of the laser during etching(Figs.1(b)-1(d)).

    Fig.1 Electronic microscope images of GAF samples with different filling spacing values: (a) 0.05 mm; (b) 0.20 mm; (c) 0.35 mm; (d) 0.50 mm

    The pristine AF (Fig.2(a)) shows a smooth surface. The fibers on the surface of AF were carbonized by laser treatment and accompanied by the release of gaseous products, developing a 3D porous structure. As shown in Figs.2(b)-2(e), the degree of fiber breakage on the fabric surface increases, and more cavities are generated with the increase of laser power. More heat is accumulated due to stronger laser power, which leads to greater fiber destruction on the surface and a better degree of carbonization. Thus superior quality of LIG and a 3D porous structure are generated.

    Fig.2 SEM images of samples: (a) AF; (b)-(e): GAF samples obtained at the laser power of 1.2, 1.8, 2.4 and 3.0 W, respectively

    Fig.3 Raman spectra of samples: (a) AF; (b) GAF samples obtained at different laser power values

    Fig.4 XPS spectra of samples: (a) wide-scan spectra of AF and GAF; (b) C 1s core-level spectra of AF; (c) C 1s core-level spectra of GAF

    Figure 5 shows the changes in surface resistance of the GAF samples after laser treatment. When the filling spacing increases, the square resistance of the GAF sample increases from 0.15 kΩ/sq to 2.60 kΩ/sq (Fig.5(a)). This is because the distance between each conductive graphene line increases with the increase of filling spacing, which results in more discontinuous conductive paths. The laser power is another significant factor for conductivity, and the higher laser power leads to better carbonization quality. Figure 5(b) shows that the minimum square resistance (0.15 kΩ/sq) of the GAF sample is achieved under the conditions of 3.0 W laser power and 0.05 mm filling spacing.

    Fig.5 Relationship between square resistance and different parameters: (a) filling spacing; (b) laser power

    2.2 Electroless plating characterization

    The GAF samples were treated with NiSO4solution and then reduced by NaBH4before electroless plating. The SEM images of the samples before and after reduction are shown in Figs. 6(a) and 6(b). Before reduction, the fibers of GAF-Ni2+(Fig.6(a)) maintain the appearance of holes on the surface after laser treatment, and nickel sulfate can be seen uniformly attached to the fiber surface. After reduction, catalytic sites appear obviously on the fiber surface of GAF-Ni0and the distribution of catalytic sites is uniform. These catalytic sites promote the chemical deposition of metals, which is conducive to the density of the coating. Fabric samples with different plating time (CuGAF-10, CuGAF-20, CuGAF-30 and CuGAF-60) are selected to analyze micro-morphologies as shown in Figs. 6(c)-6(e). When the electroless plating time is 10 min (Fig.6(c)), some grains initially appear on the surface of CuGAF-10, and the grains are discontinuous. With the increase of electroless plating time, the grains become bigger, and the surface is gradually covered by the metal layer. After 60 min plating (Fig.6(f)), it is obvious that a dense metal coating is formed on the surface of CuGAF-60. Metal particles areinsitugrown at the dispersed and uniform catalytic sites on the graphene surface, and finally, a continuous and dense coating is formed.

    Fig.6 SEM images of samples: (a) GAF-Ni2+; (b) GAF-Ni0; (c) CuGAF-10; (d) CuGAF-20; (e) CuGAF-30; (f) CuGAF-60

    The surface elements and their states of the fabric samples before electroless plating were studied by XPS. The corresponding XPS spectra are demonstrated in Fig.7(a). The Ni 2p signal at about 857.0 eV[31]is observed in the spectra of GAF-Ni2+and GAF-Ni0. High-resolution Ni 2p XPS spectra are further analyzed in Figs. 7(b) and 7(c).

    Fig.7 XPS spectra of samples: (a) full spectra; (b) Ni 2p core-level spectra of GAF-Ni2+; (c) Ni 2p core-level spectra of GAF-Ni0

    Fig.8 XRD patterns of samples with different plating time

    For GAF-Ni2+(Fig.7 (b)), the Ni 2p signal can be decomposed into Ni2+peak and the satellite peak of Ni (Nisatpeak) at 857.2 eV and 863.7 eV[31], respectively. As shown in Fig.7(c), afterinsitureduction with NaBH4, a new Ni0peak appears at 855.9 eV but Ni2+peak still exists, indicating that some Ni2+ions are reduced to Ni0NPs. It can be seen from the above analysis that Ni0NPs formed on the fabric surface are not only the activator of electroless plating but also the anchor point of metallic coating.

    Figure 8 shows XRD patterns of samples with different electroless plating time (10, 20, 30 and 60 min). Bragg reflections at 2θof 43.3°, 50.5° and 74.2° are indexed to Cu (111), Cu (200) and Cu (220) of the hexagonal close-packed (HCP) phase according to the powder diffraction profile (PDF#01-070-3039). The characteristic lattice parameters of Cu meeta=b=c=0.361 3 nm. According to Scherrer’s formula, the mean crystalline sizedis expressed as

    d=kλ/(Bcosθ),

    (1)

    wherekis the Scherrer constant (0.89);λis the wavelength of Cu Kα(0.154 nm);Bis the full width at half maximum (FWHM) at 2θ;θis the Bragg angle.

    The calculated grain sizes of Cu NPs are 0.7, 1.0, 15.0 and 23.0 nm corresponding to the plating time of 10, 20, 30 and 60 min, respectively. With the increase of electroless plating time, Cu NPs deposit on the fabric surface and their grain sizes increase gradually.

    The square resistance of samples with different electroless plating time (10, 20, 30 and 60 min) is measured as shown in Fig.9. It can be observed that the surface resistance values of the samples significantly decrease from 12.36 Ω/sq to 2.59 Ω/sq when the electroless copper plating time increases from 10 min to 60 min.

    Fig.9 Square resistance of samples with different plating time

    2.3 EMI shielding performance

    EMI SE can be expressed as the sum of reflection loss (SE-R), absorption loss (SE-A) and internal multiple reflection loss (SE-M) of incident EMWs. When EMI SE exceeds 15 dB, the contribution of the SE-M is small and negligible[32]. The SE-R is due to an impedance mismatch between air and shielding material. A high conductive barrier shows a large impedance mismatch at the interface, resulting in the reflection loss of incident EMWs. The SE-A is the result of dielectric loss and magnetic loss.

    As shown in Fig.10, SE, SE-R and SE-A values of CuGAF samples are higher than those of CuAF-60 and GAF samples in X-band (frequency range: 8.2-12.4 GHz). This is because 3D porous LIG with low conductivity has certain EMI shielding properties. After electroless plating, a metallic layer is deposited on the surface of GAF, and the metal grain can also be attached to the inside of the pores of the damaged fibers. When the incident EMWs are transmitted to the CuGAF surface, the good conductivity of the CuGAF surface causes impedance mismatch, and part of the EMWs are reflected into free space[33]. The incident EMWs are further attenuated and absorbed thanks to the multiple reflections caused by the porous structure and the interface polarization caused by the defects on CuGAF. With the increase of electroless plating time, more Cu NPs are deposited on the fabric surface and in fiber pores, and the shielding effect becomes better.

    Fig.10 EMI shielding performance of samples: (a) SE; (b) SE-R; (c) SE-A

    As shown in Figs. 10 (a) and 10(c), the SE peaks and SE-A peaks are obvious when the electroless plating time is 20, 30 and 60 min, which may be caused by pores between the etched fibers and several parallel planes formed between the pores. EMWs can be reflected repeatedly between two parallel planes to produce multiple coherent reflected waves. When the reflected waves are in the same phase, phase interference is developed. The improvement of SE level is due to the occurrence of phase-length interference caused by the in-phase reflection of EMWs. When electroless plating time increases, the thickness of the shielding layer does not match the distance of phase-length interference. Moreover, due to the parallel resonance absorption and phase-length interference of parallel planes, the absorption peaks of CuGAF are sharp, and the EMI SE values of CuGAF samples are desirable at specific frequencies[34].

    In theory, higher conductivity leads to more reflection loss, resulting in an enhanced EMI SE value. Figure 10 (b) shows SE-R changes in various CuGAF samples. In Fig.10 (b), the curve of the sample treated only by electroless plating (CuAF-60) shows a downward trend with increasing frequency due to the impedance matching between air and the sample.

    When the electroless plating time reaches 60 min, the average SE and SE-A of CuGAF-60 are 34.3 and 28.1 dB respectively in X-band. The calculated absorption ratio (SE-A/SE) is 81.9%, and the shielding efficiency[35]is 99.9%. In addition, it is worth noting that the highest SE value of CuGAF-60 is about 80 dB at 10.9 GHz. The EMI SE values of CuGAF-60 and other shielding materials[36-38]are summarized in Table 1 and it can be seen that CuGAF-60 prepared in this work demonstrates relatively high EMI SE value in X-band.

    Table 1 EMI SE values of CuGAF-60 sample and other shielding materials

    3 Conclusions

    In this study, the LIG is generated on the surface of the AF by laser etching, which is confirmed by Raman and XPS characterization. A cost-effective electroless plating method is then used to obtain the superior conductive Cu coating on GAF. The optimal laser parameters (the laser power is 3.0 W, and the filling spacing is 0.05 mm) are determined by square resistance measurements to obtain a better conductivity (1.57 Ω/sq). By using SEM, XPS and XRD, it is confirmed that with the extension of electroless plating time, more Cu NPs are deposited on the surface of GAF, thus forming a dense coating. EMI SE values of CuGAF samples with different electroless plating time are tested. As a result, the EMI SE of CuGAF-60 can reach 34.3 dB in X-band, and its absorption accounts for 81.9%. The proposed technology provides a new idea for the processing and manufacturing of EMI shielding materials.

    免费在线观看影片大全网站| 日韩三级视频一区二区三区| 国产亚洲av嫩草精品影院| 国产成人欧美在线观看| 好看av亚洲va欧美ⅴa在| 精品电影一区二区在线| 免费高清视频大片| 香蕉国产在线看| 欧美另类亚洲清纯唯美| 久热爱精品视频在线9| 日本五十路高清| 国产成年人精品一区二区| 一级,二级,三级黄色视频| 中文字幕色久视频| 超碰成人久久| 精品人妻1区二区| 国产欧美日韩精品亚洲av| 国产精品 国内视频| 国产单亲对白刺激| 一边摸一边抽搐一进一出视频| 大型黄色视频在线免费观看| 久久久国产精品麻豆| 波多野结衣一区麻豆| 久久午夜综合久久蜜桃| 亚洲欧美日韩另类电影网站| 精品国产美女av久久久久小说| 国产成人精品久久二区二区91| 在线av久久热| 免费在线观看视频国产中文字幕亚洲| 免费少妇av软件| 91av网站免费观看| 中出人妻视频一区二区| 久久精品亚洲熟妇少妇任你| 国产精品香港三级国产av潘金莲| 最近最新中文字幕大全免费视频| 亚洲国产精品久久男人天堂| 中文亚洲av片在线观看爽| avwww免费| 最近最新中文字幕大全免费视频| 国产精品永久免费网站| 侵犯人妻中文字幕一二三四区| 男人舔女人下体高潮全视频| 中国美女看黄片| 午夜久久久在线观看| 日韩精品中文字幕看吧| 久久亚洲精品不卡| 亚洲国产精品成人综合色| 精品欧美一区二区三区在线| av免费在线观看网站| 一区福利在线观看| 久久久久九九精品影院| 黄色a级毛片大全视频| 日韩中文字幕欧美一区二区| 18禁国产床啪视频网站| 久久精品成人免费网站| 精品久久久久久久久久免费视频| 亚洲精品在线观看二区| 亚洲精品国产精品久久久不卡| 久久久国产成人免费| 精品国内亚洲2022精品成人| 国产精品影院久久| 久久久精品欧美日韩精品| x7x7x7水蜜桃| 天天一区二区日本电影三级 | 国产精品 国内视频| www.精华液| 亚洲色图av天堂| av欧美777| 夜夜爽天天搞| 久久国产精品人妻蜜桃| 色婷婷久久久亚洲欧美| 欧美+亚洲+日韩+国产| avwww免费| 国产伦人伦偷精品视频| 欧美成人一区二区免费高清观看 | 岛国视频午夜一区免费看| 在线观看免费日韩欧美大片| 欧美一级a爱片免费观看看 | 999久久久精品免费观看国产| 99精品欧美一区二区三区四区| 成年人黄色毛片网站| 9色porny在线观看| 天天躁夜夜躁狠狠躁躁| 久久精品人人爽人人爽视色| 久久草成人影院| 亚洲国产精品合色在线| 国产蜜桃级精品一区二区三区| a级毛片在线看网站| 丰满人妻熟妇乱又伦精品不卡| 亚洲欧美日韩另类电影网站| 午夜免费观看网址| 一夜夜www| 99在线视频只有这里精品首页| 女人被狂操c到高潮| 两个人看的免费小视频| 亚洲专区字幕在线| 老熟妇仑乱视频hdxx| 国产一区在线观看成人免费| 色综合亚洲欧美另类图片| 国产成人精品在线电影| 一区二区三区精品91| 欧美黄色淫秽网站| 欧美久久黑人一区二区| 一本综合久久免费| 黄色成人免费大全| 国产野战对白在线观看| 天堂√8在线中文| 午夜福利视频1000在线观看 | 国产精品久久久人人做人人爽| 午夜福利在线观看吧| 久久热在线av| 人人妻,人人澡人人爽秒播| 免费看美女性在线毛片视频| 中文字幕最新亚洲高清| 不卡一级毛片| 精品国产乱码久久久久久男人| 成人三级做爰电影| 亚洲 欧美 日韩 在线 免费| 19禁男女啪啪无遮挡网站| 无人区码免费观看不卡| 精品福利观看| 亚洲精品美女久久av网站| 免费在线观看亚洲国产| 国产精品免费视频内射| av有码第一页| 亚洲国产中文字幕在线视频| 久久久久久人人人人人| 满18在线观看网站| 久久热在线av| 亚洲自拍偷在线| 男女下面插进去视频免费观看| 亚洲第一电影网av| www.自偷自拍.com| 亚洲av熟女| 正在播放国产对白刺激| 日韩欧美国产一区二区入口| 夜夜爽天天搞| 丁香六月欧美| avwww免费| 国产亚洲av嫩草精品影院| 麻豆一二三区av精品| 女人高潮潮喷娇喘18禁视频| 午夜福利在线观看吧| 免费在线观看日本一区| 国产又爽黄色视频| 制服诱惑二区| 久久精品亚洲精品国产色婷小说| 免费av毛片视频| 国产欧美日韩一区二区精品| 香蕉久久夜色| 欧美黑人欧美精品刺激| 99久久综合精品五月天人人| 国产精品亚洲一级av第二区| 91成年电影在线观看| 欧美成人免费av一区二区三区| 国产精品免费视频内射| 国产一区二区三区在线臀色熟女| 国内久久婷婷六月综合欲色啪| 身体一侧抽搐| 国产成人精品久久二区二区91| 久久人妻av系列| 91字幕亚洲| 制服丝袜大香蕉在线| 欧美国产日韩亚洲一区| 97碰自拍视频| 一边摸一边抽搐一进一小说| 无限看片的www在线观看| 黄色女人牲交| 亚洲欧美激情综合另类| 亚洲欧美精品综合一区二区三区| 久久香蕉国产精品| 色综合欧美亚洲国产小说| 日韩中文字幕欧美一区二区| 俄罗斯特黄特色一大片| 精品一区二区三区av网在线观看| 亚洲第一av免费看| 可以在线观看的亚洲视频| 超碰成人久久| 欧美日韩中文字幕国产精品一区二区三区 | 日日夜夜操网爽| 亚洲国产毛片av蜜桃av| 久久久国产成人免费| 一本大道久久a久久精品| 精品国产美女av久久久久小说| 欧美日韩一级在线毛片| 国产精品99久久99久久久不卡| 天堂√8在线中文| 中文字幕色久视频| 999精品在线视频| 99国产综合亚洲精品| 欧洲精品卡2卡3卡4卡5卡区| 乱人伦中国视频| 国产午夜福利久久久久久| 99国产综合亚洲精品| 亚洲精品国产色婷婷电影| 国产欧美日韩一区二区三区在线| 最近最新免费中文字幕在线| 精品国产国语对白av| 亚洲精品久久成人aⅴ小说| 国产熟女午夜一区二区三区| 黄色成人免费大全| 日本免费a在线| 91大片在线观看| 波多野结衣高清无吗| 国产精品久久久久久人妻精品电影| 免费观看精品视频网站| 久久亚洲精品不卡| 国产精品亚洲av一区麻豆| 黄网站色视频无遮挡免费观看| 亚洲av电影在线进入| 狂野欧美激情性xxxx| 亚洲精品在线美女| 亚洲黑人精品在线| 91在线观看av| 欧美激情极品国产一区二区三区| 午夜久久久久精精品| 亚洲精品一区av在线观看| 在线观看午夜福利视频| 无限看片的www在线观看| 午夜福利,免费看| 在线av久久热| 97碰自拍视频| 视频在线观看一区二区三区| 亚洲中文日韩欧美视频| 88av欧美| 成人亚洲精品av一区二区| 18禁观看日本| 久久性视频一级片| 午夜激情av网站| 成人免费观看视频高清| 九色国产91popny在线| 最好的美女福利视频网| 久久性视频一级片| 一级a爱视频在线免费观看| 91成年电影在线观看| 亚洲天堂国产精品一区在线| 国产又爽黄色视频| av片东京热男人的天堂| 亚洲精品在线美女| 18美女黄网站色大片免费观看| 看黄色毛片网站| 他把我摸到了高潮在线观看| 婷婷丁香在线五月| 亚洲精品一区av在线观看| 成年人黄色毛片网站| 日韩精品中文字幕看吧| 少妇裸体淫交视频免费看高清 | 久久九九热精品免费| 欧美乱色亚洲激情| 在线天堂中文资源库| 亚洲精品国产一区二区精华液| 欧美+亚洲+日韩+国产| 这个男人来自地球电影免费观看| 超碰成人久久| 久久中文字幕一级| 久久国产亚洲av麻豆专区| 一区二区日韩欧美中文字幕| 国产精华一区二区三区| 国产片内射在线| 精品少妇一区二区三区视频日本电影| 国产欧美日韩精品亚洲av| 午夜福利成人在线免费观看| 涩涩av久久男人的天堂| 午夜老司机福利片| 老司机靠b影院| 亚洲国产欧美一区二区综合| 国产亚洲精品一区二区www| 99国产精品免费福利视频| 校园春色视频在线观看| 精品久久久久久,| 亚洲人成电影免费在线| 一级黄色大片毛片| 免费观看人在逋| 日日爽夜夜爽网站| 亚洲av成人av| 最近最新中文字幕大全电影3 | 亚洲成人国产一区在线观看| 国产激情久久老熟女| 国产三级在线视频| 国内精品久久久久久久电影| 成人国产一区最新在线观看| 日韩高清综合在线| 一级a爱视频在线免费观看| 欧美日韩乱码在线| 亚洲av成人一区二区三| 亚洲av日韩精品久久久久久密| 两个人看的免费小视频| 欧美午夜高清在线| 精品欧美一区二区三区在线| 人人妻,人人澡人人爽秒播| 后天国语完整版免费观看| 变态另类成人亚洲欧美熟女 | 亚洲国产高清在线一区二区三 | 国产男靠女视频免费网站| 成人亚洲精品av一区二区| 亚洲人成伊人成综合网2020| av电影中文网址| 午夜福利欧美成人| 波多野结衣一区麻豆| 亚洲自偷自拍图片 自拍| 啦啦啦免费观看视频1| 精品国产乱码久久久久久男人| 老司机福利观看| 一区二区三区激情视频| 欧美成人一区二区免费高清观看 | 中文字幕最新亚洲高清| 97碰自拍视频| 高清毛片免费观看视频网站| 欧美乱色亚洲激情| 亚洲,欧美精品.| 国产精品美女特级片免费视频播放器 | 亚洲欧美精品综合久久99| 黄色成人免费大全| 日韩三级视频一区二区三区| 精品一区二区三区四区五区乱码| 韩国av一区二区三区四区| 欧美午夜高清在线| 亚洲免费av在线视频| 免费在线观看视频国产中文字幕亚洲| 国产蜜桃级精品一区二区三区| 久99久视频精品免费| 中文字幕高清在线视频| 亚洲精品在线观看二区| 日韩高清综合在线| 国产成+人综合+亚洲专区| 国产精品久久久av美女十八| a级毛片在线看网站| 欧美最黄视频在线播放免费| 久久精品国产亚洲av香蕉五月| 欧美色欧美亚洲另类二区 | 国产精品av久久久久免费| 99久久国产精品久久久| 美女国产高潮福利片在线看| 一进一出好大好爽视频| aaaaa片日本免费| 侵犯人妻中文字幕一二三四区| 女生性感内裤真人,穿戴方法视频| 欧美日韩亚洲国产一区二区在线观看| 免费在线观看影片大全网站| 国产成人精品在线电影| 国产精品 欧美亚洲| 99久久久亚洲精品蜜臀av| 久久人妻熟女aⅴ| 国产日韩一区二区三区精品不卡| 乱人伦中国视频| 久久亚洲真实| 可以在线观看毛片的网站| 男女下面进入的视频免费午夜 | 日日干狠狠操夜夜爽| 国产在线精品亚洲第一网站| 久久久国产欧美日韩av| 一级,二级,三级黄色视频| www.熟女人妻精品国产| 久久精品91蜜桃| 久久人妻福利社区极品人妻图片| 中文字幕最新亚洲高清| 美女大奶头视频| 一边摸一边抽搐一进一小说| 人妻丰满熟妇av一区二区三区| 亚洲伊人色综图| 欧美在线一区亚洲| 国内精品久久久久精免费| 国产在线观看jvid| 好男人在线观看高清免费视频 | 国产精品98久久久久久宅男小说| 国产黄a三级三级三级人| 美女扒开内裤让男人捅视频| 自线自在国产av| 色精品久久人妻99蜜桃| 男男h啪啪无遮挡| 一区二区日韩欧美中文字幕| 非洲黑人性xxxx精品又粗又长| 侵犯人妻中文字幕一二三四区| 亚洲人成77777在线视频| 亚洲天堂国产精品一区在线| 成人三级黄色视频| 禁无遮挡网站| 午夜激情av网站| 日本 欧美在线| 欧美日韩精品网址| 日韩大码丰满熟妇| 不卡一级毛片| 热99re8久久精品国产| 男人舔女人的私密视频| 两人在一起打扑克的视频| 国产亚洲精品第一综合不卡| 久久久久国产一级毛片高清牌| 日本欧美视频一区| 亚洲国产中文字幕在线视频| 亚洲成人国产一区在线观看| 免费在线观看日本一区| or卡值多少钱| 搞女人的毛片| 国产精品 国内视频| 又紧又爽又黄一区二区| 久久性视频一级片| 999久久久国产精品视频| 三级毛片av免费| av天堂在线播放| 首页视频小说图片口味搜索| 一区福利在线观看| 91大片在线观看| 深夜精品福利| 黄色毛片三级朝国网站| 丝袜美腿诱惑在线| 岛国在线观看网站| www.www免费av| 国产午夜福利久久久久久| 一区在线观看完整版| 身体一侧抽搐| 国内精品久久久久久久电影| 久久国产精品男人的天堂亚洲| 成熟少妇高潮喷水视频| 国产私拍福利视频在线观看| 久久人人爽av亚洲精品天堂| 久久久久久久午夜电影| 美国免费a级毛片| av视频在线观看入口| 9热在线视频观看99| a级毛片在线看网站| 黄网站色视频无遮挡免费观看| 好男人在线观看高清免费视频 | 国产成人精品在线电影| 亚洲va日本ⅴa欧美va伊人久久| av视频在线观看入口| 国产精品98久久久久久宅男小说| 国产亚洲av嫩草精品影院| 女人被躁到高潮嗷嗷叫费观| 国内精品久久久久久久电影| 国产在线观看jvid| 国产高清videossex| 88av欧美| 亚洲av片天天在线观看| 亚洲一码二码三码区别大吗| 亚洲专区国产一区二区| 国产熟女午夜一区二区三区| 最好的美女福利视频网| 欧美中文综合在线视频| 91精品三级在线观看| 99国产精品99久久久久| 久久精品国产亚洲av高清一级| 精品福利观看| 后天国语完整版免费观看| 韩国精品一区二区三区| 可以免费在线观看a视频的电影网站| 亚洲精品久久成人aⅴ小说| 最近最新中文字幕大全电影3 | 亚洲欧美一区二区三区黑人| 国产精品亚洲一级av第二区| 免费高清视频大片| 啦啦啦韩国在线观看视频| 日韩视频一区二区在线观看| 国产精品国产高清国产av| 十八禁人妻一区二区| 一区二区三区高清视频在线| 女人被狂操c到高潮| 丁香欧美五月| 久久草成人影院| 一个人观看的视频www高清免费观看 | 亚洲伊人色综图| 99久久综合精品五月天人人| 亚洲成人国产一区在线观看| 男男h啪啪无遮挡| 香蕉丝袜av| 国语自产精品视频在线第100页| 91国产中文字幕| 欧美+亚洲+日韩+国产| 久久久久国产一级毛片高清牌| 丰满的人妻完整版| 国产av一区在线观看免费| avwww免费| 日韩欧美在线二视频| 欧美黑人欧美精品刺激| 国内精品久久久久精免费| 欧美激情 高清一区二区三区| av天堂久久9| av有码第一页| 亚洲国产精品合色在线| 香蕉国产在线看| 国产精品久久久久久亚洲av鲁大| 国产精品久久电影中文字幕| 国产一区二区三区综合在线观看| 国产亚洲精品一区二区www| 老鸭窝网址在线观看| 麻豆久久精品国产亚洲av| 国产亚洲欧美98| 欧美黑人精品巨大| 国产激情欧美一区二区| а√天堂www在线а√下载| 在线观看免费视频日本深夜| 非洲黑人性xxxx精品又粗又长| 午夜福利欧美成人| 日韩大尺度精品在线看网址 | 亚洲精品一卡2卡三卡4卡5卡| 好男人在线观看高清免费视频 | 亚洲av第一区精品v没综合| 亚洲人成网站在线播放欧美日韩| 久久这里只有精品19| 美女午夜性视频免费| 九色国产91popny在线| 国产成人精品在线电影| av免费在线观看网站| 亚洲人成电影免费在线| 国产不卡一卡二| 亚洲欧美日韩高清在线视频| 国产伦人伦偷精品视频| 精品国产超薄肉色丝袜足j| 三级毛片av免费| 亚洲片人在线观看| 国产精品野战在线观看| 大型av网站在线播放| 久久婷婷成人综合色麻豆| 成人国语在线视频| 99热只有精品国产| 国产熟女xx| 视频在线观看一区二区三区| 国产精品久久久久久亚洲av鲁大| 日本在线视频免费播放| 美女高潮到喷水免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品久久久久久精品电影 | 人人妻,人人澡人人爽秒播| √禁漫天堂资源中文www| 美女高潮到喷水免费观看| 亚洲午夜精品一区,二区,三区| 国产熟女午夜一区二区三区| 欧美在线黄色| 啦啦啦观看免费观看视频高清 | 亚洲熟女毛片儿| 亚洲成a人片在线一区二区| 他把我摸到了高潮在线观看| 精品国产国语对白av| 久久精品成人免费网站| 国产av在哪里看| 天堂影院成人在线观看| av在线天堂中文字幕| 亚洲欧美激情在线| 欧美色欧美亚洲另类二区 | 午夜日韩欧美国产| 一级片免费观看大全| 成人国产一区最新在线观看| 高清在线国产一区| 国产精品自产拍在线观看55亚洲| 侵犯人妻中文字幕一二三四区| 久久这里只有精品19| 精品国产美女av久久久久小说| netflix在线观看网站| www.www免费av| 欧美日本亚洲视频在线播放| 黄片播放在线免费| 搡老妇女老女人老熟妇| 成人av一区二区三区在线看| 精品久久久久久成人av| 国产一区二区激情短视频| 精品福利观看| 很黄的视频免费| 他把我摸到了高潮在线观看| 国产亚洲精品一区二区www| 青草久久国产| 成人三级黄色视频| 99精品在免费线老司机午夜| 国产精品 国内视频| 人人妻,人人澡人人爽秒播| 久久影院123| 欧美日韩亚洲综合一区二区三区_| 久久香蕉精品热| 首页视频小说图片口味搜索| 国产欧美日韩精品亚洲av| 久久久久国产精品人妻aⅴ院| 操出白浆在线播放| 丰满的人妻完整版| 午夜福利影视在线免费观看| 波多野结衣一区麻豆| 亚洲精品久久成人aⅴ小说| 国产成人精品久久二区二区免费| 十八禁人妻一区二区| 亚洲国产精品999在线| 99精品在免费线老司机午夜| 亚洲精华国产精华精| 最好的美女福利视频网| 夜夜躁狠狠躁天天躁| 人成视频在线观看免费观看| 乱人伦中国视频| 久久久久久久久免费视频了| 性色av乱码一区二区三区2| 老汉色∧v一级毛片| 免费久久久久久久精品成人欧美视频| 午夜福利免费观看在线| 亚洲 欧美 日韩 在线 免费| 人妻久久中文字幕网| 国产成人精品在线电影| 动漫黄色视频在线观看| 中出人妻视频一区二区| 琪琪午夜伦伦电影理论片6080| 一边摸一边做爽爽视频免费| 中出人妻视频一区二区| 欧美日韩中文字幕国产精品一区二区三区 | 久久精品国产亚洲av香蕉五月| 韩国av一区二区三区四区| 制服诱惑二区| 一区二区日韩欧美中文字幕| 搡老熟女国产l中国老女人| 久9热在线精品视频| av视频免费观看在线观看| 久久精品亚洲精品国产色婷小说| 别揉我奶头~嗯~啊~动态视频| 欧美黑人精品巨大| 美国免费a级毛片| 精品熟女少妇八av免费久了| 久久精品国产清高在天天线| 国产精品乱码一区二三区的特点 | 中文字幕人成人乱码亚洲影| 91精品国产国语对白视频| 又大又爽又粗| 中文字幕人成人乱码亚洲影|