• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Laser-Induced Graphene Conductive Fabric Decorated with Copper Nanoparticles for Electromagnetic Interference Shielding Application

    2023-12-28 08:47:24LIUWanling劉琬玲CHENChunhui陳春暉HAIWenqing海文清BISiyi畢思伊JIANGJinhua蔣金華SHAOHuiqi邵慧奇SHAOGuangwei邵光偉FUShaoju付少舉CHENNanliang陳南梁

    LIU Wanling(劉琬玲), CHEN Chunhui(陳春暉), HAI Wenqing(海文清), BI Siyi(畢思伊)*, JIANG Jinhua(蔣金華), SHAO Huiqi(邵慧奇), SHAO Guangwei(邵光偉), FU Shaoju(付少舉), CHEN Nanliang(陳南梁)*

    1 Shanghai Frontier Science Research Center for Modern Textiles, College of Textiles, Donghua University, Shanghai 201620, China

    2 Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China

    Abstract:To meet the demands for flexible electromagnetic interference(EMI) shielding materials, a type of conductive fabric is prepared by generating three-dimensional(3D) porous laser-induced graphene (LIG) in situ on the surface of the aramid fabric (AF) and then electroless plating copper. After LIG treatment, the porous AF demonstrates admirable conductivity due to the generation of graphene. The superior surface resistance of the conductive fabric can reach 1.57 Ω/sq after copper deposition, and the average EMI shielding effectiveness (SE) can reach 34.3 dB in a frequency range of 8.2 to 12.4 GHz, with the EMW absorption accounting for about 80%. The proposed technology provides a new idea for preparation of flexible EMI shielding materials.

    Key words:laser-induced graphene (LIG); electroless plating; aramid fabric (AF); electromagnetic interference (EMI)

    0 Introduction

    The emergence of the Internet and related electronic products relying on electromagnetic waves (EMWs) to transmit information over long distances has brought people into a more convenient and efficient life[1-2]. Meanwhile, electromagnetic radiation caused by excessive use of electronic equipment has aroused people’s concern[3-4]. EMW pollution not only disturbs the normal operation of instruments but also harms human tissues and organs[5-6]. Therefore, it is important to develop electromagnetic interference (EMI) shielding materials with high shielding effectiveness (SE). When EMWs act on shielding materials, the shielding response is associated with different wavelengths of EMWs which can be divided into reflection, absorption and transmission according to the action mechanism. In terms of Schelkunoff theory, the classical theory of EMI shielding, the shielding effects of shielding materials on EMWs mainly include reflection loss on the surface and the interface between different components of materials, absorption loss inside materials and multiple reflection attenuation[7-9].

    At present, EMI shielding materials are mainly divided into metal materials and non-metal materials. Metals including copper, cobalt, nickel,etc. are reflected-dominant materials, and non-metal materials including carbonic materials, conductive polymers, MXenes,etc.are absorption-dominant materials[10-12]. The metal block has prominent shielding performance but is heavy, and thus does not meet the requirement of lightweight. While carbonic materials such as graphene, carbon nanotubes and graphene oxide have low density but undesirable EMI SE. As a result, the combination of carbonic materials and metals is supposed to reduce weight and achieve a high EMI SE. However, the existing methods of graphene preparation like the mechanical stripping method, the redox method, the chemical vapor deposition method and the electrochemical method are complex and inefficient, and may cause environmental pollution[13-14], which are common problems to be solved.

    In 2014, Linetal.[15]first irradiated the surface of a commercial polyimide film with a CO2laser. The high temperature generated by the CO2laser led to surface carbonization of the polymer, and other components were released in the form of gas, thus producing three-dimensional (3D) porous laser-induced graphene (LIG). Wangetal.[16]proved that no catalyst was needed in LIG preparation, and the quality of LIG was only related to laser power. There are also many researches on flexible sensors and filtration materials of LIG[17-20]. In terms of EMI shielding, Li[21]used the laser to prepare LIG on a polyether-ether-ketone (PEEK) plate and carbon fiber/PEEK (CF/PEEK) composite, which significantly improved the EMI shielding performance of the material. Yuetal.[22]used polybenzoxazine as the precursor to prepare LIG and then used a solvent-free method to prepare LIG/Fe3O4composite, achieving both lightweight and admirable EMI shielding performance. Yinetal.[23]prepared 3D LIG on a polyimide substrate, and then modified nickel nanoparticles (NPs) in the LIG network to make thin films. The SE of the prepared sample is better than that of most carbon-based and nickel-based EMI shielding materials. Hence, laser induction is an economical, convenient and green method for graphene preparation. In addition, the generated 3D porous structure is beneficial to SE improvement[24].

    As mentioned above, the metal block is heavy, while the metallic film is an alternative with the advantage of being lightweight. The thin metallic film is easily adhered to various conductive and insulated substrates like metal, paper, textiles, wood,etc.through magnetron sputtering, electroless plating, vapor deposition, electroplating,etc.[25-29], among which electroless plating is widely used due to its advantages such as uniform coating, strong adhesion and easy operation. Consequently, electroless plating on LIG is considered as an effective strategy to generate a synergistic effect on the enhancement of SE.

    In this work, the surface of the aramid fabric (AF) is treated by the laser to generate 3D porous graphene. The influences of the laser power and the filling spacing on the quality of graphene are explored and the corresponding microstructures are characterized by scanning electron microscopy (SEM) and Raman spectroscopy. Electroless copper plating is performed to enhance the conductivity and EMI shielding properties of the fabric. The influence of electroless plating time is discussed, and X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and SEM characterizations are performed to demonstrate the microstructures. The prepared fabric displays a high EMI SE, which indicates a brilliant future in EMI shielding applications.

    1 Experiments

    1.1 Materials

    The AF (aramid 1414 needled nonwoven fabric) with 288 g/m2area density, 2.8 mm thickness and 1.5 m width was purchased from Changzhou Hualike New Material Co., Ltd., China. All chemicals (analytically pure) were purchased from Sinopharm Chemical Reagent Co., Ltd., China, and used without further purification.

    1.2 Sample characterization

    A scanning electron microscope (SU8010, TM3000, HITACHI, Japan) was used to observe the microscopic morphology of the samples. The quality of LIG was evaluated by using a laser micro-Raman spectrometer (Via-Reflex, Renishaw, UK). A four-probe tester (ST2258C, Suzhou Jingge Electronic Co., Ltd., China) was used to measure the square resistance of the samples after laser induction and electroless plating. The square resistance was measured five times to obtain an average value. An X-ray photoelectron spectroscope (Escalab250Xi, ThermoFisher Scientific, USA) was used to test the elements and valence states of the samples. The metallic crystal structure of the electroless plating samples was analyzed by using an X-ray diffractometer (Bruker D8 ADVANCE, Bruker, Germany). A vector network analyzer (PNA-N5244A, Agilent, USA) was used to test the EMI shielding performances of the samples.

    1.3 Sample preparation

    1.3.1LIGgeneration

    1)The AF was cut into a square with a size of 4 cm×4 cm, and ultrasonically cleaned with deionized water and ethanol for 5 min to remove impurities and oil stains on the fabric.

    2)The LIG was obtained by etching on the sample using a laser engraving machine (K6 Pro, Shanghai Diaotu Industrial Co., Ltd., China). The laser power was set at 1.2, 1.8, 2.4 and 3.0 W, respectively, and the filling spacing was set at 0.05, 0.20, 0.35 and 0.50 mm.

    1.3.2Synthesisofcopper-coatedcompositefabric

    1)The laser-treated graphene aramid fabric (GAF) was soaked in NiSO4solution for Ni2+ions absorption. The GAF that absorbed Ni2+ions was labeled as GAF-Ni2+.

    2)GAF-Ni2+was then soaked in NaBH4solution which was used as a reducing agent to reduce Ni2+ions to Ni0NPs at room temperature for 20 min. The GAF that absorbed Ni0was labeled as GAF-Ni0.

    3)Copper electroless plating was conducted by immersing GAF-Ni0in the electroless plating solution composed of 5 g/L CuSO4, 0.75 g/L NiSO4, 25 g/L KNaC4H4O6, 5 g/L NaOH, 3.75 g/L Na2CO3and 1 mol/L HCHO at 40 ℃ for 10, 20, 30 and 60 min, respectively. Ultimately, the obtained samples were rinsed with deionized water and dried in an oven at 60 ℃, which were labeled as CuGAF-10, CuGAF-20, CuGAF-30 and CuGAF-60, respectively. The AF electroless-plated for 60 min(without laser-treatment) were labeled as CuAF-60.

    2 Results and Discussion

    2.1 LIG characterization

    Microscopic images of GAF surfaces with different filling spacing values (at 3 W laser power) are shown in Fig.1. During the etching process, the laser is carved in one direction, and the spacing of the etched fringe can be changed by adjusting the filling spacing. When the filling spacing is 0.05 mm (Fig.1(a)), there is no obvious fringe on the fabric surface, and the spacing between the lines cannot be seen under the microscope. With the increase of the filling spacing, the fringe appears on the fabric surface and the spacing between the fringes gradually increases, and the generated LIG is less, which is consistent with the operation mode of the laser during etching(Figs.1(b)-1(d)).

    Fig.1 Electronic microscope images of GAF samples with different filling spacing values: (a) 0.05 mm; (b) 0.20 mm; (c) 0.35 mm; (d) 0.50 mm

    The pristine AF (Fig.2(a)) shows a smooth surface. The fibers on the surface of AF were carbonized by laser treatment and accompanied by the release of gaseous products, developing a 3D porous structure. As shown in Figs.2(b)-2(e), the degree of fiber breakage on the fabric surface increases, and more cavities are generated with the increase of laser power. More heat is accumulated due to stronger laser power, which leads to greater fiber destruction on the surface and a better degree of carbonization. Thus superior quality of LIG and a 3D porous structure are generated.

    Fig.2 SEM images of samples: (a) AF; (b)-(e): GAF samples obtained at the laser power of 1.2, 1.8, 2.4 and 3.0 W, respectively

    Fig.3 Raman spectra of samples: (a) AF; (b) GAF samples obtained at different laser power values

    Fig.4 XPS spectra of samples: (a) wide-scan spectra of AF and GAF; (b) C 1s core-level spectra of AF; (c) C 1s core-level spectra of GAF

    Figure 5 shows the changes in surface resistance of the GAF samples after laser treatment. When the filling spacing increases, the square resistance of the GAF sample increases from 0.15 kΩ/sq to 2.60 kΩ/sq (Fig.5(a)). This is because the distance between each conductive graphene line increases with the increase of filling spacing, which results in more discontinuous conductive paths. The laser power is another significant factor for conductivity, and the higher laser power leads to better carbonization quality. Figure 5(b) shows that the minimum square resistance (0.15 kΩ/sq) of the GAF sample is achieved under the conditions of 3.0 W laser power and 0.05 mm filling spacing.

    Fig.5 Relationship between square resistance and different parameters: (a) filling spacing; (b) laser power

    2.2 Electroless plating characterization

    The GAF samples were treated with NiSO4solution and then reduced by NaBH4before electroless plating. The SEM images of the samples before and after reduction are shown in Figs. 6(a) and 6(b). Before reduction, the fibers of GAF-Ni2+(Fig.6(a)) maintain the appearance of holes on the surface after laser treatment, and nickel sulfate can be seen uniformly attached to the fiber surface. After reduction, catalytic sites appear obviously on the fiber surface of GAF-Ni0and the distribution of catalytic sites is uniform. These catalytic sites promote the chemical deposition of metals, which is conducive to the density of the coating. Fabric samples with different plating time (CuGAF-10, CuGAF-20, CuGAF-30 and CuGAF-60) are selected to analyze micro-morphologies as shown in Figs. 6(c)-6(e). When the electroless plating time is 10 min (Fig.6(c)), some grains initially appear on the surface of CuGAF-10, and the grains are discontinuous. With the increase of electroless plating time, the grains become bigger, and the surface is gradually covered by the metal layer. After 60 min plating (Fig.6(f)), it is obvious that a dense metal coating is formed on the surface of CuGAF-60. Metal particles areinsitugrown at the dispersed and uniform catalytic sites on the graphene surface, and finally, a continuous and dense coating is formed.

    Fig.6 SEM images of samples: (a) GAF-Ni2+; (b) GAF-Ni0; (c) CuGAF-10; (d) CuGAF-20; (e) CuGAF-30; (f) CuGAF-60

    The surface elements and their states of the fabric samples before electroless plating were studied by XPS. The corresponding XPS spectra are demonstrated in Fig.7(a). The Ni 2p signal at about 857.0 eV[31]is observed in the spectra of GAF-Ni2+and GAF-Ni0. High-resolution Ni 2p XPS spectra are further analyzed in Figs. 7(b) and 7(c).

    Fig.7 XPS spectra of samples: (a) full spectra; (b) Ni 2p core-level spectra of GAF-Ni2+; (c) Ni 2p core-level spectra of GAF-Ni0

    Fig.8 XRD patterns of samples with different plating time

    For GAF-Ni2+(Fig.7 (b)), the Ni 2p signal can be decomposed into Ni2+peak and the satellite peak of Ni (Nisatpeak) at 857.2 eV and 863.7 eV[31], respectively. As shown in Fig.7(c), afterinsitureduction with NaBH4, a new Ni0peak appears at 855.9 eV but Ni2+peak still exists, indicating that some Ni2+ions are reduced to Ni0NPs. It can be seen from the above analysis that Ni0NPs formed on the fabric surface are not only the activator of electroless plating but also the anchor point of metallic coating.

    Figure 8 shows XRD patterns of samples with different electroless plating time (10, 20, 30 and 60 min). Bragg reflections at 2θof 43.3°, 50.5° and 74.2° are indexed to Cu (111), Cu (200) and Cu (220) of the hexagonal close-packed (HCP) phase according to the powder diffraction profile (PDF#01-070-3039). The characteristic lattice parameters of Cu meeta=b=c=0.361 3 nm. According to Scherrer’s formula, the mean crystalline sizedis expressed as

    d=kλ/(Bcosθ),

    (1)

    wherekis the Scherrer constant (0.89);λis the wavelength of Cu Kα(0.154 nm);Bis the full width at half maximum (FWHM) at 2θ;θis the Bragg angle.

    The calculated grain sizes of Cu NPs are 0.7, 1.0, 15.0 and 23.0 nm corresponding to the plating time of 10, 20, 30 and 60 min, respectively. With the increase of electroless plating time, Cu NPs deposit on the fabric surface and their grain sizes increase gradually.

    The square resistance of samples with different electroless plating time (10, 20, 30 and 60 min) is measured as shown in Fig.9. It can be observed that the surface resistance values of the samples significantly decrease from 12.36 Ω/sq to 2.59 Ω/sq when the electroless copper plating time increases from 10 min to 60 min.

    Fig.9 Square resistance of samples with different plating time

    2.3 EMI shielding performance

    EMI SE can be expressed as the sum of reflection loss (SE-R), absorption loss (SE-A) and internal multiple reflection loss (SE-M) of incident EMWs. When EMI SE exceeds 15 dB, the contribution of the SE-M is small and negligible[32]. The SE-R is due to an impedance mismatch between air and shielding material. A high conductive barrier shows a large impedance mismatch at the interface, resulting in the reflection loss of incident EMWs. The SE-A is the result of dielectric loss and magnetic loss.

    As shown in Fig.10, SE, SE-R and SE-A values of CuGAF samples are higher than those of CuAF-60 and GAF samples in X-band (frequency range: 8.2-12.4 GHz). This is because 3D porous LIG with low conductivity has certain EMI shielding properties. After electroless plating, a metallic layer is deposited on the surface of GAF, and the metal grain can also be attached to the inside of the pores of the damaged fibers. When the incident EMWs are transmitted to the CuGAF surface, the good conductivity of the CuGAF surface causes impedance mismatch, and part of the EMWs are reflected into free space[33]. The incident EMWs are further attenuated and absorbed thanks to the multiple reflections caused by the porous structure and the interface polarization caused by the defects on CuGAF. With the increase of electroless plating time, more Cu NPs are deposited on the fabric surface and in fiber pores, and the shielding effect becomes better.

    Fig.10 EMI shielding performance of samples: (a) SE; (b) SE-R; (c) SE-A

    As shown in Figs. 10 (a) and 10(c), the SE peaks and SE-A peaks are obvious when the electroless plating time is 20, 30 and 60 min, which may be caused by pores between the etched fibers and several parallel planes formed between the pores. EMWs can be reflected repeatedly between two parallel planes to produce multiple coherent reflected waves. When the reflected waves are in the same phase, phase interference is developed. The improvement of SE level is due to the occurrence of phase-length interference caused by the in-phase reflection of EMWs. When electroless plating time increases, the thickness of the shielding layer does not match the distance of phase-length interference. Moreover, due to the parallel resonance absorption and phase-length interference of parallel planes, the absorption peaks of CuGAF are sharp, and the EMI SE values of CuGAF samples are desirable at specific frequencies[34].

    In theory, higher conductivity leads to more reflection loss, resulting in an enhanced EMI SE value. Figure 10 (b) shows SE-R changes in various CuGAF samples. In Fig.10 (b), the curve of the sample treated only by electroless plating (CuAF-60) shows a downward trend with increasing frequency due to the impedance matching between air and the sample.

    When the electroless plating time reaches 60 min, the average SE and SE-A of CuGAF-60 are 34.3 and 28.1 dB respectively in X-band. The calculated absorption ratio (SE-A/SE) is 81.9%, and the shielding efficiency[35]is 99.9%. In addition, it is worth noting that the highest SE value of CuGAF-60 is about 80 dB at 10.9 GHz. The EMI SE values of CuGAF-60 and other shielding materials[36-38]are summarized in Table 1 and it can be seen that CuGAF-60 prepared in this work demonstrates relatively high EMI SE value in X-band.

    Table 1 EMI SE values of CuGAF-60 sample and other shielding materials

    3 Conclusions

    In this study, the LIG is generated on the surface of the AF by laser etching, which is confirmed by Raman and XPS characterization. A cost-effective electroless plating method is then used to obtain the superior conductive Cu coating on GAF. The optimal laser parameters (the laser power is 3.0 W, and the filling spacing is 0.05 mm) are determined by square resistance measurements to obtain a better conductivity (1.57 Ω/sq). By using SEM, XPS and XRD, it is confirmed that with the extension of electroless plating time, more Cu NPs are deposited on the surface of GAF, thus forming a dense coating. EMI SE values of CuGAF samples with different electroless plating time are tested. As a result, the EMI SE of CuGAF-60 can reach 34.3 dB in X-band, and its absorption accounts for 81.9%. The proposed technology provides a new idea for the processing and manufacturing of EMI shielding materials.

    国产精品自产拍在线观看55亚洲| 我的女老师完整版在线观看| h日本视频在线播放| 日本免费一区二区三区高清不卡| 亚洲,欧美精品.| 亚洲aⅴ乱码一区二区在线播放| 麻豆成人午夜福利视频| 国产大屁股一区二区在线视频| 免费在线观看日本一区| 久久久久免费精品人妻一区二区| 亚洲专区国产一区二区| 国产高清视频在线播放一区| 国产国拍精品亚洲av在线观看| 桃红色精品国产亚洲av| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 在线a可以看的网站| 午夜福利欧美成人| 嫩草影院入口| 别揉我奶头 嗯啊视频| 亚洲国产日韩欧美精品在线观看| 色在线成人网| 成人午夜高清在线视频| 亚洲不卡免费看| 亚洲国产精品合色在线| 日本 av在线| 亚洲七黄色美女视频| 夜夜夜夜夜久久久久| 脱女人内裤的视频| 91久久精品电影网| 亚洲av电影在线进入| 国产美女午夜福利| 99精品在免费线老司机午夜| 99久久久亚洲精品蜜臀av| 亚洲,欧美精品.| 俺也久久电影网| 99久久成人亚洲精品观看| 国产白丝娇喘喷水9色精品| 亚洲精品日韩av片在线观看| 国产精品久久久久久人妻精品电影| 亚洲人成伊人成综合网2020| 一本综合久久免费| 中文字幕人成人乱码亚洲影| 少妇裸体淫交视频免费看高清| 久久久久性生活片| 禁无遮挡网站| 一卡2卡三卡四卡精品乱码亚洲| 日日摸夜夜添夜夜添av毛片 | 国产成人福利小说| 99精品久久久久人妻精品| 精品一区二区三区av网在线观看| ponron亚洲| 哪里可以看免费的av片| aaaaa片日本免费| 亚洲av中文字字幕乱码综合| 日本免费一区二区三区高清不卡| 俄罗斯特黄特色一大片| 很黄的视频免费| 小蜜桃在线观看免费完整版高清| 久久国产乱子伦精品免费另类| 变态另类丝袜制服| 一个人观看的视频www高清免费观看| 国内毛片毛片毛片毛片毛片| 日本熟妇午夜| 2021天堂中文幕一二区在线观| 久久久久亚洲av毛片大全| 久久国产乱子免费精品| av在线观看视频网站免费| 日日夜夜操网爽| 全区人妻精品视频| 婷婷色综合大香蕉| a级毛片免费高清观看在线播放| 高清毛片免费观看视频网站| 日本撒尿小便嘘嘘汇集6| 精品人妻一区二区三区麻豆 | 精品久久久久久,| 男人舔女人下体高潮全视频| 天堂√8在线中文| 久久6这里有精品| 亚洲人成电影免费在线| 中出人妻视频一区二区| 国产成人a区在线观看| 国产精品不卡视频一区二区 | 青草久久国产| 国产69精品久久久久777片| 国产 一区 欧美 日韩| 欧美激情国产日韩精品一区| 不卡一级毛片| 欧美bdsm另类| 女生性感内裤真人,穿戴方法视频| 51午夜福利影视在线观看| 日韩亚洲欧美综合| 色av中文字幕| 国产av麻豆久久久久久久| 黄色一级大片看看| 欧美一区二区精品小视频在线| 日韩中字成人| 舔av片在线| 男人的好看免费观看在线视频| 一级黄片播放器| 国产精品永久免费网站| 国产激情偷乱视频一区二区| 一个人看的www免费观看视频| 亚洲av成人不卡在线观看播放网| 久久精品国产亚洲av香蕉五月| 欧美性猛交黑人性爽| 亚洲av免费高清在线观看| 国产精品永久免费网站| 亚洲av五月六月丁香网| 午夜影院日韩av| 色哟哟·www| 久久天躁狠狠躁夜夜2o2o| 亚洲精品影视一区二区三区av| 亚洲欧美日韩高清专用| 成人性生交大片免费视频hd| 亚洲精品456在线播放app | 人妻丰满熟妇av一区二区三区| 91狼人影院| av福利片在线观看| 身体一侧抽搐| 亚洲精品日韩av片在线观看| 国产精品日韩av在线免费观看| 在线观看美女被高潮喷水网站 | 看免费av毛片| 精品人妻1区二区| 性色av乱码一区二区三区2| 成熟少妇高潮喷水视频| 一区二区三区激情视频| 亚洲性夜色夜夜综合| 美女高潮的动态| 成人国产综合亚洲| 丰满人妻一区二区三区视频av| 欧美乱妇无乱码| 成人一区二区视频在线观看| 欧美又色又爽又黄视频| 日韩av在线大香蕉| 丁香六月欧美| 最好的美女福利视频网| 日本免费a在线| 免费看日本二区| 国产成+人综合+亚洲专区| av中文乱码字幕在线| 国产精品女同一区二区软件 | 亚洲天堂国产精品一区在线| 国产精品一区二区性色av| 精品久久国产蜜桃| 国产精品亚洲av一区麻豆| 91在线观看av| 91麻豆精品激情在线观看国产| 久久九九热精品免费| 国产激情偷乱视频一区二区| 热99在线观看视频| 欧美乱妇无乱码| 免费观看精品视频网站| 人人妻人人澡欧美一区二区| 女人十人毛片免费观看3o分钟| 婷婷丁香在线五月| 黄色日韩在线| 色综合亚洲欧美另类图片| 日韩高清综合在线| 看片在线看免费视频| 亚洲无线观看免费| 国产一区二区在线观看日韩| 国产精华一区二区三区| 色综合婷婷激情| 日本与韩国留学比较| 我要搜黄色片| 国产高清三级在线| 亚洲国产高清在线一区二区三| 亚洲av免费在线观看| 欧美色视频一区免费| 看免费av毛片| www日本黄色视频网| 日本 欧美在线| 精品人妻一区二区三区麻豆 | 午夜老司机福利剧场| 又黄又爽又刺激的免费视频.| 国产一级毛片七仙女欲春2| 国产不卡一卡二| 久久精品影院6| 亚洲av第一区精品v没综合| 免费观看的影片在线观看| 一级作爱视频免费观看| 91麻豆av在线| 日日摸夜夜添夜夜添av毛片 | 成人性生交大片免费视频hd| 亚洲一区高清亚洲精品| 男女那种视频在线观看| 搡老熟女国产l中国老女人| 成人国产综合亚洲| 91字幕亚洲| 在线观看一区二区三区| 精品久久国产蜜桃| 毛片女人毛片| 91麻豆av在线| 日日摸夜夜添夜夜添av毛片 | 丰满乱子伦码专区| 亚洲不卡免费看| 午夜福利高清视频| 久久午夜福利片| 国产伦精品一区二区三区四那| 亚洲成人精品中文字幕电影| 久久午夜福利片| 午夜日韩欧美国产| 99久久精品热视频| 国产成人av教育| .国产精品久久| 国产一区二区亚洲精品在线观看| 精品日产1卡2卡| 午夜福利在线观看免费完整高清在 | 夜夜夜夜夜久久久久| 一个人看的www免费观看视频| 亚洲国产欧美人成| 老女人水多毛片| 婷婷精品国产亚洲av在线| 日韩av在线大香蕉| 亚洲,欧美,日韩| 亚洲综合色惰| 久久草成人影院| 尤物成人国产欧美一区二区三区| 欧美日韩黄片免| 免费观看人在逋| 午夜久久久久精精品| 国产野战对白在线观看| 嫁个100分男人电影在线观看| 国产亚洲精品综合一区在线观看| 欧美午夜高清在线| 国产精品亚洲av一区麻豆| 欧美三级亚洲精品| 天天躁日日操中文字幕| 欧美乱色亚洲激情| 噜噜噜噜噜久久久久久91| 日韩欧美在线二视频| 欧美一区二区精品小视频在线| 男女视频在线观看网站免费| 好看av亚洲va欧美ⅴa在| 丰满的人妻完整版| 成人亚洲精品av一区二区| 一区二区三区高清视频在线| 成人无遮挡网站| 久久久久免费精品人妻一区二区| 国产国拍精品亚洲av在线观看| 99久国产av精品| 悠悠久久av| 99久久无色码亚洲精品果冻| 国产精品亚洲美女久久久| 97超视频在线观看视频| 内地一区二区视频在线| 日韩欧美精品v在线| 亚洲欧美清纯卡通| 网址你懂的国产日韩在线| 最近视频中文字幕2019在线8| 国内久久婷婷六月综合欲色啪| 亚洲av成人不卡在线观看播放网| 成人性生交大片免费视频hd| 午夜两性在线视频| 18美女黄网站色大片免费观看| 看黄色毛片网站| 一进一出好大好爽视频| 成人亚洲精品av一区二区| 亚洲专区中文字幕在线| 欧美成狂野欧美在线观看| 白带黄色成豆腐渣| 18禁在线播放成人免费| 99久久精品一区二区三区| 我的女老师完整版在线观看| 精品99又大又爽又粗少妇毛片 | 中文字幕熟女人妻在线| 国内精品久久久久精免费| 午夜a级毛片| 亚洲人成伊人成综合网2020| 1000部很黄的大片| 成年人黄色毛片网站| 国产精品国产高清国产av| 色哟哟·www| 国产综合懂色| 99久久精品热视频| 国产单亲对白刺激| 中文字幕av成人在线电影| 亚洲精华国产精华精| 好看av亚洲va欧美ⅴa在| 亚洲精品粉嫩美女一区| 国产成人啪精品午夜网站| 国产av在哪里看| av女优亚洲男人天堂| 亚洲av五月六月丁香网| 女人十人毛片免费观看3o分钟| 小蜜桃在线观看免费完整版高清| 天堂√8在线中文| 午夜久久久久精精品| 日韩成人在线观看一区二区三区| 好男人在线观看高清免费视频| 国产黄片美女视频| 51午夜福利影视在线观看| 赤兔流量卡办理| 黄片小视频在线播放| 老司机午夜十八禁免费视频| 久久久久久九九精品二区国产| 久久久久国内视频| 老熟妇乱子伦视频在线观看| 免费人成视频x8x8入口观看| 欧美日韩瑟瑟在线播放| 亚洲av日韩精品久久久久久密| www.熟女人妻精品国产| www日本黄色视频网| 夜夜夜夜夜久久久久| ponron亚洲| 一区二区三区免费毛片| 国产白丝娇喘喷水9色精品| 免费大片18禁| 熟妇人妻久久中文字幕3abv| 成年女人永久免费观看视频| 国产色婷婷99| www.999成人在线观看| 国产久久久一区二区三区| 少妇人妻一区二区三区视频| 日韩 亚洲 欧美在线| 99视频精品全部免费 在线| 免费人成视频x8x8入口观看| 国产毛片a区久久久久| 一个人免费在线观看电影| 亚洲av中文字字幕乱码综合| 精品久久久久久久久av| 脱女人内裤的视频| 国产国拍精品亚洲av在线观看| 又黄又爽又刺激的免费视频.| 亚洲片人在线观看| 特大巨黑吊av在线直播| 欧美在线黄色| 亚洲欧美精品综合久久99| 91午夜精品亚洲一区二区三区 | 成人性生交大片免费视频hd| 亚洲在线观看片| 亚洲中文字幕一区二区三区有码在线看| 国产一区二区在线av高清观看| 色综合欧美亚洲国产小说| 免费看a级黄色片| 国产麻豆成人av免费视频| 12—13女人毛片做爰片一| 欧美成人一区二区免费高清观看| 日韩精品中文字幕看吧| 女人十人毛片免费观看3o分钟| 欧美日韩国产亚洲二区| 超碰av人人做人人爽久久| 中文资源天堂在线| 欧美一区二区亚洲| 天天一区二区日本电影三级| 观看美女的网站| 亚洲午夜理论影院| 国产精品爽爽va在线观看网站| 啦啦啦韩国在线观看视频| 国产欧美日韩精品亚洲av| 中文在线观看免费www的网站| 久久亚洲精品不卡| 国产精品久久电影中文字幕| 欧美bdsm另类| 亚洲第一电影网av| 九九久久精品国产亚洲av麻豆| 一卡2卡三卡四卡精品乱码亚洲| 少妇人妻一区二区三区视频| 亚洲欧美精品综合久久99| 亚洲精品日韩av片在线观看| 精品午夜福利视频在线观看一区| 精品国产三级普通话版| 亚洲人成网站在线播| 久久国产乱子伦精品免费另类| 欧美3d第一页| 美女免费视频网站| 中文字幕免费在线视频6| 丁香欧美五月| 欧美日韩亚洲国产一区二区在线观看| 男人舔女人下体高潮全视频| 欧美极品一区二区三区四区| 一区福利在线观看| 亚洲男人的天堂狠狠| 中文字幕人成人乱码亚洲影| 亚洲男人的天堂狠狠| 搡女人真爽免费视频火全软件 | 亚洲黑人精品在线| 国产精品一区二区三区四区免费观看 | 人人妻,人人澡人人爽秒播| 国产成人av教育| 国产精品影院久久| 狂野欧美白嫩少妇大欣赏| 成人av一区二区三区在线看| 狂野欧美白嫩少妇大欣赏| 91字幕亚洲| 国产麻豆成人av免费视频| 日韩欧美国产一区二区入口| 免费在线观看成人毛片| 一级a爱片免费观看的视频| 亚洲第一欧美日韩一区二区三区| 午夜福利欧美成人| 国内久久婷婷六月综合欲色啪| 丰满的人妻完整版| 国产高清三级在线| 亚洲内射少妇av| 成人欧美大片| 九九热线精品视视频播放| 少妇的逼水好多| a级毛片免费高清观看在线播放| 日韩欧美在线乱码| 我要搜黄色片| 99久久九九国产精品国产免费| 亚洲五月天丁香| 日本成人三级电影网站| 亚洲成av人片免费观看| 精品一区二区三区人妻视频| 国产精品美女特级片免费视频播放器| 国内少妇人妻偷人精品xxx网站| bbb黄色大片| 免费看a级黄色片| 欧美3d第一页| 国产伦精品一区二区三区视频9| 久久精品国产亚洲av天美| 我的女老师完整版在线观看| 怎么达到女性高潮| 国产精品日韩av在线免费观看| 亚洲国产日韩欧美精品在线观看| 日本a在线网址| 精品福利观看| 男插女下体视频免费在线播放| 我的老师免费观看完整版| 欧美色视频一区免费| 好男人电影高清在线观看| 狂野欧美白嫩少妇大欣赏| 午夜福利在线在线| 国产v大片淫在线免费观看| 婷婷色综合大香蕉| 国产又黄又爽又无遮挡在线| 十八禁网站免费在线| a级一级毛片免费在线观看| 亚洲无线在线观看| 色5月婷婷丁香| а√天堂www在线а√下载| 免费无遮挡裸体视频| 18美女黄网站色大片免费观看| 亚洲成人免费电影在线观看| 午夜精品久久久久久毛片777| 成人国产一区最新在线观看| 99久国产av精品| 国产精品av视频在线免费观看| 夜夜夜夜夜久久久久| 国内少妇人妻偷人精品xxx网站| 一进一出抽搐动态| 亚洲精品一区av在线观看| 1024手机看黄色片| 全区人妻精品视频| 美女 人体艺术 gogo| 最好的美女福利视频网| 国产精品久久电影中文字幕| 日本精品一区二区三区蜜桃| 中文字幕av在线有码专区| 精品免费久久久久久久清纯| 听说在线观看完整版免费高清| 怎么达到女性高潮| 舔av片在线| 黄色一级大片看看| 亚洲五月婷婷丁香| 国产高潮美女av| 国产69精品久久久久777片| www日本黄色视频网| 国产精品永久免费网站| 亚洲内射少妇av| netflix在线观看网站| 69人妻影院| 熟女电影av网| 亚洲人与动物交配视频| 91av网一区二区| 色尼玛亚洲综合影院| 亚洲18禁久久av| 亚洲成av人片在线播放无| 性色av乱码一区二区三区2| 国产精品98久久久久久宅男小说| 国产真实乱freesex| 国产精品影院久久| 精品99又大又爽又粗少妇毛片 | 好男人在线观看高清免费视频| 男人舔奶头视频| 极品教师在线视频| 国产精品,欧美在线| 丰满的人妻完整版| 免费一级毛片在线播放高清视频| 观看美女的网站| 亚洲精品一卡2卡三卡4卡5卡| 久9热在线精品视频| av中文乱码字幕在线| 欧美另类亚洲清纯唯美| 亚洲激情在线av| 日韩大尺度精品在线看网址| 亚洲最大成人av| 国产黄片美女视频| 国产欧美日韩一区二区精品| 村上凉子中文字幕在线| 国产大屁股一区二区在线视频| 色哟哟·www| 成人高潮视频无遮挡免费网站| 18禁裸乳无遮挡免费网站照片| 麻豆久久精品国产亚洲av| 无人区码免费观看不卡| 18禁黄网站禁片免费观看直播| 直男gayav资源| 国产一区二区亚洲精品在线观看| 天天一区二区日本电影三级| 午夜精品在线福利| 色在线成人网| 乱码一卡2卡4卡精品| 午夜福利免费观看在线| 少妇熟女aⅴ在线视频| 日本一二三区视频观看| 成人国产一区最新在线观看| 成人亚洲精品av一区二区| 国产欧美日韩精品亚洲av| 色5月婷婷丁香| 18美女黄网站色大片免费观看| 黄色日韩在线| 中国美女看黄片| 变态另类成人亚洲欧美熟女| 免费观看人在逋| 看片在线看免费视频| 国产一区二区三区在线臀色熟女| 少妇高潮的动态图| 熟女人妻精品中文字幕| 精品久久久久久久久亚洲 | 色哟哟哟哟哟哟| 国产日本99.免费观看| 午夜福利欧美成人| 脱女人内裤的视频| 丝袜美腿在线中文| 99久久久亚洲精品蜜臀av| 精品日产1卡2卡| 亚洲18禁久久av| 日韩国内少妇激情av| 十八禁人妻一区二区| 自拍偷自拍亚洲精品老妇| 又爽又黄a免费视频| 国产成人福利小说| 亚洲色图av天堂| 简卡轻食公司| 亚洲美女视频黄频| 成人欧美大片| 亚洲精品影视一区二区三区av| 久久久久久九九精品二区国产| 99久国产av精品| www.999成人在线观看| 在线十欧美十亚洲十日本专区| 午夜福利视频1000在线观看| 日本与韩国留学比较| 国产av一区在线观看免费| 我要看日韩黄色一级片| 在线观看免费视频日本深夜| 三级毛片av免费| 一进一出好大好爽视频| 免费av观看视频| 日本 欧美在线| 欧美+亚洲+日韩+国产| 又爽又黄a免费视频| 噜噜噜噜噜久久久久久91| 在线a可以看的网站| 色视频www国产| 91麻豆精品激情在线观看国产| 国产伦一二天堂av在线观看| 国产精华一区二区三区| 婷婷色综合大香蕉| 欧美潮喷喷水| 99久久无色码亚洲精品果冻| 大型黄色视频在线免费观看| 天堂影院成人在线观看| 亚洲无线在线观看| 日韩中文字幕欧美一区二区| 国产日本99.免费观看| 97超视频在线观看视频| 亚洲午夜理论影院| 午夜免费激情av| 18禁黄网站禁片免费观看直播| 人妻丰满熟妇av一区二区三区| 日韩av在线大香蕉| 欧美+亚洲+日韩+国产| 乱码一卡2卡4卡精品| 一级毛片久久久久久久久女| 两个人的视频大全免费| 色综合欧美亚洲国产小说| 欧美日韩中文字幕国产精品一区二区三区| 小说图片视频综合网站| 日本黄色片子视频| 少妇的逼好多水| 国产精品98久久久久久宅男小说| 中文字幕精品亚洲无线码一区| 亚洲av.av天堂| 成人永久免费在线观看视频| 久9热在线精品视频| 男女下面进入的视频免费午夜| 精品久久久久久久人妻蜜臀av| 18禁裸乳无遮挡免费网站照片| 色在线成人网| 日日摸夜夜添夜夜添小说| 色播亚洲综合网| 2021天堂中文幕一二区在线观| 精品久久久久久久久久免费视频| 日韩av在线大香蕉| 波多野结衣高清无吗| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲在线观看片| 欧美zozozo另类| 亚洲真实伦在线观看| 亚洲av成人精品一区久久| 久久亚洲真实| 午夜免费成人在线视频| 中文字幕久久专区| 日本 欧美在线| 亚洲国产精品sss在线观看| 成人一区二区视频在线观看| 在线观看午夜福利视频| 精品久久久久久,| 国产在线男女| 男插女下体视频免费在线播放|