• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Autonomous UAV 3D trajectory optimization and transmission scheduling for sensor data collection on uneven terrains

    2023-12-27 04:10:12AndreySvkinStishVermWeiNi
    Defence Technology 2023年12期

    Andrey V.Svkin ,Stish C.Verm ,* ,Wei Ni

    a School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, Australia

    b Data61, CSIRO, Canberra, ACT, 2601, Australia

    Keywords:Unmanned aerial system UAS Unmanned aerial vehicle UAV Wireless sensor networks UAS-Assisted data collection 3D trajectory optimization Data transmission scheduling

    ABSTRACT This paper considers a time-constrained data collection problem from a network of ground sensors located on uneven terrain by an Unmanned Aerial Vehicle (UAV),a typical Unmanned Aerial System(UAS).The ground sensors harvest renewable energy and are equipped with batteries and data buffers.The ground sensor model takes into account sensor data buffer and battery limitations.An asymptotically globally optimal method of joint UAV 3D trajectory optimization and data transmission schedule is developed.The developed method maximizes the amount of data transmitted to the UAV without losses and too long delays and minimizes the propulsion energy of the UAV.The developed algorithm of optimal trajectory optimization and transmission scheduling is based on dynamic programming.Computer simulations demonstrate the effectiveness of the proposed algorithm.

    1.Introduction

    With their maneuverability and relatively low cost,Unmanned Aerial Vehicles (UAVs) provide effective means for many civilian applications,including support of wireless communication networks,environmental monitoring,emergency communications,disaster management,smart agriculture,and last mile delivery,see e.g.Refs.[1-4] and references therein.Furthermore,Unmanned Aerial Systems (UASs) consisting of UAVs,attracts more and more attention in various defence applications,where they are used to reduce risk to humans.These defence applications include but not limited to air combat,target tracking,unexploded ordnance detection,eavesdropping and counter-eavesdropping,see Refs.[5-12].Recent advances in wireless sensing technologies have resulted in the deployment of a large number of ground sensors for environmental monitoring,see e.g.Refs.[1,2].Data collection in wireless sensor networks can be challenging due to energy constraints or harsh environments.Data collection in wireless sensor networks is another area of UAV applications[1,2,4,13-17].A UAV is able to fly sufficiently close to a sensing device to increase data transmission rate and probability.A challenging and common in defence applications version of this problem is a case where a UAV is navigated over an uneven terrain,rather than broadly assumed flat terrain areas.Uneven terrains are geometrically complex grounds that are impossible to model with a sufficient accuracy by flat surfaces.On such uneven terrains,the Line-of-Sight (LoS) between the UAV and the transmitting sensors can be occlude by the terrain.Typical examples of uneven terrains include high density urban areas with big constructions and narrow roads.Another example is a precision agriculture scenario with a large number of sensing devices located in a mountain vineyard[1].Moreover,this problem is very important in defence applications,where the objective of the UAV is to covertly collect intelligence information from a ground sensor network located in a hilly area.

    This paper addresses the problem of data collection from a wireless sensor network mounted on an uneven terrain by a UAV.The ground sensors harvest renewable energy from the environment to recharge their batteries and use the energy for sensing and data transmission.Moreover,the sensors measure the environment and buffer the measurements.The objective of the UAV is to collect data from the sensors by exploiting the LoS from the sensors.Moreover,the UAV is navigated to get as close to the sensors as possible to achieve high rate and high probability of successful data transmission.The paper [3] also considers a case of an uneven terrain,however,Ref.[3] studies a mobile-edge computing problem,not a data collection problem.Moreover,Ref.[3] does not consider data buffer and energy limitations for ground nodes,whereas the current paper takes all such limitations into account and addresses a case of ground sensors harvesting energy into batteries and equipped with buffers for measurements.

    We propose a novel method for joint UAV path planning and data transmission,which maximizes a utility function describing the amount of transmitted data,the transmission time delays,and the propulsion energy of the UAV.We prove the asymptotic global optimality of the developed path planning method.More precisely,we prove that the constructed solution tends to the global maximum as some set of parameters tends to infinity.

    The contribution and the novelty of this paper can be highlighted as follows.The paper studies the problem of joint UAV 3D trajectory optimization and transmission scheduling for data collection from wireless sensors located on a hilly terrain where the LoS between the UAV and the sensors is often interrupted.The UAV and the sensors can communicate only via LoS paths.The aim is to fly the UAV and schedule transmissions between the sensors and the UAV so that the UAV can establish LoS paths with the ground sensors sufficiently often to collect more data from the sensors.This is a difficult and original problem as other publications on this topic[1,2,4,13-17] do not properly investigate the challenge of frequent loss of the LoS between the UAV and the sensors due to a rough non-flat terrain.Moreover,the proposed algorithm is globally optimal and it is mathematically rigorously proved unlike many other published results in the area.

    2.System model and problem statement

    We consider the following UAS.There is a UAV flying in a 3D environment.The vector(x(t),y(t),z(t))gives the current 3D position of the UAV.The following common mathematical of the motion is used:

    where v(·)∈[0,C1],ω(·)∈[-C2,C2]andu(·)∈[-C3,C3].Here μ(·)is the direction of the vehicle in a horizontal plane,v(·),ω(·)andu(·)are the inputs of the model representing linear horizontal,angular and vertical velocities of the UAV,respectively,C1,C2andC3are maximum limits of the corresponding control inputs.We also assume that for the UAV altitudez(t),the following inequalities must always hold:

    with some given 0 <Zmin<Zmax.

    The UAV is moving over an uneven terrain modelled by some a priori known altitude functione(x,y),wheree(x,y)is the altitude of the terrain point with 2D position(x,y).Notice that some points of the terrain can have altitudes aboveZminand evenZmax.The following constraint should hold for any trajectory(x(t),y(t),z(t)):

    with some given ε >0.It is obvious that if Eq.(3) holds,a collision between the UAV and the terrain is impossible.

    Furthermore,there areMground sensors,labelledj=1,…,M.Each sensor is equipped with an electric battery and harvests renewable energy from the environment.The harvested energy recharges the sensor's battery and is used to power sensing and data transmission.The function 0≤ej(t)≤Erepresents the battery state of sensorj,whereE>0 is a given constant.

    Each sensor makes some measurements so that new sets of measurement data are collected at time instants 0,τ,2τ,3τ,…Where τ >0 is a given time.Moreover,these data are buffered by the sensors,and the data queue length of sensorjat timetisdj(t)∈{0,1,…,D},whereD>0 is a given positive integer.The new data obtained at the timekτ have to be dropped if the buffer is full,i.e.d(kτ)=D.Furthermore,at any time instanth0j+khwhereh0jandh>0 are given constants,j=1,…,M,k=0,1,2,…,the UAV can select the ground sensorjfor data transmission.Then,the sensor transmits one set of data,and the transmitted data is erased from the buffer,hence,dj(·) is decreased by 1.In other words,h determines the transmission rate of the sensors as each sensor can make one transmission at any time instanth0j+kh.The constantsh0jdetermine transmission time shifts of the sensors,as the sensors may not be synchronized and have differenth0jso they transmit at different times.Each sensor also harvests energy from the environment,charges its battery,and spends some amount of energy on measurements.So,if during a time interval [t1,t2] the sensor does not transmit data,the battery state is described by the equationej(t2)=min{ej(t1)+Ej(t2-t1),E}whereEj>0 is some given constant describing the energy harvesting rate,andEj>0 is some given constant describing the sensor's battery maximum state.In other words,without transmission,the state of the battery is increasing linearly over time but it cannot exceed the maximum battery stateE.Notice that the constantsEjmay be different for different ground sensors,as some of them can be located in shadow etc.,so they harvest less solar or some other renewable energy.Furthermore,if a ground sensorjtransmits a set of data at timeh0j+kh,its battery levelej(·) instantaneously decreases by the amountEtr,whereEtr>0 is some given constant describing the amount of energy needed for one transmission.

    The UAV can select the sensor j for transmission at time h0j+khif the following conditions hold:

    C1) LoS from the UAV to the sensor j is not blocked by some part of the terrain,see Fig.1.

    Fig.1.The LoS from the UAV to sensor 1 is blocked,the LoS from the UAV to sensor 2 is not blocked.

    C2) The distancerj(h0j+kh) between the UAV and the sensor j satisfiesrj(h0j+kh) ≤R,whereR>0 is the communication radius of the sensor.

    C3) The buffer is not empty,i.e.,dj(h0j+kh) >0.

    C4) The battery has enough energy for transmission,i.e.ej(h0j+kh) ≥Etr.

    Let 0 <P(r)≤1,r∈[ε,R]be a given decreasing function describing probability of successful transmission of data from a sensor to the UAV from the distancer.

    The objective of the UAV is to navigate itself and schedule transmission times of the ground sensors to collect as many sensor data as possible.

    Notice that in the current paper,we concentrate on LoS communication between the UAV and the ground sensors.LoS communication is preferred for UAV-sensor communication because it provides a strong,stable,and fast connection.Moreover,LoS becomes indispensable when high-frequency bands are utilized for communication,e.g.,in the upcoming six-generation(6G)mobile communication era where quasi-optical millimeter wave(mmWave),terahertz,and visual light communications (VLC) are expected to dominate.

    On the other hand,LoS communication may not always be possible due to physical constraints,such as terrain or buildings,that can block the LoS between the UAV and the sensor.Our trajectory design philosophy is to design the trajectory of a UAV in such a way that at any point of the trajectory,there is a LoS between the UAV and its intended sensor.This design philosophy of maintaining effective LoS to the sensors is practical and rational.The reason is that the channel conditions of NLoS links can only be acquired via measurements on-the-spot or estimated empirically.The former (i.e.,on-the-spot channel measurement) violates the causality of the trajectory design,while the latter (i.e.,empirical modelling) is typically statistical and becomes inaccurate when it comes to a specific link.

    We will control the system over the interval [t0,t0+T],wheret0>0 andT>0 are given.We assume that the UAV initial conditionz(t0) satisfies the constraints Eqs.(2) and (3).LetNj(t1,t2] be the amount of data from the sensorjreceived by the UAV over the time period(t1,t2].Furthermore,ε(·)denotes mathematical expectation of some random variable.Moreover,we introduce the functions γj(h0j+kh),j=1,...,Mas follows:γj(h0j+kh):=1 if the sensor j is selected by the UAV for transmission of data at timeh0j+kh,or γj(h0j+kh):=0 otherwise.In other words,the function γj(·)defines the transmission schedules for the ground sensorj.

    Now,we introduce our optimal control problem:

    where α >0 and β >0 are given constants,g (·,·,·)≥0 is a given function such that the integral term in Eq.(4) describes the propulsion energy of the UAV,and the maximum is taken over all possible UAV control inputs v(·),ω(·),u(·)and all possible sensor transmission schedules γj(·),j=1,...,M.The first term of Eq.(4)is included to achieve data transmission from as many ground sensors as possible,the second term is included to achieve a high value of the total amount of data transmission from all sensors,and the third term is included to achieve a low value of the energy expenditure of the UAV.Notice that the function g (·,·,·) is different for different types of UAVs.

    Problem Statement.To jointly design UAV inputs v(·),ω(·),u(·)for the UAV Eq.(1)and sensor transmission schedules γj(·),j=1,...,M,that maximize the utility function Eq.(4) s.t.Eqs.(2),(3).

    Remark 2.1.We assume that at any time t the UAV knows ej(t)and dj(t).Data and energy are obtained by the sensors at constant rates known to the UAV.Also,the UAV knows about all the transmissions(successful and unsuccessful) made by each sensor.Therefore,to derive ej(t) and dj(t) fort∈[t0,t0+T] the UAV needs to know just initial values ej(t0)and dj(t0).In practice,this can be achieved if the UAV operates during the interval [t0,t0+sT] wheres≥2 is some integer.Then during [t0,t0+T],the UAV just gets close to each sensor to get their current buffer and battery states,and then solves the stated problem during each interval[t0+rT,t0+(r+1)T],1=r<s.Another possibility is that in some scenarios as the sensors did not transmit beforet0,we can assume that their buffers and batteries have the maximum states att0.Also,it is assumed that the UAV knows the predetermined constantRin C2),sensor coordinates and the elevation functione(x,y) to determine LoS.

    3.Path planning algorithm

    We select a positive integerQand split the time interval [t0,t0+T]intoQsmaller subintervals with the length of δ:=each.We consider such control inputs vi(t),ωi(t),ui(t)that they change their values at timest0,t0+δ,…,t0+(Q-1)δ and keep fixed values over any smaller subinterval [t0+jδ,t0+(j+1)δ],0=j≤Q-1.We also select some integersq1>0,q2>0 andq3>0.These integers are the quantization levels of the control inputs.More precisely,introduce the following set of inputs:

    The set of control inputs Eq.(5) can approximate any control

    For all 0 <s<Sj,

    input,including an input delivering global maximum if parametersQ,q1,q2andq3are large enough.

    Now,we propose the following maximization algorithm.

    MA1:Take all piecewise constant functions belonging to the class Eq.(5)that change their values att0,t0+δ,…,t0+(Q-1)δ,use these functions as the inputs of Eq.(1),check the constraints Eqs.(2),(3),and obtain the corresponding trajectories of the UAV over the interval [t0,t0+T] satisfying the constraints Eqs.(2),(3).

    We buildW:=q1(2q2+1)(2q3+1)sets of constant control inputs from the class Eq.(5) for any smaller subinterval.Hence,as there areQsubintervals,we haveWQpossible system inputs.However,according toMA1,a branch of the tree of possible control inputs is ended every time when at least one of the constraints Eqs.(2),(3)is violated.Therefore,in practical scenarios,we usually have a much smaller number of possible inputs to check thanWQ.Notice thatWQdepends on algorithm parametersq1,q2,q3,Qand does not depend on the number of sensors M.As the computational procedure Eq.(6),Eq.(7) is a dynamic programming type procedure[18],with fixedq1,q2,q3,Q,the computational complexity ofMA1-MA4equalsO(M).

    Proposition 3.1.There exists a set of control inputs and transmission schedules at which the global maximum in the optimization problem Eq.(4) s.t.Eqs.(4) (2),(3) is achieved.Whenq1→∞,q2→∞,q3→∞andQ→∞,the value of Eq.(4) delivered by the input and scheduling sequences constructed inMA1-MA4tends to the global maximum of this constrained optimization problem.

    proof of Proposition 3.1.Indeed,the set of all possible control inputs for Eq.(1) such that the constraints Eqs.(2) and (3) hold satisfies the mathematical properties of the uniform continuousness and uniform boundedness [19].Hence,using the Arzela-Ascoli theorem [19],we can conclude that the global maximum in the constrained optimization problem Eq.(4) s.t.Eq.(2) is achieved.Furthermore,we can take control inputs v0(·),ω0(·),u0(·)and transmission schedulesthat give a value of Eq.(4)which is as close as we wish to the global maximum of Eq.(4).Such inputs may be approximated with any desired accuracy by piecewise constant inputs.Hence,we can build a sequence of inputs belonging to the class Eq.(5) that tends to v0(·),ω0(·),u0(·)if q1,q2,q3and Q approach to infinity.Hence,for this constructed input sequence and transmission schedulesthe value of the function Eq.(4)tends to the global maximum whenq1→∞,q2→∞,q3→∞andQ→∞.On the other hand,it follows from the dynamic programming principle(see e.g.[18]) that for any particular UAV path determined by particular inputs,the maximum of ε(Nj(t0,t0+T)is obtained from the transmission scheduling function γj(·)constructed byMA2and Eqs.(6)and (7).This implies that the value of Eq.(4) for the inputs and transmission schedules delivered by the algorithmMA1-MA4tends to the global maximum asq1→∞,q2→∞,q3→∞andQ→∞.This ends the proof of Proposition 3.1.

    We point out that the proposed algorithm builds an almost optimal solution of the studied constrained optimization problem.More precisely,the obtained trajectories converge to the trajectory delivering the global optimum asq1,q2,q3andQtend to infinity.

    4.Computer simulations

    In the current section,the results of computer simulations for the Proposed Algorithm Approach (PAA) for joint UAV path planning and data transmission scheduling are presented.The proposed solution is compared with the state-of-the-art method of Ref.[20],referred to as Conventional Algorithm Approach (CAA).The simulations of the algorithms are performed in MATLAB.To mimic a real-world mountain terrain,terrain data from Yellowstone,USA has been used for the simulation,see Figs.2 and 3.This real-world terrain is generated with the help of the data collected by the United States Geological Survey [21].The environment consists of an uneven surface with five ground sensors.Each of them is shown as a black dot in Figs.2 and 3.The simulations run over 900 s,and start from the UAV initial position marked by yellow square in Figs.2 and 3.

    As CAA is designed for the case of the UAV moving in a horizontal plane,to get a fair comparison with the proposed method,we consider the scenario withZmin=Zmaxwhere the UAV moves in the horizontal planez(t)=Zminwith the vertical speedu(t)=0.The values of the constants used for both simulations are given in Table 1.

    The probability distribution function of successful transmission is defined asP(r)=The function may not accurately depict real-life transmission probability and is only used to test the proposed algorithm.Nevertheless,the function can be readily replaced by any other probability distribution function.The proposed algorithm only needs a monotonically decreasing function forP(r)and does not depend on it critically.We take the functiong(v,ω,u)=|v|+|ω|+|u|.To compare these two algorithms,we plot the values of the utility function Eq.(4) versus time for the UAV trajectories constructed by the CAA and the PAA in Fig.4.

    CAA:This approach is based on designing a Dubins path that is a shortest smooth trajectory that is sufficiently close to all the sensors[20].The control input to the system is [v(t),ω(t),0],where the vertical velocity componentu(t)is always zero,so the UAV moves with a constant altitude.The linear speed of the UAV is constant.Using the brute force technique,the possible path value of (M+1)points on theXY-plane is calculated and compared.The solution gives the shortest path.However,this path does not satisfy a nonholonomic smoothness constraint.The Dubins curve is used to fit the non-holonomic constraints and generate a path on a horizontal plane for the UAV.It travels above the sensors in sequence{1,2,3,4,5},see Fig.2.Since the information about the state of the battery and data buffers’ states of the ground sensors is not taken into account while planning the trajectory,the UAV ends up visiting least-priority sensors first.It results in a smaller amount of data collected,and the value of the utility function is relatively low,see Fig.4.

    Fig.2.Trajectories view I.

    Fig.3.Trajectories view II.

    Fig.4.Utility vunction.

    PAA:We apply the proposed algorithm with parametersQ=9,q1=4,q2=5,C1=125 m/s,C2=10 rad/s andC3=10 m/s.Then a set of control inputs is calculated by Eq.(5).After checking the constraints Eqs.(2),(3) as required inMA1,the number of eligible control options drops significantly.We apply the control input produced by the optimization schemeMA4that gives the highest value for the utility function Eq.(4).The sequence of the sensors to be visited by the UAV is{4,3,2,1,5},and it is different from the CAA,see Figs.2 and 3.The amount of data and battery stored in sensor 4 is significantly higher when compared to other sensors.Unlike the CAA,the PAA prioritizes sensor 4 over other sensors,see Fig.2.Also,an advantage of the PAA is that it results in achieving the LoS between the UAV and the ground sensors more often than in the case of the CAA.The value of the utility function of the proposed algorithm is significantly higher that for the CAA.The PAA provides much better data collection from the ground sensors,see Fig.4.The proposed algorithm is more effective and efficient for maximizing data collection and minimizing energy expenditure when compared to the CAA.

    5.Conclusions

    A problem of joint 3D trajectory optimization and communication for a UAV flying over an uneven terrain was investigated.Under considered scenarios,the UAV navigates itself with the purpose to collect data from ground sensors mounted on an uneven terrain.A constructive and almost globally optimal method for joint trajectory optimization and sensor transmission scheduling was proposed and rigorously analysed.Computer simulations and comparisons with another advanced method demonstrated the performance of the presented method.There are several promising directions for future research in this area.One such a research direction is to extend the developed method to the case of several cooperating UAVs.In multi-UAV scenarios the issue of avoiding collisions between the UAVs should be addressed.Another challenge is to reduce computational complexity of an algorithm,especially for the multi-UAV case.It would be very interesting to obtain some not globally optimal but significantly less computationally expensive algorithm.Also,a promising direction of future research is to investigate scenarios in which sensor data collection is conducted by a team of cooperating UAVs and ground unmanned vehicles.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work received funding from the Australian Government,via Grant No.AUSMURIB000001 associated with ONR MURI Grant No.N00014-19-1-2571.

    日日摸夜夜添夜夜添av毛片| 高清午夜精品一区二区三区| 九九久久精品国产亚洲av麻豆| 亚洲最大成人av| 一本一本综合久久| 国产成人a区在线观看| 亚洲成色77777| 亚洲欧美精品专区久久| 国产黄a三级三级三级人| 毛片女人毛片| 中文字幕久久专区| 身体一侧抽搐| 日本猛色少妇xxxxx猛交久久| 婷婷色综合www| 丝瓜视频免费看黄片| 国产成人一区二区在线| 国产 一区精品| 99九九线精品视频在线观看视频| 99热全是精品| 特级一级黄色大片| 中文欧美无线码| 久久久精品94久久精品| 人妻系列 视频| 成人午夜精彩视频在线观看| 午夜福利在线在线| 国产一区二区亚洲精品在线观看| 亚洲欧美日韩另类电影网站 | 又爽又黄无遮挡网站| 亚洲精品乱码久久久v下载方式| 人人妻人人看人人澡| 国产永久视频网站| 亚洲精品国产成人久久av| 亚洲国产色片| 午夜免费男女啪啪视频观看| 午夜福利在线在线| 久久99热这里只频精品6学生| 97精品久久久久久久久久精品| 成人一区二区视频在线观看| 亚洲精品自拍成人| 一级毛片久久久久久久久女| 国产精品蜜桃在线观看| 网址你懂的国产日韩在线| 亚洲精品成人久久久久久| 偷拍熟女少妇极品色| 韩国av在线不卡| 国产成人午夜福利电影在线观看| 亚洲欧美精品专区久久| 一区二区三区四区激情视频| 女的被弄到高潮叫床怎么办| 欧美最新免费一区二区三区| 日韩精品有码人妻一区| 亚洲精品影视一区二区三区av| 免费黄网站久久成人精品| 午夜视频国产福利| 男女边摸边吃奶| 五月玫瑰六月丁香| 少妇人妻精品综合一区二区| 不卡视频在线观看欧美| www.色视频.com| 嫩草影院入口| 精品亚洲乱码少妇综合久久| 免费观看av网站的网址| 91久久精品国产一区二区三区| 亚洲精品第二区| 80岁老熟妇乱子伦牲交| 国产精品福利在线免费观看| 男男h啪啪无遮挡| 欧美极品一区二区三区四区| 女人久久www免费人成看片| 久久精品国产自在天天线| 国产高清有码在线观看视频| 国产日韩欧美亚洲二区| 国内少妇人妻偷人精品xxx网站| 日韩av免费高清视频| 在线免费十八禁| 99久久精品一区二区三区| 国产乱人视频| 在线观看国产h片| a级毛色黄片| 伦精品一区二区三区| 亚洲熟女精品中文字幕| 嫩草影院入口| 日韩一区二区视频免费看| 国产乱人视频| 亚洲,一卡二卡三卡| 熟妇人妻不卡中文字幕| 国内精品美女久久久久久| 亚洲av福利一区| 在线免费十八禁| 小蜜桃在线观看免费完整版高清| 亚洲成人中文字幕在线播放| 亚洲av日韩在线播放| 又粗又硬又长又爽又黄的视频| 简卡轻食公司| 十八禁网站网址无遮挡 | 精品人妻偷拍中文字幕| 观看美女的网站| 国产一级毛片在线| 日本免费在线观看一区| 精品一区在线观看国产| 18禁动态无遮挡网站| 国产精品一区二区三区四区免费观看| av免费在线看不卡| 成年人午夜在线观看视频| 99久久精品一区二区三区| 国产极品天堂在线| av在线播放精品| 亚洲久久久久久中文字幕| 欧美最新免费一区二区三区| 欧美另类一区| 亚洲欧美日韩另类电影网站 | 欧美三级亚洲精品| 亚洲最大成人av| 欧美成人精品欧美一级黄| 99久久九九国产精品国产免费| 99热网站在线观看| 亚洲精品成人av观看孕妇| 亚洲,欧美,日韩| 黄片wwwwww| 王馨瑶露胸无遮挡在线观看| 久久久精品免费免费高清| 国产精品成人在线| 亚洲,一卡二卡三卡| 亚洲国产精品国产精品| 成年女人看的毛片在线观看| 久久久精品欧美日韩精品| 男人狂女人下面高潮的视频| 亚洲欧美一区二区三区黑人 | 中文精品一卡2卡3卡4更新| 国产人妻一区二区三区在| 欧美老熟妇乱子伦牲交| 免费av毛片视频| 老司机影院成人| 国产又色又爽无遮挡免| 精品一区二区免费观看| 狂野欧美白嫩少妇大欣赏| 欧美人与善性xxx| 亚洲欧美成人综合另类久久久| 久久久久九九精品影院| 午夜视频国产福利| 少妇人妻久久综合中文| 久久精品国产亚洲网站| 一级毛片黄色毛片免费观看视频| 欧美性感艳星| 99热这里只有是精品50| 精品人妻视频免费看| 国产精品久久久久久av不卡| 成人美女网站在线观看视频| 深夜a级毛片| 六月丁香七月| 久久久欧美国产精品| 少妇被粗大猛烈的视频| 亚洲国产色片| 精品少妇黑人巨大在线播放| 国产成年人精品一区二区| 国产黄色视频一区二区在线观看| 成人亚洲精品一区在线观看 | 欧美一区二区亚洲| videos熟女内射| 22中文网久久字幕| av在线播放精品| 久久久久久久亚洲中文字幕| 哪个播放器可以免费观看大片| 久久午夜福利片| 国产免费又黄又爽又色| 日产精品乱码卡一卡2卡三| 国精品久久久久久国模美| 高清毛片免费看| 国产免费福利视频在线观看| 日日摸夜夜添夜夜爱| 亚洲人成网站高清观看| 久久99蜜桃精品久久| 性插视频无遮挡在线免费观看| 国产成人精品一,二区| 亚洲精品自拍成人| 男男h啪啪无遮挡| 精品视频人人做人人爽| av免费观看日本| 亚洲四区av| 熟女av电影| 一区二区av电影网| 人妻系列 视频| 黄色日韩在线| 国产精品精品国产色婷婷| 99久久人妻综合| 国产高潮美女av| 日韩成人av中文字幕在线观看| 国产大屁股一区二区在线视频| 国产黄色免费在线视频| 性色avwww在线观看| 亚洲av中文字字幕乱码综合| 久久99热这里只有精品18| 丝袜脚勾引网站| 伊人久久精品亚洲午夜| 国产亚洲午夜精品一区二区久久 | 又粗又硬又长又爽又黄的视频| 亚洲成人一二三区av| 人体艺术视频欧美日本| 久久99热这里只频精品6学生| 丝袜喷水一区| 看非洲黑人一级黄片| 国产精品熟女久久久久浪| 国产精品99久久久久久久久| 国产成人福利小说| 中文字幕人妻熟人妻熟丝袜美| 91午夜精品亚洲一区二区三区| 欧美激情在线99| 国产探花在线观看一区二区| 99久久精品热视频| 欧美3d第一页| 国产精品一区二区性色av| 欧美日韩视频高清一区二区三区二| 国产大屁股一区二区在线视频| 免费高清在线观看视频在线观看| 国产淫片久久久久久久久| 十八禁网站网址无遮挡 | 久久久久久伊人网av| 国产中年淑女户外野战色| 网址你懂的国产日韩在线| 久久久久久国产a免费观看| 亚洲精品国产av蜜桃| 亚洲精品aⅴ在线观看| 国产高清有码在线观看视频| 99久久精品一区二区三区| 亚洲欧美成人综合另类久久久| 51国产日韩欧美| 亚洲经典国产精华液单| 亚洲精品国产成人久久av| 97在线人人人人妻| 亚洲精品久久久久久婷婷小说| 18禁在线无遮挡免费观看视频| 80岁老熟妇乱子伦牲交| 爱豆传媒免费全集在线观看| 久久久久久久大尺度免费视频| av.在线天堂| 能在线免费看毛片的网站| 久久亚洲国产成人精品v| 少妇丰满av| 久久久久国产精品人妻一区二区| 日本-黄色视频高清免费观看| av在线天堂中文字幕| 国产综合懂色| 久久精品国产自在天天线| 丝袜脚勾引网站| 免费av不卡在线播放| 成人特级av手机在线观看| 亚洲不卡免费看| 午夜福利在线在线| 人妻少妇偷人精品九色| 国产av码专区亚洲av| 午夜亚洲福利在线播放| 免费看不卡的av| 亚洲精品乱久久久久久| 内地一区二区视频在线| 亚洲精品乱码久久久久久按摩| 嫩草影院入口| 岛国毛片在线播放| 青青草视频在线视频观看| 欧美97在线视频| 亚洲精品成人久久久久久| 精品人妻熟女av久视频| 免费观看av网站的网址| 91精品伊人久久大香线蕉| kizo精华| 在线观看三级黄色| 国产亚洲av片在线观看秒播厂| 黄片无遮挡物在线观看| 亚洲人与动物交配视频| 亚洲av日韩在线播放| 亚洲高清免费不卡视频| www.av在线官网国产| 精品一区在线观看国产| 美女被艹到高潮喷水动态| 少妇人妻久久综合中文| 蜜桃久久精品国产亚洲av| 婷婷色麻豆天堂久久| 国产亚洲av嫩草精品影院| 国产欧美亚洲国产| 久久ye,这里只有精品| 男女那种视频在线观看| 少妇人妻久久综合中文| 蜜桃久久精品国产亚洲av| 国产精品成人在线| 日韩一区二区三区影片| 麻豆久久精品国产亚洲av| 亚洲精品影视一区二区三区av| 亚洲,欧美,日韩| 国产精品三级大全| 亚洲天堂国产精品一区在线| 少妇人妻 视频| 女人被狂操c到高潮| 成人毛片60女人毛片免费| videossex国产| 伊人久久精品亚洲午夜| 日韩成人av中文字幕在线观看| 成人欧美大片| 亚洲自偷自拍三级| 一级爰片在线观看| av又黄又爽大尺度在线免费看| 国产91av在线免费观看| 少妇丰满av| 性色av一级| 久久久久久九九精品二区国产| 日韩免费高清中文字幕av| www.av在线官网国产| 国产高清国产精品国产三级 | 中文天堂在线官网| 男插女下体视频免费在线播放| 国产白丝娇喘喷水9色精品| 中国国产av一级| 成人午夜精彩视频在线观看| 国产男女内射视频| 美女被艹到高潮喷水动态| 18禁裸乳无遮挡动漫免费视频 | 亚洲av.av天堂| 晚上一个人看的免费电影| 亚洲一区二区三区欧美精品 | 哪个播放器可以免费观看大片| 一级黄片播放器| 三级国产精品欧美在线观看| 毛片女人毛片| 99精国产麻豆久久婷婷| 一个人观看的视频www高清免费观看| 日日摸夜夜添夜夜添av毛片| 我要看日韩黄色一级片| 午夜免费男女啪啪视频观看| 国产高清国产精品国产三级 | 午夜日本视频在线| 午夜激情福利司机影院| 天天躁夜夜躁狠狠久久av| 在现免费观看毛片| 国产高潮美女av| 美女cb高潮喷水在线观看| 夫妻性生交免费视频一级片| 亚洲国产最新在线播放| 你懂的网址亚洲精品在线观看| 男男h啪啪无遮挡| 九草在线视频观看| 少妇猛男粗大的猛烈进出视频 | 国产精品熟女久久久久浪| 99精国产麻豆久久婷婷| 一本久久精品| 全区人妻精品视频| 男插女下体视频免费在线播放| 特级一级黄色大片| 777米奇影视久久| 特大巨黑吊av在线直播| 国产91av在线免费观看| 免费少妇av软件| 国内少妇人妻偷人精品xxx网站| 黄色怎么调成土黄色| 男女那种视频在线观看| 亚洲天堂av无毛| 日韩免费高清中文字幕av| 亚洲av在线观看美女高潮| 国产女主播在线喷水免费视频网站| 午夜亚洲福利在线播放| 免费看不卡的av| 中文欧美无线码| 午夜激情福利司机影院| 午夜福利在线观看免费完整高清在| 校园人妻丝袜中文字幕| 亚洲人成网站高清观看| 美女主播在线视频| 国产精品嫩草影院av在线观看| 亚洲在久久综合| 国产精品人妻久久久影院| 亚洲成人一二三区av| 亚洲精品亚洲一区二区| 午夜福利视频1000在线观看| .国产精品久久| 丰满乱子伦码专区| 亚洲国产精品国产精品| av播播在线观看一区| 国产美女午夜福利| 亚洲国产高清在线一区二区三| 激情 狠狠 欧美| 99热这里只有精品一区| 黄片无遮挡物在线观看| 国产人妻一区二区三区在| 精品国产一区二区三区久久久樱花 | 亚洲婷婷狠狠爱综合网| 中文资源天堂在线| 各种免费的搞黄视频| 国产一级毛片在线| 免费高清在线观看视频在线观看| 久久久久网色| 九草在线视频观看| 在线观看美女被高潮喷水网站| 国产成人午夜福利电影在线观看| 黑人高潮一二区| 久久国内精品自在自线图片| tube8黄色片| eeuss影院久久| 麻豆精品久久久久久蜜桃| 日韩欧美 国产精品| 精品久久久精品久久久| 内射极品少妇av片p| 日韩强制内射视频| 又爽又黄a免费视频| 欧美bdsm另类| 欧美日韩精品成人综合77777| 一区二区三区免费毛片| 色5月婷婷丁香| 99热网站在线观看| 久久久久久久大尺度免费视频| 亚洲精品久久久久久婷婷小说| 日日摸夜夜添夜夜爱| 久久精品国产亚洲av涩爱| 亚洲精品国产成人久久av| 久久精品国产鲁丝片午夜精品| 交换朋友夫妻互换小说| 视频中文字幕在线观看| 国产又色又爽无遮挡免| 国产成人福利小说| av黄色大香蕉| 中文天堂在线官网| 国产亚洲av嫩草精品影院| 18+在线观看网站| 啦啦啦在线观看免费高清www| 中文字幕人妻熟人妻熟丝袜美| 日韩伦理黄色片| 啦啦啦啦在线视频资源| 天天躁夜夜躁狠狠久久av| 丝袜脚勾引网站| 精品熟女少妇av免费看| 少妇猛男粗大的猛烈进出视频 | 亚洲内射少妇av| 欧美高清性xxxxhd video| 久久精品人妻少妇| 国产精品嫩草影院av在线观看| h日本视频在线播放| 一级毛片久久久久久久久女| 黄色欧美视频在线观看| 18禁裸乳无遮挡动漫免费视频 | 亚洲美女视频黄频| 女的被弄到高潮叫床怎么办| 精华霜和精华液先用哪个| 亚洲欧美中文字幕日韩二区| 在线a可以看的网站| 久久6这里有精品| 看免费成人av毛片| 日本av手机在线免费观看| 精品视频人人做人人爽| 自拍欧美九色日韩亚洲蝌蚪91 | 一边亲一边摸免费视频| 99久久人妻综合| 少妇人妻 视频| 91精品国产九色| 少妇人妻一区二区三区视频| 国产美女午夜福利| 欧美精品一区二区大全| 日本一二三区视频观看| 国产老妇女一区| 亚洲国产精品成人综合色| 欧美激情国产日韩精品一区| 综合色丁香网| 久久久久久久久久成人| 综合色丁香网| 国产精品99久久久久久久久| 久久影院123| 日韩在线高清观看一区二区三区| 男女国产视频网站| 免费人成在线观看视频色| 国产精品麻豆人妻色哟哟久久| 一区二区av电影网| 成年av动漫网址| 少妇被粗大猛烈的视频| 女的被弄到高潮叫床怎么办| 亚洲真实伦在线观看| 精品人妻熟女av久视频| 亚洲av国产av综合av卡| 国产亚洲av嫩草精品影院| 一个人看视频在线观看www免费| 国产大屁股一区二区在线视频| 日韩 亚洲 欧美在线| 国产欧美亚洲国产| 亚洲精品久久午夜乱码| 国产又色又爽无遮挡免| 欧美少妇被猛烈插入视频| tube8黄色片| 久久国产乱子免费精品| 五月天丁香电影| 永久网站在线| 国产精品精品国产色婷婷| 中国美白少妇内射xxxbb| 少妇的逼好多水| 亚洲美女搞黄在线观看| 99热国产这里只有精品6| 亚洲av不卡在线观看| 国产精品国产三级专区第一集| 性色av一级| 亚洲欧美精品专区久久| 欧美成人精品欧美一级黄| 搡女人真爽免费视频火全软件| 国产久久久一区二区三区| 日日撸夜夜添| 亚洲av成人精品一区久久| 亚洲一级一片aⅴ在线观看| 日韩视频在线欧美| 综合色av麻豆| 亚洲,欧美,日韩| 国精品久久久久久国模美| 亚洲色图av天堂| 午夜老司机福利剧场| 夜夜看夜夜爽夜夜摸| 男人和女人高潮做爰伦理| 身体一侧抽搐| 亚洲国产色片| 亚洲激情五月婷婷啪啪| 免费看av在线观看网站| 欧美日韩视频精品一区| 成人二区视频| 亚洲欧美日韩无卡精品| 国产一级毛片在线| 精品久久久久久久久亚洲| 晚上一个人看的免费电影| 又大又黄又爽视频免费| videos熟女内射| 精品午夜福利在线看| 成人美女网站在线观看视频| 国产亚洲午夜精品一区二区久久 | 亚洲真实伦在线观看| 欧美3d第一页| 国产精品成人在线| 嘟嘟电影网在线观看| 97人妻精品一区二区三区麻豆| 蜜桃久久精品国产亚洲av| 日韩大片免费观看网站| 一级爰片在线观看| 免费电影在线观看免费观看| 亚洲成人一二三区av| 男女啪啪激烈高潮av片| 成年人午夜在线观看视频| 全区人妻精品视频| 一区二区三区免费毛片| 黄色日韩在线| 18禁裸乳无遮挡免费网站照片| 国产免费福利视频在线观看| 高清欧美精品videossex| 人体艺术视频欧美日本| 亚洲欧美清纯卡通| 国产老妇女一区| 18禁裸乳无遮挡免费网站照片| 色网站视频免费| 在现免费观看毛片| 国产免费一级a男人的天堂| 黄色视频在线播放观看不卡| 午夜福利网站1000一区二区三区| 麻豆成人午夜福利视频| 亚洲激情五月婷婷啪啪| 99热全是精品| 91aial.com中文字幕在线观看| 又爽又黄无遮挡网站| 亚洲天堂av无毛| 免费黄网站久久成人精品| 亚洲av男天堂| 国产免费又黄又爽又色| 精品久久国产蜜桃| kizo精华| av国产精品久久久久影院| 九草在线视频观看| av国产久精品久网站免费入址| 一级毛片黄色毛片免费观看视频| 国产淫片久久久久久久久| 国产永久视频网站| 色视频www国产| 日韩不卡一区二区三区视频在线| av黄色大香蕉| 亚洲av男天堂| 国产日韩欧美在线精品| 一级a做视频免费观看| 少妇熟女欧美另类| 高清在线视频一区二区三区| 99热网站在线观看| 又黄又爽又刺激的免费视频.| 免费不卡的大黄色大毛片视频在线观看| 一级爰片在线观看| 久久久久久久午夜电影| 人人妻人人澡人人爽人人夜夜| 日韩一区二区三区影片| 免费不卡的大黄色大毛片视频在线观看| 十八禁网站网址无遮挡 | 一级片'在线观看视频| 黄色配什么色好看| 久久精品夜色国产| 我的女老师完整版在线观看| 欧美激情国产日韩精品一区| 国产人妻一区二区三区在| 少妇人妻久久综合中文| 国产伦在线观看视频一区| 国产淫片久久久久久久久| 日韩制服骚丝袜av| 国产成人一区二区在线| 麻豆成人午夜福利视频| 日韩制服骚丝袜av| 内射极品少妇av片p| 乱系列少妇在线播放| 国产精品久久久久久精品电影| 中国美白少妇内射xxxbb| 中文乱码字字幕精品一区二区三区| 视频区图区小说| 熟女av电影| 亚洲最大成人手机在线| 看非洲黑人一级黄片| 赤兔流量卡办理| 精品久久久精品久久久| 美女主播在线视频| 国产午夜精品一二区理论片| 亚洲最大成人手机在线| 一区二区av电影网| 伦精品一区二区三区| 精品人妻熟女av久视频| 亚洲一级一片aⅴ在线观看| 免费大片黄手机在线观看|