• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic analysis of bio-inspired helicoid laminated composite plates resting on Pasternak foundation excited by explosive loading

    2023-12-27 04:10:04NgocTuDoQuocHoPhm
    Defence Technology 2023年12期

    Ngoc-Tu Do ,Quoc-Ho Phm

    a Faculty of Mechanical Engineering, Hanoi University of Industry, Hanoi, Viet Nam

    b Faculty of Engineering and Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam

    Keywords:Isogeometric analysis Pasternak foundation Dynamic response Laminated composite

    ABSTRACT This paper uses isogeometric analysis (IGA) based on higher-order shear deformation theory (HSDT) to study the dynamic response of bio-inspired helicoid laminated composite (B-iHLC) plates resting on Pasternak foundation (PF) excited by explosive loading.IGA takes advantage of non-uniform rational Bspline(NURBS)basic functions to exactly represent the structure geometry models and the attainment of higher-order approximation conditions.This method also ensures a C1 continuous function in the analysis of transverse shear deformation via HSDT.Furthermore,IGA eliminates the requirement for correction factors and delivers accurate results.Pasternak foundation with two stiffness parameters:springer stiffness (k1) and shear stiffness (k2).The derivation of the governing equations is based on Hamilton's principle.The proposed method is validated through numerical examples.A comprehensive analysis of the impact of geometrical parameters,material properties,boundary conditions (BCs),and foundation stiffness on dynamic response of B-iHLC plates is carried out.

    1.Research problem overview

    Nature is remarkable in its ability to create structures that can efficiently handle loads with minimal stress and deformation and are capable of withstanding high-impact forces.There are many studies demonstrating nature's superior structures that humans can apply in design and manufacture.Some works study sandwich structures with a honeycomb core based on the idea of following the honeycomb structure in nature [1-3].Besides,the layering configurations observed in various natural structures such as plants,insects,and animals result in increased stiffness.By adopting these configurations in laminated structures,it is possible to attain high stiffness without sacrificing toughness [4-6].Researchers are exploring the design and manufacture of hierarchical structures that are inspired by natural materials such as spider webs,shells,bones,and leaves.The goal is to create new materials with properties and functions that are similar to those found in nature.By mimicking the hierarchical structures of biological materials,researchers aim to develop materials with high strength,toughness,and stability,as well as low weight and improved sustainability [7-9].Its helical or Bouligand structure,composed of chitin,effectively dissipates energy,prevents the growth of cracks,and provides high stiffness [10].Inspired by the helical arrangement of layers in laminated composite structures,researchers have investigated the impact of foreign objects on these structures[11-16].The superiority of the helical layup is evident in the work of researchers like Liu et al.[17],who demonstrated its selfrecoverability capacity.Yin et al.[18] have also studied the toughening mechanism in helicoidal plates inspired by the anatomy of coelacanth fish.Fig.1 illustrates various biological sources from which helical structures can be derived.

    Fig.1.Bio-inspired helicoidal structure:(a)Fingerprint and DNA;(b)Snail shell;(c)Helicoidal fiber organization of Odontodactylus scyllarus[19];(d)The exoskeleton of a beetle;(e) Collagen fibril lamellae from Arapaima gigas scales [20];(f) The Bouligand helicoidal structure is inspired by (a)-(e) these biological structures and can be used to design (g)composite laminates.The potential applications of these bio-inspired helicoidal composite laminates include anti-low velocity impact or anti-bullet products for (h) warcraft,(i)tanks,and (j) warships,as well as energy applications such as (k) wind and (l) hydraulic turbine blades.(Adapted with permission of Jiang et al.[21] from Elsevier).

    There are many review articles in the literature that summarize the work done on the analysis of laminated composite plates,beams,and shells under various loading conditions.Reddy [22]published an extensive review of shear deformation theories and their origins for the analysis of laminated structures.Carrera [23]reviewed the available zigzag theories in the literature for analyzing laminated composite and sandwich structures.Zhang and Yang [24] published a review of finite element-based analysis of laminated structures.Liew et al.[25]reviewed various meshless methods for analyzing laminated structures.Mohamed et al.[26]presented the review of the mechanical behavior of bio-inspired composite plates.Zhang et al.[27]predicted the bending resistance of basalt fiber laminate composite with a bionic helical structure.Almitani et al.[28] provided exact solutions for the bending and buckling analysis of B-iHLC beams supported on PF.Garg et al.[29]conducted a study of the free vibration and buckling analysis of BiHLC plates using a higher-order zigzag theory.Furthermore,readers can find different methods for analyzing the mechanical behavior of composite plates in Refs.[30-32].

    Studying the mechanical behavior of structures lying on elastic foundations (EFs) has typical works as Guellil et al.[33] presented the influences of porosity distributions on the mechanical bending response of functionally graded plates resting on EFs using Navier solution.Hadji et al.[34]analyzed the influence of porosity and EF on the bending behavior of sandwich structures.Zaitoun et al.[35]examined the vibration of a functionally graded (FG) sandwich plate resting on the viscoelastic foundation based on the accurate high-order shear deformation theory (HSDT).In addition,the hygro-thermo-mechanical bending and vibration response of FG plates resting on EFs is introduced in Refs.[36,37]and the influence of the visco-Pasternak foundation parameters on the mechanical behavior of FG sandwich plates is presented in Refs.[38,39].Besides,the results on the effect of the elastic foundation on the mechanical response of plates can be provided in Refs.[40-42].

    To overcome the limitations of classical FEM and analytical methods for computing the complex structures,Hughes et al.[43,44] introduced the IGA method based on computer-aided design (CAD).The effectiveness of IGA has been demonstrated in various studies [45-53].IGA can be implemented on computers with open access to the internet.Since then,many researchers have applied IGA to structural analysis using different plate theories.For example,Valizadeh et al.[54] used IGA with the first-order shear deformation theory (FSDT) to analyze the bending,vibration,and flutter of functionally graded materials(FGM)structures.Natarajan et al.[55]studied the non-local free flexural vibration of FGM plates using IGA with a third-order NURBS basis function.Anitescu et al.[56] analyzed electrodynamics using IGA based on a dual-basis diagonal mass formulation.The advancement of IGA is that it is possible to solve mathematical models with the C1 continuity problem without requiring any additional variables or Hermite interpolation functions.The basic idea of IGA is to use elementary functions to accurately describe the geometric domain as well as to approximate unknown fields.Since the geometric domain is modeled correctly and the number of variables does not increase.It hence motivates us to employ IGA based on HSDT for analysis of BiHLC plates subjected to explosive loading.

    Explosive loading is a type of short-term load with great intensity,dangerous to weapons,equipment and people,so the study of structures subjected to this loading is necessary.Based on the study of Khdeir et al.[57],the sinusoidally explosive loadingp(t)is a type of short-term load that can be caused by various sources,such as explosions,supersonic projectiles,or rockets that operate nearby acting perpendicular (z-direction) to the surface of plates.This type of loading can be mathematically described by the function.

    in whichts=0.006 s,γ=330 s-1,q0=68.9476 MPa;aandbare the length and width of composite plates,respectively(see Fig.2).

    Fig.2.The model of the B-iHLC plate resting on Pasternak foundation.

    Several studies have been conducted to investigate the mechanical behavior of structures subjected to explosive loading,and some typical works are Refs.[58-61].More recently,Duc et al.[62,63] analyzed the nonlinear vibration of Functionally Graded Material (FGM) plates under blast loading,while Qi et al.[64]investigated the forced vibration of curved sandwich panels subjected to explosive loading.It is worth noting that all the aforementioned studies employed analytical solutions to examine the response of the structures under consideration.

    Through the evaluation of the results achieved,it can be observed that IGA in combination with HSDT is very suitable for analyzing structures and provides high accuracy.Thus,the novelty of this work is the implementation of a finite element formulation based on IGA and HSDT for dynamic analysis of B-iHLC plates located on PF excited by explosive loading.Moreover,the new numerical results on the influence of geometrical,material,and EF on the dynamic analysis of B-iHLC plates are provided in detail.The authors believe that this study will be an important basis for scientists to apply to research and design military equipment such as tanks,armored vehicles,missiles,submarines,combat aircraft,and so on.

    Besides the introduction,this paper is composed of five sections.In section 2,the authors delve into geometrical models,elastic foundations,and thermal environments.Section 3 presents a comprehensive derivation of the motion equation for B-iHLC plates.To validate the proposed method,the authors conduct numerical simulations and present the results in section 4.Finally,section 5 concludes the paper by summarizing the key findings.

    2.Geometrical model and material properties

    In this study,three different helical designs,namely the helicoidal-recursive (HR),helicoidal exponential (HE),and helicoidal-semicircular (HS) are analyzed.Fig.3 displays an isometric view of these configurations,which are summarized in Table 1.

    The plate resting on PF includes springer stiffness(k1)and shear layer stiffness (k2) can be determined as follows [65]:

    The Pasternak foundation model is a two-parameter model that describes the foundation reaction as a function of the deflection and its Laplacian.The negative sign in front of the second term indicates that the shear resistance is opposite to the direction of curvature [66].This means that when the deflection is concave upward,the shear resistance is downward,and vice versa.The negative sign also ensures that the total foundation reaction is zero when there is no deflection.

    3.Theory and formulation

    3.1.Higher-order shear deformation theory (HSDT)

    The displacement field following HSDT is expressed by [67]

    whereu0,v0,θx,θy,andware displacement variables.f(z)=z(1-4z2/3h2)is the continuous function [68].

    Then,the strain-displacement relations are defined by

    withf′(z)is the derivative of the functionf(z).

    In which

    The stress resultants are calculated as follows:

    with A,B,Bb,F(xiàn),F(xiàn)band H are defined by

    where

    with α is the fiber angle of theklayer.

    Replacing Eq.(8) into Eq.(7),authors get

    3.2.The governing equations of FGP plates

    In the realm of classical mechanics,Hamilton's principle is a variational principle that asserts that the motion of a system is determined by minimizing the action functional.This action is computed by taking the integral of the Lagrangian over time,where the Lagrangian represents the difference between kinetic and potential energy.The subtraction of potential energy from kinetic energy is denoted by a negative sign in the equation[69].

    where,the virtual strain energy is

    The virtual work done by the transverse forces is

    The virtual deformed elastic foundation is

    The virtual kinetic energy is (see Appendix A for details):

    where L is expressed by

    in there

    where

    with ρ is the mass density,and

    The weak form for the vibration of plates is expressed by[69]

    3.3.Isogeometric analysis

    In this study,the displacement field is approximated by the NURBS functions as follows [47]:

    where dK={u0Kv0K wKθxKθyK}Tis the displacement of control pointK,and RKrepresent the shape function [44].

    Substituting Eq.(26) into Eq.(6),we have

    in which

    Substituting Eq.(27)into Eq.(25),the motion equation of plates is

    where,the stiffness matrix is

    The mass matrix is

    The foundation stiffness matrixis

    The transverse load vector is

    Now,the motion equation of FGP plates is defined by

    If the force vector is a time function F=F(t)and takes into account the structural damping,Eq.(40) is rewritten by

    in which C=αM+βK,with α and β are Rayleigh damping factors defined through damping ratio ζ and the first two natural frequencies[69].

    To solve Eq.(41),the authors use the Newmark method with the steps presented in Appendix B.This paper focuses on IGA,where boundary conditions(BCs)are determined based on the geometric constraints at the edges.The BCs used in this study are denoted and presented as follows:

    -Clamped(C):

    -Simply supported (S):

    -Free support(F):at the boundary edge,all degrees of freedom(DOFs) are non-zero.

    4.Numerical results

    4.1.Verification

    Example 1: the outcomes reported by Mohamed et al.[26] are utilized to validate the current model on the free vibration analysis of B-iHLC plates.For this illustration,a composite plate consisting of 32 layers of linear helicoid ([0/24/48/72/96/120/144/168/192/216/240 …/360]s) and Fibonacci helicoidal [0/10/10/20/30/50/80/130/210/340/190/170/360/170/170/340]s) is employed.The utilized material properties areE1/E2=10,G12=G13=0.5E2,G23=0.2E2,ν12=0.25,ρ=100.The results obtained in the current method and those reported by Mohamed et al.[26] are listed in Table 2It is noticeable that the current results match well with previous findings.The discrepancy between the current results and those reported by Mohamed et al.[26] is due to the adoption of FSDT by the latter authors within the differential quadrature method(DQM)framework.The results of the proposed method converge at a mesh size of 11× 11.As a result,the same mesh size will be employed in future investigations.

    Table 2 Convergence and validation study.

    Example 2: The SSSS square laminated plate sorted as [0/90/0]with geometrical dimension:h=0.1524 m;a=b=5his considered.The utilized material properties are:E1=172.369 GPa,E2=6.895 GPa,G12=G13=3.448 GPa,G23=1.379 GPa,ν12=0.25,ρ=1603.03 kg/m3.The plate is subjected to a sinusoidally distributed transverse load including triangular loads as

    in whichts=0.006 s,γ=330s-1,q0=68.9476 MPa.As shown in Fig.4,the central displacement of the composite plate is compared to the precise solutions calculated by Khdeir and Reddy [57] using HSDT.The central deflection graph is in close agreement,with the difference between the current results and the exact solutions being minimal and acceptable.Based on the above examples,it can be concluded that the proposed method is suitable for the vibration analysis of composite plates.Note that,in this study,the cubic Bspline basis functions are applied.

    Fig.4.The time history analysis of SSSS composite square plates.

    4.2.Free vibration problem

    Firstly,the SSSS 20-layered HR1 square plate with geometric dimensionsa=b=1 m,h=a/50 and the material properties as shown in example 2 of subsection 4.1.The composite plates resting on PF with the foundation stiffness get valuesk1=0.1 GPa/m andk2=0.01 GPa·m.The first six mode shapes of the composite plate are plotted in Fig.5.It can be seen that it seems that the second and third-mode shapes are similar,as expected.The difference is due to the direction of view since the square plate is simply supported on four sides.

    Fig.5.The mode shapes of the SCSC FGP square plate:(a)Mode 1,f1=497.0727 Hz;(b)Mode 2,f2=693.4083 Hz;(c)Mode 3,f3=769.1244 Hz;(d)Mode 4,f4=917.3449 Hz;(e)Mode 5, f5=946.3468 Hz;(f) Mode 6, f6=1128.356 Hz.

    Fig.6.The effect of helicoidal schemes on the dynamic response of SSSS B-iHLC plates(12 layers) without damping ratio(ζ=0): (a) The deflection response at the plate center point;(b) The stressσx via thickness at t=0.001 s;(c) The stressvia thickness at t=0.001 s.

    Fig.7.The effect of helicoidal schemes on the dynamic response of SSSS B-iHLC plates(12 layers)including damping ratio(ζ=0.08):(a)The deflection response at the plate center point;(b) The stress via thickness at t=0.0025 s;(c) The stressvia thickness at t=0.0025 s.

    Secondly,Table 3 reports natural frequencies for different helicoidal schemes,foundation stiffness(k1,k2)and length-tothickness ratio(a/h)of SSSS composite plates with 24 layers,while Table 4 lists natural frequencies of SCSC composite plates with 16 layers.From these tables,it can be seen that the helical diagram effect has a significant influence on the free vibrations of composite plates,the increase or decrease of the natural frequency depends not only on the number of layers but also on the parameters β,γ,φ and χ.As expected,a thicker plate demonstrates greater stiffness and,as a result,has a higher natural frequency.Additionally,the PF improves plate stiffness,which raises the natural frequency.In addition,it is clear that the shear layer(k2)offers stronger support than the springer layer (k1).

    Table 4 The natural frequency for SCSC B-iHLC plates with 16 layers via helicoidal schemes,foundation stiffness(k1,k2)and length-to-thickness ratio(a/h).

    Thirdly,the effect of the number of layers (NOLs) on free vibration of B-iHLC is considered.The dependency of natural frequency over NOLs can be observed in Table 5 and Table 6.When increasing NOLs,no clear trend regarding the variation in the value for the natural frequency is observed.For instance,for the CCCC boundary condition,the natural frequency increases and decreases for the remaining configurations as the number of layers increase for the HS3 configuration(observe Table 5).For the SSSS boundary condition,the natural frequency decreases and then increases with an increase in the number of layers with HR2,HR2 and HE2 configurations.Whereas for the HR1 and HS1 configurations,the natural frequency decreases with an increase in the number of layers;vice versa for HS2 and HS3 configurations.HE1 and HE3 configurations,the natural frequency changes don't follow any rules(observe Table 6).Herein,a/h=5,10 is the thick plate whilea/h=50 anda/h=100 correspond to the moderately and thin plate,respectively.

    Table 5 The natural frequency for CCCC B-iHLC thin plates(a/h=100) via number of layers.

    Table 6 The natural frequency for SSSS B-iHLC thick plates(a/h=10) via number of layers.

    4.3.Forced vibration problem

    In this section,the authors examine the vibration characteristics of B-iHLC plates subjected to the sinusoidally explosive loading as defined in Eq.(1).The structural parameters will be completely displayed on each figure for the reader's convenience.The material properties of B-iHLC plates are provided in Example 2 of subsection 4.1.

    Firstly,the effect of the helicoidal schemes on the forced vibration of SSSS B-iHLC square plates without damping ratio(ζ=0)and including damping ratio(ζ=0.08)are displayed in Figs.6 and 7,respectively.It can be seen that the B-iHLC plate with the HS3 configuration has the greatest stiffness resulting in the smallest displacement response.In contrast,the B-iHLC plate with the HS1 configuration results in the greatest displacement response by providing the smallest stiffness.In addition,the stress response along the plate thickness has a jump due to delamination in the laminated composite structure.It is obvious that the stress curve of the B-iHLC plates is smoother than that of the conventional laminated composite plates.The smoothness of the stress curve depends on the number of layers and the helicoidal configuration.Moreover,the B-iHLC plate will oscillate gradually if structural damping is included.Secondly,Fig.8 presents the impact of NOLs on the vibration characteristic of CCCC HR2 square plates without damping ratio(ζ=0).Observing this figure,we can see that the deflection response of HR2 plates with 20 layers is the largest and the smallest with the 28 layer HR2 plates.This proves that with the same thickness,the HR2 plates with 28 layers is the hardness and the softest in case of HR2 plates with 20 layers.Note that,the responses of the plate are separated into two phases.In the first phase,the plate is forced vibration due to being subjected to transverse loads.And in the second phase,the plate is free vibration,i.e,the vibration of the plate is harmonic.

    Finally,Fig.9 displays the impact of NOLs on the vibration characteristic of SCSC HE2 square plates without damping ratio(ζ=0).Observing that the deflection response of HR2 plates with 28 layers is the largest and the smallest with the 12 layers HR2 plates.This proves that with the same thickness,the HE2 plates with 12 layers is the hardness and the softest in the case of HR2 plates with 28 layers.As expected,the displacement (w) and stress (σx)response curves versus time are congruent.

    Fig.9.The effect of the number of layers(NOLs)on the dynamic response of SCSC HE2 square plates including damping ratio(ζ=0.1):a)The deflection response at the plate center point;(b)The stress response at the plate center point;(c)The stressvia thickness at t=0.0025 s.

    5.Conclusions

    This paper aims to present the free and forced vibration behavior of B-iHLC plates having different helicoidal schemes.The analysis is carried out using the IGA-based HSDT in the framework of Hamilton's equation.The validation study is carried out by comparing the present results with those available in the literature.The effects of the material properties,geometric properties,BCs,and helicoidal layup scheme are carried out in detail.The important findings from the present study are:

    · The choice of the helical scheme has a significant impact on the vibration behavior of the helical B-iHLC plates.

    · The boundary conditions also play a vital role in determining the vibration behavior of composite plates.

    · The number of layers significantly affects the vibration response of B-iHLC plates,depending on boundary conditions and different helicoidal schemes will lead to different behaviours.

    · IGA is a modern numerical method that provides high convergence and accuracy while satisfying the majority of higher-order plate theories.

    · The numerical results are expected to be useful for the design and fabrication of composite plates in military equipment such as tanks,armored vehicles,missiles,submarines,combat aircraft,etc.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Appendix A

    The virtual kinetic energy is

    Appendix B

    The steps of the Newmark-beta method to solve Eq.(41) as follows:

    Step 1.Defining the initial conditions.

    in which α,γ are determined by assuming that the acceleration varies linearly in each integral step.

    With the convergence condition,

    Step 3.Determining the effective stiffness matrix and the nodal force vector,

    Step 4.Determining the nodal displacement vector ut+Δt,

    Repeating the loop until the finish.

    国产成人免费无遮挡视频| 免费人成视频x8x8入口观看| 香蕉丝袜av| 香蕉国产在线看| 国产精品久久电影中文字幕| 日韩国内少妇激情av| 此物有八面人人有两片| 欧美黑人欧美精品刺激| 午夜免费激情av| 午夜成年电影在线免费观看| 久热爱精品视频在线9| 丁香欧美五月| 亚洲一码二码三码区别大吗| www.精华液| netflix在线观看网站| 免费在线观看影片大全网站| √禁漫天堂资源中文www| 淫妇啪啪啪对白视频| 亚洲精品一卡2卡三卡4卡5卡| 巨乳人妻的诱惑在线观看| 国内毛片毛片毛片毛片毛片| 在线观看免费午夜福利视频| 人妻丰满熟妇av一区二区三区| 一二三四在线观看免费中文在| 久久国产乱子伦精品免费另类| 精品久久久久久久毛片微露脸| 国产欧美日韩综合在线一区二区| 脱女人内裤的视频| www.自偷自拍.com| 久久中文字幕人妻熟女| 亚洲欧美精品综合久久99| 好看av亚洲va欧美ⅴa在| 久久人人97超碰香蕉20202| 少妇被粗大的猛进出69影院| 叶爱在线成人免费视频播放| 免费看十八禁软件| 国产av又大| 日韩一卡2卡3卡4卡2021年| 精品午夜福利视频在线观看一区| 久久久久精品国产欧美久久久| 日日夜夜操网爽| 女人爽到高潮嗷嗷叫在线视频| 亚洲欧美精品综合一区二区三区| 亚洲精品中文字幕在线视频| 欧美日本亚洲视频在线播放| 久热这里只有精品99| 日韩三级视频一区二区三区| 免费女性裸体啪啪无遮挡网站| 国产精品久久视频播放| 精品无人区乱码1区二区| 欧洲精品卡2卡3卡4卡5卡区| 国产成人精品久久二区二区免费| 黑人巨大精品欧美一区二区蜜桃| 久久人妻福利社区极品人妻图片| av片东京热男人的天堂| 久久精品亚洲熟妇少妇任你| 日韩欧美一区二区三区在线观看| 中国美女看黄片| 欧洲精品卡2卡3卡4卡5卡区| 午夜激情av网站| 国产高清激情床上av| 亚洲国产精品成人综合色| 午夜福利成人在线免费观看| 美女国产高潮福利片在线看| 亚洲成人国产一区在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲 欧美一区二区三区| 老司机靠b影院| 99在线人妻在线中文字幕| 久久久国产成人免费| 国产精品电影一区二区三区| 国产男靠女视频免费网站| 99国产综合亚洲精品| 日本撒尿小便嘘嘘汇集6| 香蕉久久夜色| 久久狼人影院| 给我免费播放毛片高清在线观看| 淫妇啪啪啪对白视频| 亚洲国产欧美日韩在线播放| 国产精品九九99| 欧美色视频一区免费| 免费观看精品视频网站| 亚洲精品一区av在线观看| 精品国产乱码久久久久久男人| 亚洲免费av在线视频| 午夜福利影视在线免费观看| 男女下面进入的视频免费午夜 | 成人av一区二区三区在线看| 国产主播在线观看一区二区| 变态另类丝袜制服| 国产精品久久久久久精品电影 | 国产成人精品久久二区二区91| 免费看十八禁软件| 欧美中文日本在线观看视频| 亚洲欧美日韩高清在线视频| 日日摸夜夜添夜夜添小说| 手机成人av网站| 乱人伦中国视频| 欧美久久黑人一区二区| 婷婷丁香在线五月| 亚洲色图综合在线观看| 搞女人的毛片| 一区二区三区高清视频在线| 啦啦啦免费观看视频1| 亚洲成人国产一区在线观看| 国产av精品麻豆| 波多野结衣一区麻豆| 大香蕉久久成人网| 国产aⅴ精品一区二区三区波| 中文字幕精品免费在线观看视频| 搞女人的毛片| 亚洲自拍偷在线| 久久久精品欧美日韩精品| 大香蕉久久成人网| 欧美中文日本在线观看视频| 搡老熟女国产l中国老女人| 此物有八面人人有两片| 亚洲人成77777在线视频| e午夜精品久久久久久久| 美国免费a级毛片| av中文乱码字幕在线| 成在线人永久免费视频| 两人在一起打扑克的视频| 日日爽夜夜爽网站| 妹子高潮喷水视频| 亚洲国产精品sss在线观看| 久久人妻福利社区极品人妻图片| 亚洲成a人片在线一区二区| 91老司机精品| 少妇 在线观看| 国产蜜桃级精品一区二区三区| 1024视频免费在线观看| 正在播放国产对白刺激| 人人澡人人妻人| 亚洲精品中文字幕一二三四区| 法律面前人人平等表现在哪些方面| 国产片内射在线| 真人做人爱边吃奶动态| 999久久久国产精品视频| 91麻豆精品激情在线观看国产| 两个人视频免费观看高清| 99久久精品国产亚洲精品| 久久人人爽av亚洲精品天堂| 国语自产精品视频在线第100页| 黄网站色视频无遮挡免费观看| 久久人人精品亚洲av| 亚洲精品美女久久av网站| 这个男人来自地球电影免费观看| 狂野欧美激情性xxxx| 中文字幕高清在线视频| 每晚都被弄得嗷嗷叫到高潮| 亚洲男人天堂网一区| 久久久精品欧美日韩精品| 乱人伦中国视频| 免费在线观看完整版高清| 老鸭窝网址在线观看| 国内精品久久久久久久电影| 看免费av毛片| 精品国产超薄肉色丝袜足j| 国产私拍福利视频在线观看| 老鸭窝网址在线观看| 精品日产1卡2卡| 国产伦一二天堂av在线观看| 91字幕亚洲| 亚洲熟妇中文字幕五十中出| 高清毛片免费观看视频网站| 高清在线国产一区| 国产精品99久久99久久久不卡| 国产又色又爽无遮挡免费看| 黄频高清免费视频| 97超级碰碰碰精品色视频在线观看| 日日夜夜操网爽| 国产欧美日韩一区二区三区在线| cao死你这个sao货| 精品国产乱子伦一区二区三区| 国产亚洲精品第一综合不卡| 午夜精品在线福利| 亚洲精品av麻豆狂野| 老熟妇仑乱视频hdxx| 国产一区二区激情短视频| 国产国语露脸激情在线看| 90打野战视频偷拍视频| 精品欧美国产一区二区三| 久久精品国产99精品国产亚洲性色 | 亚洲男人天堂网一区| 两性夫妻黄色片| 淫妇啪啪啪对白视频| 亚洲精品中文字幕在线视频| 女性生殖器流出的白浆| 可以在线观看的亚洲视频| 搞女人的毛片| 在线观看免费视频网站a站| 久久精品91无色码中文字幕| 在线播放国产精品三级| 一级,二级,三级黄色视频| 国产精品美女特级片免费视频播放器 | 国产不卡一卡二| 免费看美女性在线毛片视频| 老司机午夜十八禁免费视频| 欧美最黄视频在线播放免费| 99国产极品粉嫩在线观看| 一二三四社区在线视频社区8| 国产精华一区二区三区| 亚洲国产精品久久男人天堂| 岛国在线观看网站| www.自偷自拍.com| 亚洲人成77777在线视频| 性少妇av在线| 久久精品国产综合久久久| 午夜免费成人在线视频| 大陆偷拍与自拍| 免费在线观看亚洲国产| 黑人操中国人逼视频| 乱人伦中国视频| 黑丝袜美女国产一区| 国产区一区二久久| 搞女人的毛片| 国产精品香港三级国产av潘金莲| av网站免费在线观看视频| 欧美另类亚洲清纯唯美| 久久精品91蜜桃| 免费观看人在逋| 黄色a级毛片大全视频| 亚洲国产精品999在线| 亚洲成av人片免费观看| 欧美不卡视频在线免费观看 | 黄色女人牲交| 可以免费在线观看a视频的电影网站| 又紧又爽又黄一区二区| 久久中文看片网| 欧美激情高清一区二区三区| 深夜精品福利| 久久精品成人免费网站| 国产av一区在线观看免费| 国产成+人综合+亚洲专区| 久久久国产欧美日韩av| 日韩视频一区二区在线观看| 国产亚洲欧美98| 搡老熟女国产l中国老女人| 亚洲少妇的诱惑av| 搡老妇女老女人老熟妇| 中文字幕色久视频| 一级a爱视频在线免费观看| 亚洲精品久久成人aⅴ小说| 视频在线观看一区二区三区| 国产成人av激情在线播放| 12—13女人毛片做爰片一| 久久久久久国产a免费观看| 极品人妻少妇av视频| 又黄又粗又硬又大视频| 啦啦啦免费观看视频1| 午夜福利在线观看吧| 九色国产91popny在线| 少妇粗大呻吟视频| 国产精品精品国产色婷婷| 首页视频小说图片口味搜索| 激情在线观看视频在线高清| 丰满的人妻完整版| 夜夜夜夜夜久久久久| 丁香欧美五月| 美女 人体艺术 gogo| 国产精品亚洲一级av第二区| 日本 欧美在线| 9191精品国产免费久久| 女生性感内裤真人,穿戴方法视频| 成人18禁在线播放| 午夜a级毛片| 亚洲成a人片在线一区二区| 不卡一级毛片| 男人的好看免费观看在线视频 | 国产区一区二久久| 自线自在国产av| 桃红色精品国产亚洲av| 麻豆成人av在线观看| 国产亚洲精品久久久久5区| 99精品在免费线老司机午夜| www.999成人在线观看| 欧美国产日韩亚洲一区| 精品国产一区二区三区四区第35| 欧美黄色淫秽网站| 人人妻人人澡欧美一区二区 | 亚洲国产毛片av蜜桃av| aaaaa片日本免费| 国产99白浆流出| 最近最新免费中文字幕在线| 久久久久国产精品人妻aⅴ院| 国产精品二区激情视频| 9色porny在线观看| 国产精品,欧美在线| 91麻豆av在线| 美女大奶头视频| 女警被强在线播放| 亚洲专区中文字幕在线| 久久香蕉激情| 每晚都被弄得嗷嗷叫到高潮| 欧美色视频一区免费| 亚洲五月色婷婷综合| 日日干狠狠操夜夜爽| 国产成人精品久久二区二区免费| 欧美日韩中文字幕国产精品一区二区三区 | 超碰成人久久| 国产伦人伦偷精品视频| 女人爽到高潮嗷嗷叫在线视频| 国产三级黄色录像| 亚洲 欧美一区二区三区| 欧美老熟妇乱子伦牲交| 亚洲精品国产色婷婷电影| 精品国产一区二区三区四区第35| 色综合欧美亚洲国产小说| 日本五十路高清| 免费在线观看黄色视频的| 国产99白浆流出| 又大又爽又粗| 变态另类成人亚洲欧美熟女 | 999精品在线视频| 99riav亚洲国产免费| 国产乱人伦免费视频| 午夜亚洲福利在线播放| 99国产精品一区二区三区| 亚洲无线在线观看| 国产亚洲精品综合一区在线观看 | 国产欧美日韩一区二区三| 久久精品国产99精品国产亚洲性色 | 美女高潮到喷水免费观看| 我的亚洲天堂| 亚洲熟妇中文字幕五十中出| 精品国内亚洲2022精品成人| 久久精品影院6| 精品久久久久久久久久免费视频| 久久中文看片网| 久久久久精品国产欧美久久久| 男女下面进入的视频免费午夜 | 国产精品一区二区免费欧美| 男女床上黄色一级片免费看| 我的亚洲天堂| 99在线人妻在线中文字幕| 两个人看的免费小视频| 亚洲av美国av| 怎么达到女性高潮| 变态另类丝袜制服| 麻豆一二三区av精品| 日韩三级视频一区二区三区| 日日夜夜操网爽| 亚洲av成人av| 可以在线观看毛片的网站| 天堂动漫精品| 啦啦啦观看免费观看视频高清 | 久久精品国产综合久久久| 色综合站精品国产| 日日摸夜夜添夜夜添小说| 一二三四社区在线视频社区8| 久久人人爽av亚洲精品天堂| 老汉色av国产亚洲站长工具| 怎么达到女性高潮| av有码第一页| 黑人操中国人逼视频| 露出奶头的视频| 50天的宝宝边吃奶边哭怎么回事| 在线天堂中文资源库| 夜夜躁狠狠躁天天躁| 精品乱码久久久久久99久播| 国产日韩一区二区三区精品不卡| 美女高潮喷水抽搐中文字幕| 免费在线观看日本一区| 美女高潮到喷水免费观看| 国产激情欧美一区二区| 成人免费观看视频高清| 看黄色毛片网站| 国产精品爽爽va在线观看网站 | 国语自产精品视频在线第100页| 亚洲国产精品成人综合色| 亚洲av五月六月丁香网| 69av精品久久久久久| 一边摸一边抽搐一进一出视频| 亚洲aⅴ乱码一区二区在线播放 | 搡老熟女国产l中国老女人| 国产精品自产拍在线观看55亚洲| 亚洲自偷自拍图片 自拍| 日韩欧美免费精品| 亚洲一区中文字幕在线| 国产精品久久视频播放| 亚洲精品在线美女| 69精品国产乱码久久久| 韩国精品一区二区三区| av片东京热男人的天堂| 午夜视频精品福利| 欧美在线一区亚洲| 看黄色毛片网站| 亚洲第一av免费看| 男女下面插进去视频免费观看| 淫妇啪啪啪对白视频| 欧美av亚洲av综合av国产av| 后天国语完整版免费观看| 欧美 亚洲 国产 日韩一| 亚洲成av片中文字幕在线观看| 精品欧美一区二区三区在线| 午夜福利高清视频| 18美女黄网站色大片免费观看| 亚洲av成人一区二区三| 午夜福利,免费看| 老司机午夜福利在线观看视频| 日本免费一区二区三区高清不卡 | 国产精品99久久99久久久不卡| 国产av精品麻豆| 啦啦啦韩国在线观看视频| avwww免费| 欧美丝袜亚洲另类 | 麻豆成人av在线观看| 久久中文字幕人妻熟女| 成人精品一区二区免费| 亚洲成av片中文字幕在线观看| 中出人妻视频一区二区| 精品人妻在线不人妻| 久久午夜综合久久蜜桃| 久久久水蜜桃国产精品网| 国产精品野战在线观看| 免费看美女性在线毛片视频| 成人国产综合亚洲| 黄片大片在线免费观看| 国产欧美日韩一区二区三区在线| 亚洲一区高清亚洲精品| 男女下面进入的视频免费午夜 | 国产成人免费无遮挡视频| 免费高清在线观看日韩| 岛国在线观看网站| 日韩高清综合在线| 女人被躁到高潮嗷嗷叫费观| 女人精品久久久久毛片| 久久狼人影院| 欧美久久黑人一区二区| 亚洲中文av在线| 精品久久久精品久久久| cao死你这个sao货| 黄网站色视频无遮挡免费观看| 大香蕉久久成人网| 少妇粗大呻吟视频| 首页视频小说图片口味搜索| av视频免费观看在线观看| 精品一区二区三区av网在线观看| 美国免费a级毛片| 亚洲视频免费观看视频| 日日夜夜操网爽| 大陆偷拍与自拍| 女性被躁到高潮视频| 日本 欧美在线| 日韩中文字幕欧美一区二区| 在线观看免费午夜福利视频| 亚洲美女黄片视频| www.熟女人妻精品国产| 亚洲精品美女久久av网站| 色播在线永久视频| 人成视频在线观看免费观看| 久久久久久免费高清国产稀缺| 一进一出抽搐动态| 国产一区在线观看成人免费| av天堂久久9| 女生性感内裤真人,穿戴方法视频| 好看av亚洲va欧美ⅴa在| 大型av网站在线播放| 亚洲熟女毛片儿| 午夜精品久久久久久毛片777| 免费看a级黄色片| 欧美日韩亚洲国产一区二区在线观看| 欧美黄色片欧美黄色片| 亚洲av成人一区二区三| 免费搜索国产男女视频| 老司机靠b影院| 免费不卡黄色视频| 亚洲片人在线观看| 啦啦啦观看免费观看视频高清 | 免费无遮挡裸体视频| 久久九九热精品免费| 亚洲av成人不卡在线观看播放网| 精品午夜福利视频在线观看一区| 午夜福利,免费看| 亚洲中文日韩欧美视频| 亚洲aⅴ乱码一区二区在线播放 | 麻豆成人av在线观看| 久久久国产成人免费| 久久人人精品亚洲av| 成人18禁在线播放| 久久久久久国产a免费观看| 不卡av一区二区三区| www.www免费av| 亚洲 国产 在线| 可以免费在线观看a视频的电影网站| 他把我摸到了高潮在线观看| 真人做人爱边吃奶动态| 国产成人精品无人区| 妹子高潮喷水视频| 首页视频小说图片口味搜索| 国产精品,欧美在线| 丝袜美足系列| 亚洲黑人精品在线| ponron亚洲| 可以免费在线观看a视频的电影网站| 亚洲激情在线av| 成人精品一区二区免费| 夜夜爽天天搞| 老熟妇仑乱视频hdxx| 99久久综合精品五月天人人| 国产精品一区二区三区四区久久 | 成人国产综合亚洲| 免费人成视频x8x8入口观看| 国产精品乱码一区二三区的特点 | 午夜久久久久精精品| 久久人妻av系列| 精品久久久久久,| 午夜福利成人在线免费观看| 亚洲激情在线av| 夜夜躁狠狠躁天天躁| 日韩三级视频一区二区三区| 精品高清国产在线一区| 亚洲人成77777在线视频| 无限看片的www在线观看| 欧美日韩乱码在线| 在线十欧美十亚洲十日本专区| 两个人视频免费观看高清| 日韩精品中文字幕看吧| 免费人成视频x8x8入口观看| 国产精品99久久99久久久不卡| 最近最新免费中文字幕在线| 麻豆成人av在线观看| 黄片大片在线免费观看| 色哟哟哟哟哟哟| 可以在线观看的亚洲视频| 日韩精品青青久久久久久| 美女 人体艺术 gogo| 免费看a级黄色片| 亚洲欧美精品综合久久99| 国产一区在线观看成人免费| 老司机福利观看| av在线播放免费不卡| 国产精品久久电影中文字幕| 久热这里只有精品99| 色尼玛亚洲综合影院| 国产精品久久久久久精品电影 | 老司机福利观看| 久久精品国产亚洲av香蕉五月| 亚洲第一电影网av| 国产精品免费一区二区三区在线| 最新美女视频免费是黄的| 88av欧美| 窝窝影院91人妻| 黄色视频不卡| 真人做人爱边吃奶动态| 天天添夜夜摸| 欧美 亚洲 国产 日韩一| 大型av网站在线播放| 在线观看66精品国产| 午夜精品在线福利| 国产高清视频在线播放一区| 非洲黑人性xxxx精品又粗又长| 最好的美女福利视频网| 久久久国产成人精品二区| 精品国产一区二区三区四区第35| 高清在线国产一区| 免费高清在线观看日韩| 亚洲成人免费电影在线观看| 国产97色在线日韩免费| 亚洲熟妇中文字幕五十中出| 一边摸一边抽搐一进一出视频| 女警被强在线播放| 丰满的人妻完整版| 国产伦一二天堂av在线观看| 波多野结衣一区麻豆| 日韩精品免费视频一区二区三区| 丁香六月欧美| 18美女黄网站色大片免费观看| 男女午夜视频在线观看| 高潮久久久久久久久久久不卡| 69av精品久久久久久| www.自偷自拍.com| 最近最新中文字幕大全电影3 | 丝袜人妻中文字幕| 久久人人精品亚洲av| 啦啦啦观看免费观看视频高清 | 99久久久亚洲精品蜜臀av| 国产成人啪精品午夜网站| 免费高清在线观看日韩| 国产99白浆流出| 一卡2卡三卡四卡精品乱码亚洲| av有码第一页| 久久香蕉精品热| 久久精品国产99精品国产亚洲性色 | 欧美成人一区二区免费高清观看 | 国产片内射在线| 国产精品精品国产色婷婷| 国产一级毛片七仙女欲春2 | 变态另类成人亚洲欧美熟女 | 国产精品免费一区二区三区在线| 不卡av一区二区三区| 可以在线观看的亚洲视频| 1024香蕉在线观看| 在线十欧美十亚洲十日本专区| bbb黄色大片| 国产精品免费一区二区三区在线| 少妇熟女aⅴ在线视频| 18禁黄网站禁片午夜丰满| 亚洲视频免费观看视频| 99国产精品一区二区三区| 操出白浆在线播放| 一进一出好大好爽视频| 99国产精品一区二区三区| 国产麻豆成人av免费视频| 亚洲,欧美精品.| 女性被躁到高潮视频| 国产精品秋霞免费鲁丝片| 午夜福利,免费看| 亚洲av五月六月丁香网| 夜夜夜夜夜久久久久| 啦啦啦 在线观看视频| 亚洲专区国产一区二区| 国产精品亚洲av一区麻豆| 欧美激情极品国产一区二区三区|