• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CTAB-assisted fabrication of hierarchical flower-like magnesium oxide adsorbent for enhanced removal performance towards phosphate

    2023-12-27 01:11:20SaeedAhmed
    Journal of Magnesium and Alloys 2023年9期

    Saeed Ahmed

    aState Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China

    b Department of Chemistry, The University of Lahore, Lahore 54590, Pakistan

    c Department of Chemistry, University of Chakwal, Pakistan

    Abstract In this work,a series of hierarchical flower-like magnesium oxide (MgO) adsorbents were successfully fabricated in a cetyltrimethylammonium bromide (CTAB) assisted solvothermal route using hexamethylenetetramine (HMTA) as a precipitating agent.Effects of CTAB feeding amount on the structure,morphology,pore structure,and corresponding adsorption behavior were investigated.The hierarchical gardenias flower-like MgO demonstrated a surface area of 336.54 m2·g-1 at a minimum ratio of the CTAB/Mg2+ was 0.02 in the reaction system.The hierarchical MgO phosphate removal capacity was 348.32 mg·g-1,which followed the pseudo-second-order and Freundlich isotherm model obtained from the large surface area and appropriate pore size.The value of n also suggests the feasible nature of phosphate adsorption under the examined conditions.Indeed,this CTAB assisted solvothermal method can provide a new understanding to tune the desired properties of a material by merely adjusting the reaction parameters of MgO.

    Keywords: Adsorption;CTAB-assisted;Magnesium oxide;Phosphate removal;Solvothermal.

    1.Introduction

    The explosive growth of the world population and increase in food requirements led to more usage of phosphate fertilizer,and phosphate over-discharge into the environment is a threat to the ecosystem [1].Phosphate pollution has attracted increasing attention since the blue-green algae accident in Lake Taihu in 2007,resulting from excessive usage of phosphoruscontaining chemical fertilizer for crop yields.It is well known that phosphorous is necessary for plant growth,but its inappropriate use leads to serious health risks to the ecological system.Therefore,it is of great interest and urgency to develop a highly efficient technology to reduce phosphate pollution from the environment [2–6].

    Several phosphate removal technologies and methods have proved efficient [7].Sorption is considered the most efficient due to its high efficiency and can achieve a stringent discharge standard for phosphate[2,8].Several adsorbent materials were highly selective and effective for phosphate remediation [6,9].Among the available sorption materials,magnesium oxide(MgO) is considered a low-cost and high-performance adsorbent towards phosphate removal from an aqueous solution[10–12].Besides,the factors like morphology,pore structure,and active sites also influence the adsorption capacity and corresponding adsorption rate of sorbents [13,14].Furthermore,three-dimensional MgO with a high surface area and fully exposed binding sites is one kind of desirable adsorbent to attain high adsorption capacity and a fast uptake rate of phosphate[15,16].

    Among the reported structural properties of MgO,the hierarchical flower-like morphologies generally favor forming more active sites,high packaging density,and large transport passages for pollutants [17].Furthermore,three-dimensional nanostructures/microstructures MgO can effectively overcome the sorbent limitations [18–22].For instance,various methods have been developed to tune the morphology and pore structure of three-dimensional hierarchical flower-like MgO with improved removal of multiple pollutants [23–25].Also,the surfactant like cetyltrimethylammonium bromide (CTAB)is a structure-directing agent and pore-forming agent in the synthesis system that can influence the morphology and pore structure of the various metal oxides or hydroxides [26–28].Yet,it is still a big challenge to design and fabricate hierarchical MgO with a large surface area and high removal performance towards phosphate anions from an aqueous phase[26,29,30].The available methods of MgO synthesis are not suitable for forming various morphologies with tunable properties.Still,there is a need to explore new routes to tune the MgO morphologies with a high surface area and suitable pore size.

    Here,we fabricated hierarchical MgO adsorbents with different morphologies in a CTAB-assisted solvothermal route by adjusting the feeding molar ratio between CTAB and Mg2+from 0 to 0.1,as shown in Fig.1 and investigated the removal performance towards phosphate anions from the aqueous solution.

    2.Experimental section

    2.1. Chemicals

    Ammonium molybdate ((NH4)6Mo7O24),cetyltrimethylammonium bromide (C19H42BrN,abbreviated as CTAB),ethanol (C2H6O),hexamethylenetetramine (C6H12N4,abbreviated as HMTA),hydrochloric acid (HCl,38% v/v),magnesium nitrate (Mg(NO3)2·6H2O),sodium dihydrogen phosphate (NaH2PO4·2H2O),sodium hydroxide (NaOH),and sulphuric acid (H2SO4,98% w/v),and thiourea (CH4N2S) were of analytical grade and purchased from Beijing Chemical Reagents Co.The deionized water was used in all the experiments.

    2.2. Synthesis of hierarchical magnesium oxide

    A series of MgO samples were fabricated in a surfactantassisted solvothermal route using Mg(NO3)2·6H2O as a magnesium source,HMTA as a precipitating agent,and CTAB as a surfactant with different ratios between CTAB and Mg2+from 0.00 to 0.10.For MgO-0.10,for example,a mixed solution was prepared containing 12.82 g Mg(NO3)2·6H2O in 25 mL of water,0.88 g HMTA in 10 mL water,and 1.82 g CTAB in 10 mL water and 5 mL ethanol,and then was transferred into a Teflon lined autoclave and subsequently placed into the preheated oven at 140 °C for another 6 h After natural cooling down to room temperature,the obtained precursors were collected after washing twice with deionized water,one time with ethanol,and dried at 60 °C for 24 h Another five precursors were synthesized following a similar process with different feeding ratios between CTAB/Mg2+.Finally,six MgO samples were obtained after calcination of the corresponding precursors at 500 °C for 3 h at 1 °C/min.The corresponding MgO sample was marked as MgO-0.00 to MgO-0.10 according to the feeding ratio between CTAB and Mg2+.

    2.3. Characterization

    The crystalline structure of MgO samples were analyzed using an X-ray diffractometer (ULTIMA 3,Rigaku) with Cu Kαas a radiation source (λ=0.154 nm,40 kV,30 mA).The scanning electron microscope (SEM-5500) was used for the morphologies and nitrogen adsorption-desorption isotherm using Micrometrics (ASAP 2460).The surface area was calculated using the Brunauer-Emmett-Teller (BET) method and density functional theory (DFT) for pore size estimation.The various functional groups were analyzed using a furrier transform infrared (FT-IR,Nicolet 8700) spectrophotometer.The phosphate was measured using a UV–visible spectrophotometer using a wavelength of 840 nm(UV-2501 PC)based on the molybdenum blue method [31].The change in the chemical composition of MgO after phosphate uptake was measured using photoelectron spectroscopy (XPS,PHI 5600,USA).

    2.4. Adsorption experiments for phosphate

    Adsorption kinetic experiments were performed for MgO with a sorbent concentration at 0.1 g L-1and phosphate solution of 5 mg L-1into a conical beaker with pH0=5,and initial pH of phosphate solution was adjusted using dilute sodium hydroxide.The conical beakers were placed in a thermostat shaker at 30 °C with a shaking speed of 170 rpm.Approximately 1 mL of phosphate solution was taken at different time intervals and separated through a microfiltration membrane (Φ0.45 μm).The removal capacity with the contact time was evaluated and calculated based on Eq.(1)).The phosphate concentration was determined following the molybdenum blue method [31].

    where,qt(mg g-1) is the removal quantity at contact time t,C0(mg L-1) is the initial phosphate concentration,Ct(mg L-1)is the phosphate concentration at time t,V(L)is the initial volume of phosphate solution,and m (g) is the mass of the used MgO sample.The obtained data were linearly fitted for the pseudo-first-order (Eq.(2)) and pseudo-second-order(Eq.(3)).Where qe(mgg-1) is the equilibrium adsorption capacity,k1is the pseudo-first-order constant,and k2is the pseudo-second-order rate constant.

    For adsorption isotherm,the MgO of 0.1 g L-1was added to the phosphate solution with a different concentration from 25 mg L-1to 250 mg L-1at pH0=5.The solutions were placed in a thermostat shaker at 30 °C with a shaking speed of 170 rpm.Approximately 5 mL of phosphate solution was taken after 4 h and separated through a microfiltration membrane (Φ0.45 μm).

    The phosphate concentration was estimated using a UVvisible spectrophotometer based on the molybdenum blue method using a wavelength of 840 nm.The equilibrium adsorption capacity was estimated using Eq.(4).The isothermal data were linearly fitted for the Langmuir (Eq.(5)) [9]and Freundlich (Eq.(6)) [32]isotherm models.

    where,KL,and KF,are the Langmuir constant and Freundlich constant,respectively.

    3.Results and discussion

    3.1. Structure analysis of MgO samples

    Fig.2 demonstrates the X-ray diffraction patterns for six MgO samples after calcination at 500 °C of the corresponding precursors,prepared in the surfactant-assisted solvothermal route with feeding ratios between CTAB and Mg2+from 0 to 0.10.For all of six samples,one observes five diffraction peaks located at ca.36.69°,42.56°,61.99°,74.27°,and 78.43°/2θfor (111),(200),(220),(311),and (222),respectively,and consistent with the standard pattern (JCPDS,card no.36–1451) for the cubic close-packed MgO.These results suggest that the CTAB-assisted solvothermal route is available to synthesize MgO precursors.

    3.2. Morphology of MgO samples

    Fig.3 shows the morphologies of six MgO samples formed in the presence of a different amount of surfactant developed using the CTAB-assisted solvothermal route.Each MgO sample exhibited different morphologies by the variation between CTAB and Mg2+from 0.0 to 0.1 in the reaction system.A globe thistle-like flower was formed without CTAB in the synthesis system (Fig.3A and B),while ranunculuslike flowers had the highest amount of CTAB (Fig.3K and L).Each feeding ratio resulted in a unique morphology of MgO (Fig.3).Briefly,Fig.3A-B shows a hierarchical globe thistle flower of MgO formed in the absence of CTAB under solvothermal conditions.Loosely packed nanosheets form the globe thistle MgO flower with ragged edges,further arranged to form a nanowhisker of variable width (Fig.3B).The hierarchical gardenias flower-like MgO-0.02 with a diameter of~2 μm,formed by thin sheets’ aggregation (Fig.3C).Each flower is formed by the high stacked density of ultrathin sheets with a large exposed surface (Fig.3D) [33].The flower-like morphology for MgO-0.04 was formed by the arrangement of thin sheets (Fig.3E),and each sheet was formed by the aggregation of nano units (Fig.3F) [34].The urchin-like MgO morphology was obtained for the MgO-0.06 and self-assembled to form nano pedals,which rearrange to give urchin-like spheres (Scheme I) [35,36].The nano pedals can be connected through the center to give a 3D urchin structure (Fig.3G).Each petal comprises various interconnected nanothrones (Fig.3H) [37]Fig.3I shows the cyclamen flower-like for the MgO-0.08 formed by the interlinked flakes.Each flake was formed by staking porous sheets (Fig.3J) [16]Fig.3K exhibits the ranunculus flowerlike morphology for MgO-0.10,formed by the aggregation of several sheets with a uniform size (Fig.3L).These different flower-like MgO morphologies built by a minimal variation of CTAB amount in the reaction system can play a key role in tuning the MgO morphologies with different pore structures,which could influence the adsorption behavior of MgO material towards pollutants [38].Furthermore,one can say,a slight variation in surfactant feeding amount in the reaction system can strongly affect the MgO formation and can provide a new pathway to tune the desired morphology of metal oxides.

    3.3. Pore properties of MgO samples

    Fig.4 illustrates the nitrogen adsorption/desorption isotherm and pore size distribution for the series of MgO samples.According to the IUPAC system,all the samples possess type II isotherm with H3 hysteresis loop with slit-like pores except MgO-0.04 with H4 without any slit-like pores(Fig.4A)[39],and also consistent with the observed from the morphology in Fig.3.The pore structure was calculated based on the DFT method.Each sample has exhibited different pore sizes (Fig.4B) and was further divided into three levels of pores: (1) 0.7–2 (2) 2–70 (3) 70–225 nm with the main difference in the second region for each sample.The MgO-0.06 exhibits the highest incremental pore volume,and MgO-0.04 has the lowest in the investigated series of samples,which can influence the adsorption capacity and adsorption rate [21].

    Fig.4.(A) Nitrogen adsorption-desorption isotherm,and (B) pore size distribution.

    Table 1 summarizes the surface area,which varies from 15 m2g-1(MgO-0.04) to 336.54 m2g-1(MgO-0.02) for a series of MgO samples with the largest pore size of 18.07 nm(MgO-0.06) and pore volume of 0.843 cm3g-1.The surface area increased 1.41 times and pore volume 0.75 times with the small introduction of CTAB (0.001 mol) in the reaction system for MgO.These results suggest that the pore structure can also be tuned by a slight variation of the surfactant amount,which aids in the adsorption capacity and corresponding adsorption rate.The surface area of 336.54 m2g-1was the highest value developed by the CTAB method in the literature [40],suggesting that the CTAB assisted solvothermal route is available to develop an extended surface area MgO.

    Table 1Surface area and pore parameters of various MgO samples.

    3.4. Adsorption of phosphate by MgO

    Fig.5 demonstrates the adsorption kinetics and adsorption isotherms for the phosphate for six MgO samples Fig.5.A shows the time-dependent phosphate uptake by MgO samples with an initial concentration of 50 mg L-1at pH0=5.The adsorption is very fast in the first two hours and attains an equilibrium within a short time of ca.3 h.MgO-0.02 establishes the highest equilibrium adsorption capacity of 266.43 mg g-1compared to other samples,probably related to the large surface area and appropriate pore size Fig.5B and C demonstrate the linear fitting results based on the pseudofirst-order,and pseudo-second-order kinetic equations,while Table 2 lists the corresponding fitting parameters for phosphate.The pseudo-second-order describes phosphate sorption kinetic by MgO much better,based on correlation coefficient values,comparable experimental and calculated removal capacities,and percentage standard deviation(S.D).The pseudosecond-order kinetic model indicates the mixed process of physiosorption and chemisorption during the phosphate uptake by MgO [41,42].

    Table 2Adsorption kinetic order parameter of various MgO samples.

    Fig.5.(A)Effect of time on removal capacity when phosphate=50 mg L-1,volume=100 ml,pH0=5,shaking speed=170 rpm,and temperature=30°C,(B) pseudo first order kinetic,(C) pseudo second order kinetic,(D) adsorption isotherm when phosphate=5–150 mg L-1,volume=25 ml,pH0=5,shaking speed=170 rpm and temperature=30 °C,(E) Langmuir isotherm model,(F) Freundlich isotherm model.

    Adsorption isotherm experiments for six MgO samples were conducted to estimate the highest removal capacity by changing phosphate concentration between 5 and 150 mg L-1at the initial pH0of 5 (Fig.5D) Fig.5E and F demonstrate the linear fitting results following Langmuir and Freundlich isotherm models,while Table 3 presents the corresponding parameters.The Freundlich isotherm model explains the phosphate adsorption much better than the Langmuir isotherm model,based on the correlation coefficient values.Freundlich isotherm model suggests the heterogeneous coverage of MgO surface by phosphate under the investigated conditions.The value of n from the Freundlich isotherm model also suggests the favorable nature of phosphate uptake by different flower-like MgO [43–45].The highest removal capacity of 265.11 mg/g for the phosphate by the MgO-0.02 is related to the large surface area of 336.54 m2/g.The large surface area can lead to a high removal capacity,and large pore size can aid the fast uptake of phosphate Table 4.further demonstrates the comparison of removal capacities and surface area of various sorbents for phosphate removal.These results exhibit a higher removal capacity than many other materials owing to their high surface area and unique morphology.

    Table 3Adsorption isotherm parameter of various MgO samples.

    Scheme II.Schematic illustration of the phosphate sorption mechanism on the MgO surface at pH 5.

    To understand the phosphate adsorption mechanism,the 50 mg MgO-0.06 was dispersed into a 500 mg L-1phosphate solution and then placed into a thermostat shaker for an equilibrium time of 4 h.After equilibrium,the MgO powder was collected by centrifugation and dried in an oven for the X-ray diffraction and FT-IR characterization to understand the phosphate removal’s mechanism Fig.6A compares the X-ray diffraction pattern of MgO-0.06 before and after the phosphate adsorption.In comparison,all the MgO peaks are converted into new diffraction peaks in the range of 12–80°/2θ,which belong to the Mg3(PO4)2·8H2O,(33–0877 and JCPDS 33–0319) Fig.6B demonstrates the FT-IR spectra of MgO-0.06 before and after the adsorption in which new peaks appeared in the range of 750–1200 cm-1belong to the phosphate captured by MgO [56–58]Fig.6C further indicates the presence of monohydrogen phosphate on the MgO surface and the phosphate,suggesting that the electrostatic interaction and complex formation are the main mechanisms of phosphate uptake.The MgO will convert into positively charged MgOH2+in acidic environment,which have more affinity to bind with the negatively charged phosphate species (Eq.(7))Scheme II further illustrates the possible binding mechanism in which phosphate can bind with the magnesium oxide by the electrostatic interaction and surface complexation.

    Fig.6.(A)X-ray diffraction pattern,and(B)FT-IR spectrum before and after adsorption of phosphate when phosphate=500 mg L-1,volume=50 ml,MgO-0.06=50 mg,time=4 h,pH0=5,and(C)XPS spectra for phosphate after sorption.

    4.Conclusions

    In summary,the solvothermal route successfully developed various flower-like morphologies by adjusting the feeding ratio between CTAB and Mg2+in the synthesis system.The XRD and SEM characterization confirmed the successful formation of different hierarchical flower-like morphologies resulting from changing the feed ratios of CTAB and Mg2+in the reaction system.The feeding amount of CTAB and Mg2+has changed the morphology,pore properties,and MgO adsorption behavior for phosphate.The hierarchical gardenias flower-like MgO possessed the highest surface area of 336.54 m2g-1and a total pore volume of 0.843 cm3g-1with the highest adsorption capacity of 348.32 mg g-1for the phosphate removal with a short equilibrium time of 4 h.This study provides a new insight for tuning the desired morphology and pore structure parameters to improve phosphate adsorption,ultimately reducing the eutrophication of water bodies.

    Declaration of Competing Interest

    The authors declare that they have no conflict of interest.

    Declarations

    Not applicable.

    Funding

    Not applicable.

    Availability of data and material

    The raw data related to this work will be available on demand.

    Code availability

    Not applicable.

    极品教师在线免费播放| 久久亚洲真实| 国产午夜福利久久久久久| 自拍偷自拍亚洲精品老妇| ponron亚洲| 老司机深夜福利视频在线观看| 伊人久久精品亚洲午夜| 国内少妇人妻偷人精品xxx网站| 99久久久亚洲精品蜜臀av| 老师上课跳d突然被开到最大视频| 国产在线男女| 22中文网久久字幕| 日日撸夜夜添| 亚洲熟妇熟女久久| 91久久精品国产一区二区成人| 国产亚洲av嫩草精品影院| 欧美极品一区二区三区四区| 亚洲三级黄色毛片| 欧美精品啪啪一区二区三区| 国产视频一区二区在线看| 日韩欧美国产一区二区入口| 深夜精品福利| 制服丝袜大香蕉在线| 性色avwww在线观看| 美女黄网站色视频| aaaaa片日本免费| 毛片女人毛片| 欧美激情久久久久久爽电影| 别揉我奶头~嗯~啊~动态视频| 日韩欧美三级三区| 又紧又爽又黄一区二区| 日韩欧美精品v在线| 99热只有精品国产| 免费搜索国产男女视频| 久久99热6这里只有精品| 99久久成人亚洲精品观看| 99精品在免费线老司机午夜| 在线a可以看的网站| 亚洲精品亚洲一区二区| 深夜精品福利| 在现免费观看毛片| 亚洲不卡免费看| 99热这里只有精品一区| 成人欧美大片| 亚洲中文字幕日韩| 亚洲精品日韩av片在线观看| 91麻豆精品激情在线观看国产| 精品久久国产蜜桃| 18禁裸乳无遮挡免费网站照片| 热99re8久久精品国产| 老女人水多毛片| 韩国av一区二区三区四区| av.在线天堂| 精华霜和精华液先用哪个| 亚洲精品色激情综合| 国内毛片毛片毛片毛片毛片| 国产精品美女特级片免费视频播放器| 天堂网av新在线| 天天一区二区日本电影三级| 国产男靠女视频免费网站| 日日撸夜夜添| 久久久久九九精品影院| 中文字幕精品亚洲无线码一区| 亚洲精品456在线播放app | 精品不卡国产一区二区三区| 在线观看一区二区三区| 亚洲av一区综合| 最近在线观看免费完整版| 欧美成人免费av一区二区三区| 成人一区二区视频在线观看| 欧美三级亚洲精品| 国产免费av片在线观看野外av| 欧美一区二区亚洲| 精品无人区乱码1区二区| 久久人妻av系列| 欧美不卡视频在线免费观看| 国产 一区精品| 国产成人福利小说| 男人和女人高潮做爰伦理| 99热这里只有精品一区| 老熟妇乱子伦视频在线观看| 欧美bdsm另类| 亚洲国产精品成人综合色| aaaaa片日本免费| av专区在线播放| 日韩欧美在线乱码| 欧美又色又爽又黄视频| 麻豆国产97在线/欧美| 亚洲va在线va天堂va国产| 中文字幕免费在线视频6| 91在线观看av| 2021天堂中文幕一二区在线观| 国产国拍精品亚洲av在线观看| 中亚洲国语对白在线视频| 最新在线观看一区二区三区| 欧美人与善性xxx| 国内少妇人妻偷人精品xxx网站| 欧美黑人欧美精品刺激| 在现免费观看毛片| 看片在线看免费视频| av.在线天堂| 久久久久久伊人网av| 久久久久久久精品吃奶| 国产在线精品亚洲第一网站| 99热只有精品国产| 国产精品一区二区三区四区久久| 黄色一级大片看看| 性插视频无遮挡在线免费观看| 噜噜噜噜噜久久久久久91| 色综合站精品国产| 国产免费男女视频| 黄色日韩在线| 国产亚洲精品久久久久久毛片| av在线蜜桃| 日本一本二区三区精品| 一区二区三区四区激情视频 | 91久久精品电影网| 精品乱码久久久久久99久播| 中文亚洲av片在线观看爽| 中文字幕熟女人妻在线| 身体一侧抽搐| 国产精品不卡视频一区二区| 亚洲av不卡在线观看| 91av网一区二区| 成人永久免费在线观看视频| 桃色一区二区三区在线观看| 免费大片18禁| 亚洲一级一片aⅴ在线观看| 九九在线视频观看精品| 99久久成人亚洲精品观看| 日韩高清综合在线| 美女xxoo啪啪120秒动态图| 最新中文字幕久久久久| 国产午夜精品论理片| 欧美3d第一页| a在线观看视频网站| 亚洲无线在线观看| www日本黄色视频网| 日本黄色视频三级网站网址| 精品久久久久久久久久久久久| 1024手机看黄色片| 免费高清视频大片| 国产女主播在线喷水免费视频网站 | 老司机午夜福利在线观看视频| 国产黄a三级三级三级人| 日本色播在线视频| 两个人的视频大全免费| 又黄又爽又免费观看的视频| 国产69精品久久久久777片| 最近中文字幕高清免费大全6 | 夜夜看夜夜爽夜夜摸| 少妇的逼水好多| 一卡2卡三卡四卡精品乱码亚洲| 国产精品久久视频播放| 国内毛片毛片毛片毛片毛片| 一a级毛片在线观看| 午夜福利在线在线| 成人国产一区最新在线观看| 亚洲av五月六月丁香网| 亚洲在线自拍视频| 老司机福利观看| 午夜爱爱视频在线播放| 欧美一区二区国产精品久久精品| 午夜影院日韩av| 久久久久久久久久成人| 亚洲在线自拍视频| 韩国av在线不卡| 久久久久国内视频| 天美传媒精品一区二区| 久久久久久国产a免费观看| 久久精品国产清高在天天线| 91av网一区二区| av专区在线播放| 亚洲图色成人| 成熟少妇高潮喷水视频| 国产精品久久视频播放| 久久精品综合一区二区三区| 精品人妻偷拍中文字幕| 级片在线观看| 校园人妻丝袜中文字幕| 最新中文字幕久久久久| av在线观看视频网站免费| 国产伦一二天堂av在线观看| 校园春色视频在线观看| 久久亚洲真实| 亚洲最大成人av| www.色视频.com| 国产主播在线观看一区二区| 欧美日韩精品成人综合77777| 在线观看66精品国产| 九色国产91popny在线| 国产麻豆成人av免费视频| 欧美日韩亚洲国产一区二区在线观看| 最近最新中文字幕大全电影3| 成人综合一区亚洲| 国产精品人妻久久久久久| 久久精品91蜜桃| 午夜a级毛片| 国产不卡一卡二| 国产主播在线观看一区二区| 变态另类丝袜制服| 超碰av人人做人人爽久久| 亚洲国产精品成人综合色| 午夜福利在线观看吧| 春色校园在线视频观看| 一边摸一边抽搐一进一小说| 毛片一级片免费看久久久久 | 一个人免费在线观看电影| 俄罗斯特黄特色一大片| av在线天堂中文字幕| 琪琪午夜伦伦电影理论片6080| 欧美性感艳星| 免费看美女性在线毛片视频| 国产精品女同一区二区软件 | x7x7x7水蜜桃| 麻豆av噜噜一区二区三区| 国产日本99.免费观看| 国产成人aa在线观看| 真人一进一出gif抽搐免费| 国产亚洲精品久久久com| 中亚洲国语对白在线视频| 亚洲va在线va天堂va国产| 亚洲四区av| 夜夜爽天天搞| 春色校园在线视频观看| 熟女人妻精品中文字幕| 久99久视频精品免费| 国产高清视频在线观看网站| 国产精品一区二区三区四区久久| 亚洲无线在线观看| 嫩草影院新地址| 深爱激情五月婷婷| 免费搜索国产男女视频| 桃红色精品国产亚洲av| 简卡轻食公司| 午夜精品在线福利| 精品一区二区三区视频在线| 久久久久国内视频| 欧美xxxx黑人xx丫x性爽| 欧美性感艳星| 久久亚洲真实| 俄罗斯特黄特色一大片| 午夜亚洲福利在线播放| 99国产精品一区二区蜜桃av| 欧美日韩中文字幕国产精品一区二区三区| 久久久成人免费电影| 搡女人真爽免费视频火全软件 | 欧美zozozo另类| 99久久无色码亚洲精品果冻| 一夜夜www| 久久久久久久精品吃奶| 欧美成人a在线观看| 精品一区二区三区视频在线| 嫁个100分男人电影在线观看| 一本一本综合久久| 狂野欧美白嫩少妇大欣赏| aaaaa片日本免费| 免费看日本二区| 乱码一卡2卡4卡精品| 99热这里只有是精品50| 国产伦精品一区二区三区四那| 国产av麻豆久久久久久久| 亚洲性久久影院| 国产高清不卡午夜福利| 一区二区三区激情视频| 成人av一区二区三区在线看| 色哟哟哟哟哟哟| 22中文网久久字幕| 欧美高清成人免费视频www| 美女cb高潮喷水在线观看| 夜夜爽天天搞| 99久久无色码亚洲精品果冻| 精品人妻熟女av久视频| 欧美高清性xxxxhd video| 国产av麻豆久久久久久久| 久久久成人免费电影| 国产 一区精品| 美女高潮喷水抽搐中文字幕| 久久久久久国产a免费观看| 最近中文字幕高清免费大全6 | 成人美女网站在线观看视频| 成人高潮视频无遮挡免费网站| 国产精品久久久久久亚洲av鲁大| 日日撸夜夜添| 狠狠狠狠99中文字幕| 亚洲va在线va天堂va国产| 两人在一起打扑克的视频| 一个人看视频在线观看www免费| 一区二区三区激情视频| 国内揄拍国产精品人妻在线| 国产亚洲av嫩草精品影院| 中文字幕人妻熟人妻熟丝袜美| 窝窝影院91人妻| 99视频精品全部免费 在线| 欧美日韩精品成人综合77777| 国产一区二区三区在线臀色熟女| 久久午夜亚洲精品久久| 精品一区二区三区av网在线观看| 久久久久国产精品人妻aⅴ院| av天堂在线播放| 精品久久国产蜜桃| 性色avwww在线观看| 又爽又黄无遮挡网站| 免费人成在线观看视频色| 国产精品98久久久久久宅男小说| 国内揄拍国产精品人妻在线| 国产伦人伦偷精品视频| 免费观看的影片在线观看| 欧美另类亚洲清纯唯美| 国产成人一区二区在线| 麻豆久久精品国产亚洲av| 99久久中文字幕三级久久日本| 18禁在线播放成人免费| 99精品久久久久人妻精品| 老女人水多毛片| 久久香蕉精品热| 少妇丰满av| 日本免费a在线| 美女 人体艺术 gogo| 国产在线男女| 九九在线视频观看精品| 99热网站在线观看| 欧美性猛交╳xxx乱大交人| 精品人妻熟女av久视频| 日韩欧美三级三区| 国产精品久久久久久av不卡| 日本撒尿小便嘘嘘汇集6| 麻豆一二三区av精品| 此物有八面人人有两片| 哪里可以看免费的av片| 国产高清有码在线观看视频| 又爽又黄无遮挡网站| 日日摸夜夜添夜夜添av毛片 | 性插视频无遮挡在线免费观看| 99热这里只有精品一区| 日韩中文字幕欧美一区二区| 九九久久精品国产亚洲av麻豆| 免费观看人在逋| 久久久久性生活片| 国产亚洲精品av在线| 神马国产精品三级电影在线观看| 国产一区二区三区在线臀色熟女| 乱系列少妇在线播放| 在线国产一区二区在线| 神马国产精品三级电影在线观看| 最近视频中文字幕2019在线8| 色视频www国产| 国产在线男女| 22中文网久久字幕| 亚洲av免费在线观看| 亚洲欧美日韩高清专用| 国产色婷婷99| 不卡一级毛片| 麻豆国产97在线/欧美| aaaaa片日本免费| 久久久久久久久久成人| 午夜福利18| 国产精品爽爽va在线观看网站| 麻豆国产av国片精品| 欧美潮喷喷水| 亚洲中文字幕一区二区三区有码在线看| 99热只有精品国产| 熟女人妻精品中文字幕| 国产精品一区二区三区四区免费观看 | 观看免费一级毛片| 日本黄大片高清| 久久久久久大精品| 亚洲精品456在线播放app | 久久久久久大精品| 很黄的视频免费| 国产成人一区二区在线| av国产免费在线观看| 国产精品久久久久久av不卡| 直男gayav资源| 亚洲一区二区三区色噜噜| 哪里可以看免费的av片| 18禁黄网站禁片午夜丰满| 久久久久久久久中文| 又粗又爽又猛毛片免费看| 国内毛片毛片毛片毛片毛片| 亚洲av电影不卡..在线观看| 黄色一级大片看看| 国产高清激情床上av| 亚洲精品久久国产高清桃花| 又黄又爽又刺激的免费视频.| 全区人妻精品视频| 99热只有精品国产| 国产淫片久久久久久久久| 亚洲中文日韩欧美视频| 国产爱豆传媒在线观看| 有码 亚洲区| 日韩 亚洲 欧美在线| av在线亚洲专区| 精品久久久久久,| 亚洲aⅴ乱码一区二区在线播放| 欧美另类亚洲清纯唯美| www.www免费av| 99久久精品一区二区三区| 日韩欧美国产一区二区入口| 久久久久久大精品| 97超级碰碰碰精品色视频在线观看| 亚洲无线观看免费| 成人三级黄色视频| 性插视频无遮挡在线免费观看| 又爽又黄a免费视频| 三级国产精品欧美在线观看| 久久亚洲真实| 国产激情偷乱视频一区二区| 亚洲成人久久性| 国国产精品蜜臀av免费| 少妇人妻精品综合一区二区 | 小说图片视频综合网站| 在线观看一区二区三区| 一本久久中文字幕| 日日夜夜操网爽| 成人毛片a级毛片在线播放| 毛片一级片免费看久久久久 | 又黄又爽又免费观看的视频| 国产精品久久久久久精品电影| 久久久久九九精品影院| 中文字幕av在线有码专区| 国产精品无大码| a在线观看视频网站| 中国美白少妇内射xxxbb| 久久这里只有精品中国| 18禁黄网站禁片午夜丰满| 在线观看舔阴道视频| 国产一区二区在线观看日韩| 在现免费观看毛片| 欧美高清成人免费视频www| 搡老岳熟女国产| 99久久无色码亚洲精品果冻| 亚洲天堂国产精品一区在线| 日韩一本色道免费dvd| 99九九线精品视频在线观看视频| 国产视频内射| 精品福利观看| АⅤ资源中文在线天堂| 99热这里只有是精品在线观看| 黄色一级大片看看| 97超视频在线观看视频| 18禁黄网站禁片午夜丰满| av在线亚洲专区| 国产精品av视频在线免费观看| 99riav亚洲国产免费| 看片在线看免费视频| 一级a爱片免费观看的视频| 99riav亚洲国产免费| 国产精品野战在线观看| 亚洲欧美日韩无卡精品| 日韩高清综合在线| 成人精品一区二区免费| 少妇被粗大猛烈的视频| 好男人在线观看高清免费视频| 尾随美女入室| 久久精品国产亚洲av香蕉五月| 熟女人妻精品中文字幕| 国产成人a区在线观看| 神马国产精品三级电影在线观看| av视频在线观看入口| 成人美女网站在线观看视频| 日日啪夜夜撸| 99久久无色码亚洲精品果冻| 99久久成人亚洲精品观看| 国产女主播在线喷水免费视频网站 | 黄色视频,在线免费观看| 人妻久久中文字幕网| 999久久久精品免费观看国产| 天美传媒精品一区二区| 九色国产91popny在线| 免费看a级黄色片| 少妇猛男粗大的猛烈进出视频 | 亚洲av电影不卡..在线观看| 日韩人妻高清精品专区| 两个人视频免费观看高清| 亚洲欧美日韩高清在线视频| 亚洲乱码一区二区免费版| 性插视频无遮挡在线免费观看| 可以在线观看毛片的网站| 无遮挡黄片免费观看| 春色校园在线视频观看| 欧美人与善性xxx| 99热只有精品国产| 免费看av在线观看网站| 九九在线视频观看精品| 观看美女的网站| 精品国内亚洲2022精品成人| 久久婷婷人人爽人人干人人爱| 欧美色欧美亚洲另类二区| 欧美日韩综合久久久久久 | 国产中年淑女户外野战色| h日本视频在线播放| 成年女人永久免费观看视频| 日本在线视频免费播放| 日韩精品青青久久久久久| 啪啪无遮挡十八禁网站| 看片在线看免费视频| 97人妻精品一区二区三区麻豆| 国产人妻一区二区三区在| 色综合色国产| 噜噜噜噜噜久久久久久91| 欧美国产日韩亚洲一区| 精品人妻1区二区| 国产精华一区二区三区| 伦精品一区二区三区| 99久久中文字幕三级久久日本| 色视频www国产| 免费观看在线日韩| 久久6这里有精品| 日韩欧美在线乱码| 亚洲18禁久久av| 级片在线观看| 3wmmmm亚洲av在线观看| 在线免费观看不下载黄p国产 | 午夜精品久久久久久毛片777| 亚洲精品一卡2卡三卡4卡5卡| 日韩欧美免费精品| 麻豆一二三区av精品| 亚洲成人中文字幕在线播放| 一进一出抽搐动态| 在线天堂最新版资源| 色播亚洲综合网| 在线观看舔阴道视频| 国产精品国产三级国产av玫瑰| 女的被弄到高潮叫床怎么办 | 最近中文字幕高清免费大全6 | 亚洲中文字幕日韩| 日韩av在线大香蕉| 赤兔流量卡办理| 国产精品国产三级国产av玫瑰| 色av中文字幕| 3wmmmm亚洲av在线观看| 国产日本99.免费观看| 一区二区三区高清视频在线| 亚洲四区av| 欧美日韩综合久久久久久 | 久99久视频精品免费| av天堂中文字幕网| 午夜福利在线观看吧| 久久久久国产精品人妻aⅴ院| 我要搜黄色片| av在线亚洲专区| 精品午夜福利在线看| 欧美另类亚洲清纯唯美| 18禁黄网站禁片免费观看直播| 午夜激情福利司机影院| 99久久久亚洲精品蜜臀av| a在线观看视频网站| 亚洲欧美日韩东京热| 俄罗斯特黄特色一大片| 联通29元200g的流量卡| 99热网站在线观看| 亚洲avbb在线观看| 少妇人妻一区二区三区视频| 简卡轻食公司| 免费在线观看影片大全网站| 少妇猛男粗大的猛烈进出视频 | 日日摸夜夜添夜夜添小说| 免费av毛片视频| 中文字幕人妻熟人妻熟丝袜美| 精品久久久久久,| 日本撒尿小便嘘嘘汇集6| 日韩一本色道免费dvd| 亚洲欧美日韩高清专用| 亚洲第一区二区三区不卡| 久久久久久久精品吃奶| 亚洲,欧美,日韩| 欧美性猛交╳xxx乱大交人| 韩国av一区二区三区四区| 成年女人永久免费观看视频| 久久人妻av系列| 一进一出好大好爽视频| 亚洲美女搞黄在线观看 | 22中文网久久字幕| 99在线视频只有这里精品首页| 亚洲中文字幕一区二区三区有码在线看| 国产精品久久视频播放| 久久精品国产亚洲av涩爱 | 亚洲性久久影院| 欧美zozozo另类| 亚洲美女搞黄在线观看 | 少妇裸体淫交视频免费看高清| 午夜免费男女啪啪视频观看 | 免费大片18禁| 一个人看的www免费观看视频| 亚洲av免费高清在线观看| 国产亚洲精品久久久久久毛片| 国模一区二区三区四区视频| 国内少妇人妻偷人精品xxx网站| 国内精品久久久久久久电影| 色噜噜av男人的天堂激情| 啦啦啦啦在线视频资源| 日本 av在线| 国产av一区在线观看免费| 国产精品日韩av在线免费观看| 看片在线看免费视频| 免费不卡的大黄色大毛片视频在线观看 | 男人舔女人下体高潮全视频| av黄色大香蕉| 草草在线视频免费看| 国产色爽女视频免费观看| 国产一区二区亚洲精品在线观看| 黄色欧美视频在线观看| 欧美性猛交╳xxx乱大交人| 最近最新中文字幕大全电影3| 久久久久久久午夜电影| 黄色丝袜av网址大全| 色综合亚洲欧美另类图片| 国产综合懂色| 欧美日韩中文字幕国产精品一区二区三区| 99热这里只有是精品在线观看| 日本-黄色视频高清免费观看| aaaaa片日本免费| 久久精品夜夜夜夜夜久久蜜豆| 亚洲一区高清亚洲精品|