• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The effect of different high pressure die casting parameters on 3D microstructure and mechanical properties of AE44 magnesium alloy

    2023-12-27 01:11:04TongtongZhngWenYuChoshengWntongChenLinZhngShoumeiXiong
    Journal of Magnesium and Alloys 2023年9期

    Tong-tong Zhng ,Wen-o Yu,* ,Cho-sheng M ,Wn-tong Chen ,Lin Zhng ,Shou-mei Xiong

    a Center of Materials Science and Engineering, School of Mechanical and Electronic Control Engineering, Beijing Jiaotong University, Beijing 100044,China

    b China Academy of Machinery Science and Technology Group Co., Ltd, Beijing 100044, China

    cSchool of Materials Science and Engineering, Tsinghua University, Beijing 100084, China

    Abstract To understand the relationship between the process-microstructure-mechanical properties of the high-pressure die-casting (HPDC) AE44 magnesium alloy,3D reconstruction and 2D characterization were carried out on the HPDC castings produced with different process parameters(low slow-shot speed,fast slow-shot speed,solidification pressure).Microstructural characterization revealed that the formation of shrinkage pores are closely related to ESCs,which were mainly controlled by the low slow-shot speed in shot sleeve (ESCs growth time) and fast slow-shot speed into the die cavity (distribution of ESCs).In addition,solidification pressure can significantly reduce the shrinkage porosity in the center by improving the feeding capacity of liquid metal.Tensile fracture revealed that the tearing ridge is mainly evolved from the slip band of ESCs.The quantity and distribution of ESCs determine the fracture mode of castings.The relationship between mechanical properties of castings and the morphology of ESCs and porosity is also statistically discussed.

    Keywords: HPDC parameters;Porosity;Externally solidified crystals (ESCs);Tensile fracture;3D reconstruction.

    1.Introduction

    Grace to its advantages of high forming accuracy,significant efficiency and few post-processing requirements,high pressure die casting (HPDC) is the first choice for producing magnesium alloy castings [1–3].As HPDC process contains relatively high shot speeds and high interfacial heat transfer coefficient between the melt and die,the defects,such as porosity (gas pores and shrinkage),large dendritic and Externally Solidified Crystals (ESCs) forms in castings [4–6].

    In order to reduce or even eliminate these defects,huge work has been carried out to investigate the formation mechanism of the defects and their influence on the mechanical performance of castings.The size of ESCs in shot sleeve is inversely related with the shot speed and their accumulation can introduce the shrinkage pores [7,8].Because of the interlaced voids between ESCs dendrites,the insufficient feeding of molten metal during solidification process arouses the formation of complex and interconnected porosity in the castings.Sometimes,the agglomeration of ESCs leads to the formation of large-scale defect bands [9,10].Yu et al.[11]reported that the defect bandwidth is strongly related to the size and quantity of ESCs in AZ91D castings.These defects seriously deteriorate the mechanical properties of castings.Biswas et al.[12]reported that the strength and elongation of the HPDC AZ91 magnesium alloy were related to the porosity volume fraction.Li et al.[13–15]confirmed that the airshrinkage pores and net-shrinkage pores are the origin of the crack and facilitate the crack propagation under the in-situ tensile test.

    The mechanical performance of HPDCed castings can be optimized by the reduction of ESCs size and quantity.For example,the low slow-shot speed can reduce the growth time of ESCs in shot sleeve,while the acceleration of plunger reduces the vacuum time and arouses the air entrapment [16–18].The shear stress could break or remelt large inclusions and ESCs when the semisolid melt passed through the gating system at the fast slow-shot speeds [19,20].The intensification pressure significantly reduced the porosity amount by reducing gas porosity [21].Wang et al.[22]found that the vacuum pressure in the die cavity at the beginning of mold filling was significantly reduced by using three-step slow shot speed.

    Due to the low density and excellent high-temperature mechanical properties,AE44 (Mg-4Al-4RE-0.4Mn) magnesium alloy has been developed for the application in automotive field at elevated temperature.In our previous study [23]we only compared the difference of HPDC AE44 castings obtained with/without fast slow-shot speed and with/without casting pressurization).It was found that the shrinkage porosities generally coexist with Externally Solidified Crystals(ESCs).However,the optimization of different process parameters on the microstructure and mechanical properties of HPDC AE44 magnesium alloy has not yet been systematically investigated.Herein,we designed the HPDC processes by modifying the parameters,including low slow-shot speed,fast slow-shot speed and casting pressure.Then,3D reconstruction was conducted for building the correlation between mechanical properties and microstructure of castings.

    2.Experiments

    In this work,AE44 magnesium alloy was selected and cast by a TOYO-BD-350V5 cold chamber die-casting machine under vacuum condition.The chemical composition of AE44 magnesium alloy is shown in Table 1.Fig.1(a) shows the schematic of the experimental setup of the shot sleeve.The entire length and diameter of shot sleeve are 340 mm and 40 mm.The melting temperature and initial mold temperature were set to be 700°C and 150°C.During the casting process,the plunger was moved from 40 to 270 mm at a low slowshoot speed,and then accelerated with a fast slow-shot speed from 270 to 285 mm and then push the melt into the mold cavity.After filling,the liquid metal is solidified and shaped under high pressure,and the casting is finally taken out.More details about three HPDC processes were summarized in Table 2.

    Fig.1.(a) Schematic of experimental setup of the shot sleeve,length unit is mm,(b) the configuration of the casting.

    Table 1The chemical composition of AE44 magnesium alloy (weight%).

    Table 2Key parameters of the seven designed HPDC processes.

    The specimens used for scanning electron microscope(SEM) observation were taken at A location marked in Fig.1(b).In order to reconstruct 3D morphology of porosity defects,the synchrotron X-ray micro-tomography experiment was carried out at the BL13W1 line station of the Shanghai Synchrotron Radiation Facility (SSRF).The X-ray energy of the synchrotron was 30 Kev beamline.For converting the Xrays to visible light,a YAG: Ge scintillator screen equipped with a 2048×2048 pixels camera was adopted.Then use the inverse filter projection algorithm with software PITRE to reconstruct the 2D projection into 3D volume.Finally,Avizo software was used to process the reconstructed data.

    Tensile tests were performed on a WDW-3020 electron universal testing machine at room temperature (25°C) with a displacement speed of 1 mm/min.21 tensile specimens were used to evaluate the mechanical properties (it carried three tensile tests out on the samples of each die casting process),including yield strength,ultimate tensile strength and elongation.

    3.Results

    Fig.2(a) shows the typical microstructure of HPDC-AE44 magnesium alloy castings under the conventional processes.The morphology is composed of small round shapeα-Mg grains,large dendritic externally solidified crystals (ESCs)and porosity (gas pores and shrinkage).Two main rare earth phases were found in AE44 magnesium alloy.Al2RE phase characterized with bright white granular morphology and dispersed inα-Mg grains,while Al11RE3phase is characterized with a gray-white flocculent morphology and mainly distributed atα-Mg grain boundaries [24,25].The 3D porosity morphology of HPDC AE44 alloy obtained via 3D reconstruction is shown in Fig.2 (b-f).According to the previous report [13],the porosity can be divided into four categories in reference to the different formation mechanism and morphology (volume size and sphericity),including gas pore (small size and round shape),gas-shrinkage pore (relatively large size and complex morphology),net-shrinkage (large size and complex morphology) and island-shrinkage (small size and relatively complicated morphology).

    Fig.2.(a) Backscattered scanning image of HPDC AE44 casting,(b) 3D characterization of porosity in HPDC casting,(c) gas-pore,(d) gas-shrinkage pore,(e)net-shrinkage,and (f) island-shrinkage.

    Fig.3 shows the microstructure of surface layer,transition area and center zone in rod-shaped specimens produced with different low slow-shot speeds.From the surface to the center zone,as shown in Fig.3 (a1-a3),(b1-b3) and (c1-c3),the size and quantity of ESCs became much less with the increasing low slow-shot speed.The corresponding area percentage and grain size of ESCs were statistically calculated and given in Fig.9 (a1-b1).The area fraction and average size of ESCs increased linearly from the surface to the center in three castings.When the low slow-shot speed was accelerated from 0.1 m/s to be 0.2 m/s,the area percentage and average size of ESCs decreased about 12% and 32 μm respectively.This indicates that low slow-shot speed has a significant effect on the size and morphology of ESCs.

    Fig.3.The microstructure of rod-shaped specimens produced at different low slow-shot speeds: (a1-a3) A01–0.1 m/s,(b1-b3) A02–0.15 m/s,(c1-c3) A03–0.2 m/s.

    Fig.4.3D reconstruction of the porosity in the center of the rod-shaped specimen at three low slow-shot speed processes: (a1-a4) A01–0.1 m/s,(b1-b4) A02–0.15 m/s,(c1-c4) A03–0.2 m/s.The size of the specimen is 2.1 mm in height and 6.4 mm in diameter.The size of the porosity diameter: red (d<81.25 μm),yellow (d<162.5 μm),green (d<243.75 μm),blue (d<325 μm),purple (d>325 μm).

    Fig.4 presents the 3D distribution and morphology of porosity in HPDC castings fabricated with three low slowshot speed processes.The second,third and fourth columns are the enlarged views of the I,II and III areas marked in the first column.At the low show-shot speed of 0.1 m/s,as shown in Fig.4 (a1-a4),the porosity is mainly composed of large-sized net-shrinkage pores and gas-shrinkage pores.With the increasing low slow-shot speed,as found in Fig.4(b1-b4)and Fig.4(c1-c4),the porosity is mainly composed of small gas-pores and island-shrinkage pores.In addition,the volume of porosity is calculated at different positions and given in Fig.9(c1).The porosity volume is significantly reduced with the increasing low slow-shot speed.This trend is well consistent with the trend of the area percentage and average size of ESCs.Similar to our previous report [11],this result further proves that size and morphology of shrinkage pores are closely related to the ESCs.

    Fig.5 shows the microstructure of surface layer,transition area and center zone in rod-shaped specimens produced with different fast slow-shot speeds.As shown in Fig.5,the size and quantity of ESCs increased from the surface to the center of the specimen.With the increasing fast slow-shot speed,the size and quantity of ESCs on the surface layer of castings increased.In contrast,the size and quantity of ESCs in the center of the casting decreased with the increasing fast slow-shot speed.At the same time,the ESCs tends to be round.The corresponding area percentage and grain size of ESCs were statistically calculated and given in Fig.9 (a2-b2).With the increasing fast slow-shot speed from 1.75 m/s to be 3.75 m/s,the area percentage and average size of ESCs in the center of the sample decreased about 5.6% and 8.1 um,respectively.However,these values of ESCs in the surface layer reversely increased by 5.1% and 24 μm,respectively.This result indicates that the increasing fast slow shot speed is prone to produce a more uniform distribution of ESCs in the specimen.

    Fig.5.The microstructure of rod-shaped specimens produced by three different fast slow-shot speeds: (a1-a3) A05–1.75 m/s,(b1-b3) A01–2.75 m/s,(c1-c3)A04–3.75 m/s.

    Fig.6.3D reconstruction of the porosity the rod-shaped specimens produced by three fast slow-shot speed processes: (a1-a4) A05–1.75 m/s,(b1-b4) A01–2.75 m/s,(c1-c4) A04–3.75 m/s.The size of the specimen is 2.1 mm in height and 6.4 mm in diameter.The size of the porosity diameter: red (d<81.25 μm),yellow (d<162.5 μm),green (d<243.75 μm),blue (d<325 μm),purple (d>325 μm).

    Fig.6 presents the 3D distribution and morphology of porosity in HPDC castings fabricated with three fast slowshot speed processes.The second,third and fourth columns are the enlarged views of the I,II and III areas marked in the first column.As shown in Fig.6 (a3–c3),with the increasing fast slow-shot speed,the morphology of pores became more complex.On the contrary,as shown in Fig.6(a4–c4),with the increasing fast slow-shot speed,the size of the pores in the center gradually decreased and the contiguous shrinkage became gradually less.At the fast slow-shot speed of 3.75 m/s,most of the pores in the center are small gas-shrinkage pores and island-shrinkage.Furthermore,from the statistical results shown in Fig.9(c2),the porosity volume reduced with the increasing fast slow-shot speed,especially the center zone.This result indicates that the reduction of ESCs agglomeration can effectively reduce the volume and quantity of large-size shrinkage pores.

    Fig.7 shows the microstructure of surface layer,transition area and center zone in rod-shaped specimens produced with different solidification pressurization.As shown in Fig.7 (a1–c1),the area marked by the white line is the skin layer,which is aroused by the fast interfacial heat transfer coefficient between the molten metal and the mold cavity wall.This chilling effect produces one fine microstructure [26].Yu et al.have carefully investigated the influence of vacuum,speed,casting pressure on interfacial heat transfer coefficient(IHTC) in shot sleeve and die cavity by using AZ91D alloy[7,27].The IHTC peak value is between 6.1 KW·mm-2·K-1and 12.9 KW·mm-2·K-1in the shot sleeve with a cooling rate of 139.9 °C·S-1.Fig.7(a1-c1) shows that the width of the skin layer broadens with the increase of the solidification pressure.This indicates that the solidification pressure can increase the interfacial heat transfer coefficient.In addition,with the increasing solidification pressure,the shape of ESCs tends to be round.In detail,as shown in Fig.9 (a3-b3),with the increasing solidification pressurization,the area percentage and average size of ESCs slightly decreased.This suggests that solidification pressurization has one weak effect on the size and quantity of ESCs.

    Fig.7.Morphology of ESCs at the center of rod-shaped specimens at different low slow-shot speeds: (a1-a3) A07–7.8 MPa,(b1-b3) A06–12.5 MPa,(c1-c3)A01–13.7 MPa.

    Fig.8.3D reconstruction of the porosity in the center of the rod-shaped specimens fabricated under three solidification pressurization processes: (a1-a3)A07–7.8 MPa,(b1-b3) A06–12.5 MPa,(c1-c3) A01–13.7 MPa.The size of the specimen is 2.1 mm in height and 6.4 mm in diameter.The size of the porosity diameter: red (d<81.25 μm),yellow (d<162.5 μm),green (d<243.75 μm),blue (d<325 μm),purple (d>325 μm).

    Fig.8 presents the 3D porosity distribution and morphology of HPDC castings fabricated with three solidification pressurization.The second,third and fourth columns are the enlarged views of the I,II and III areas marked in the first column.Fig.8 (a1-c1)indicates that the porosity is distributed with one spiral staggered shape along the liquid flow direction.With the increasing solidification pressurization,the porosity morphology of continuous spiral staggered line shape disappears.As show in Fig.8 (a4-c4),with the increasing solidification pressurization,the porosity size in the center gradually decreases.In addition,the complex contiguous netshrinkage pores transformed into gas-shrinkage pores.Furthermore,Fig.9(c3) shows that the porosity volume was dramatically reduced by 48% as the solidification pressurization increased from 7.8 MPa to 12.5 MPa.This suggests that the increasing solidification pressurization can significantly reduce the porosity volume.

    4.Discussion

    Fig.9 shows the statistical results of ESCs area fraction,ESCs average size and porosity volume distribution at different positions of the rod-shaped specimens.As the acceleration of low slow-shot speed reduced the residence time of the molten metal in the shot sleeve,the heat loss of the molten metal and the growth time of ESCs became less in the chamber[28].Due to the reduction of ESCs in size and quantity,as show in Fig.4 and Fig.9(c1),the large-size shrinkage pores and the total porosity volume became less in the rod-shaped specimens.The fast slow-shot speed can enhance the shear stress when the liquid metal enters into the cavity through the sprue,as show in Fig.9 (a2-c2),which could break more ESCs and reduce their size [29].In addition,more rapid fast slow-shot speed could enhance the molten metal turbulence.,which then reduced the agglomeration of ESCs and made ESCs become more uniform.However,the increase of fast slow-shot speed simultaneously aggravated the air entrapment in the cavity,as show in Fig.6,more small-size air pores and gas-shrinkage pores appeared.As the interface heat transfer coefficient can be enhanced by the solidification pressurization between the molten metal and the cavity wall [26],as shown in Fig.8 and Fig.9(a3-b3),the area percentage and average size of ESCs become less with the increasing pressure.At the same time,the increasing solidification pressurization can improve the feeding ability of molten metal,as given in Fig.9(c3),the pore defects became less in the specimen.

    Fig.10 presents the quantification of the total porosity volume and average ESC size,UTS,YS and EI of castings fabricated by 7 designed processes.Fig.10 (a-b) presents that the ESCs became strongly less in average diameter and area fraction with the increasing shot speed and solidification pressurization,especially the low slow-shot speed.Fig.10(c) indicates both of increasing shot speed and solidification pressurization can strongly reduce the total porosity volume.Especially,the variation trend of porosity volume is similar to that of average size and fraction of ESCs.This is because the shrinkage pore would form at the ESCs boundaries [30].Similar to the previous reports [12,26],Fig.10 (d-f) indicates that the strength and elongation of castings are inversely proportional to the quantity ESCs and the total porosity volume.

    Fig.10.Quantification of the total porosity volume and average ESC size,UTS,YS and EI of castings fabricated by 7 designed processes.The dimension of the statistics is 500×500×1280 pixel3 with a volume 67.56 mm3.

    Fig.11 presents the fracture morphologies of rod-shaped specimens fabricated under different processes.As shown in Fig.11 (a2-d2) and (a3-d3),the ductile fracture mode characterized with dimples appeared on the surface layer of the specimens.Differently,as show in Fig.11 (a4-d4),cleavage fracture mode happened with more tear ridges when more and more ESCs appeared with closer and closer to the center area of the rod-shaped specimens.During the tensile test,the formation of tear ridges were mainly aroused by the slip bands of ESCs [15,31].Herein,the fracture mode of castings is strongly affected by the distribution of ESCs.Fig.11(a4)and (b4) show tearing ridges became less in the center of the casting as the quantity of ESCs decreased with the increasing low slow-shot speed.The fast slow-shot speed could reduce the aggregation of ESCs in the center of the casting,as shown in Fig.11(a4)and(c4),the large-sized tearing ridges gradually disappear in the center of the casting with the increasing fast slow-shot speed.The decrease of pressurization reduces the feeding capacity and the interfacial heat transfer coefficient of the liquid metal,Fig.11 (d1-d4) indicates more shrinkage pores and more tearing ridges around the voids appeared on the fracture surface.Our results demonstrate that the reduction of ESCs and porosity can improve the mechanical performance of castings,especially the reduction of ESCs.

    Fig.11.Tensile fracture of rod specimens produced with different processes:(a1-a4)A01–0.1 m/s-2.75 m/s-13.7 MPa;(b1-b4)A03–0.2 m/s-2.75 m/s-13.7 MPa;(c1-c4) A05–0.1 m/s-1.75 m/s-13.7 MPa;(d1-d4) A07–0.1 m/s-2.75 m/s-7.8 MPa.The first column is the overall morphology of the tensile fracture,and the second,third and fourth columns are the enlarged view of the I,II and III area.

    5.Conclusion

    In this study,we systematically studied the effects of different die-casting processes on the microstructure and mechanical properties of HPDC AE44 magnesium alloy by the combination of 2D observation and 3D reconstruction.Our results reveal that the size and quality of ESCs controlled by the low slow-shot speed in shot sleeve (ESCs growth time)and fast slow-shot speed into the die cavity (distribution of ESCs).The large shrinkage pores are always closed to ESCs.When the low slow-shot speed was increased from 0.1 m/s to be 0.2 m/s,the area percentage of ESCs and porosity volume are reduced about 11.5% and 50%,respectively.when the solidification pressure was increased from 7.8 MPa to be 13.7 MPa,the improvement of feeding ability can reduce 47%porosity.Tensile test shows that the fracture form of castings was mainly affected by the distribution of ESCs.More dimples appear in the surface layer with less ESCs,while cleavage fracture occurs in the center with more ESCs.Our results reveals that the mechanical properties of castings are inversely proportional to the quantity ESCs and porosity volume.The optimal mechanical properties of AE44 casting is obtained at the condition of When the low slow-shot speed of 0.2 m/s,fast slow-shot speed of 2.75 m/s and solidification pressure of 13.7 MPa.The tensile strength,yield strength and elongation of the castings are 253.7 MPa,161.0 MPa and 12.1%,respectively.

    Acknowledgement

    The experimental section was financially supported by the Fundamental Research Funds for the Central Universities(M22JBMC0060) and the National Natural Science Foundation of China(No.52175284),the State Key Lab of Advanced Metals and Materials (No.2021-ZD08).Thanks to the technical support of BL13W1 beamline in Shanghai Synchrotron Radiation Facility (SSRF).

    亚洲伊人久久精品综合| 黄色日韩在线| 最新中文字幕久久久久| 一个人免费在线观看电影| 禁无遮挡网站| 午夜久久久久精精品| 大香蕉久久网| 亚洲欧美成人综合另类久久久| 视频中文字幕在线观看| 女的被弄到高潮叫床怎么办| 十八禁网站网址无遮挡 | 99热这里只有是精品在线观看| 免费观看精品视频网站| 人体艺术视频欧美日本| 亚洲欧美成人综合另类久久久| 啦啦啦中文免费视频观看日本| 韩国高清视频一区二区三区| 亚洲,欧美,日韩| 国内少妇人妻偷人精品xxx网站| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 男插女下体视频免费在线播放| 精品99又大又爽又粗少妇毛片| 十八禁网站网址无遮挡 | 极品少妇高潮喷水抽搐| 全区人妻精品视频| 国产成人精品婷婷| 国产黄色视频一区二区在线观看| 看黄色毛片网站| 午夜福利高清视频| 青春草亚洲视频在线观看| 成人性生交大片免费视频hd| 午夜免费观看性视频| 国内精品美女久久久久久| 在线免费观看的www视频| av国产久精品久网站免费入址| 午夜精品国产一区二区电影 | 国产午夜福利久久久久久| 亚洲国产精品专区欧美| 2021少妇久久久久久久久久久| 国产 一区 欧美 日韩| 国产av码专区亚洲av| 99久久精品热视频| 高清欧美精品videossex| 中文字幕人妻熟人妻熟丝袜美| 成年版毛片免费区| 我的女老师完整版在线观看| 日本欧美国产在线视频| 超碰av人人做人人爽久久| 国产精品国产三级国产专区5o| 亚洲人成网站在线观看播放| 中文欧美无线码| 亚洲av电影在线观看一区二区三区 | 日本一二三区视频观看| 国产亚洲av片在线观看秒播厂 | 国产黄片视频在线免费观看| av线在线观看网站| 人体艺术视频欧美日本| 亚洲欧洲日产国产| a级毛色黄片| 亚洲性久久影院| 黄片无遮挡物在线观看| 日本免费a在线| 麻豆av噜噜一区二区三区| 久久亚洲国产成人精品v| 日产精品乱码卡一卡2卡三| 国产视频首页在线观看| 蜜桃亚洲精品一区二区三区| 亚洲在久久综合| 亚洲熟女精品中文字幕| 国产精品久久视频播放| 免费少妇av软件| 国产免费一级a男人的天堂| 亚洲18禁久久av| 午夜精品在线福利| 精品一区二区三卡| 男人舔奶头视频| 国产亚洲最大av| 久久精品国产亚洲网站| 看免费成人av毛片| 99久久中文字幕三级久久日本| 18禁裸乳无遮挡免费网站照片| 国产亚洲av片在线观看秒播厂 | 六月丁香七月| 日韩视频在线欧美| 日产精品乱码卡一卡2卡三| 99九九线精品视频在线观看视频| 女的被弄到高潮叫床怎么办| 女人久久www免费人成看片| 亚洲精品视频女| 欧美日韩精品成人综合77777| 又粗又硬又长又爽又黄的视频| 91久久精品国产一区二区成人| 国产中年淑女户外野战色| 建设人人有责人人尽责人人享有的 | 午夜精品一区二区三区免费看| 精品国产露脸久久av麻豆 | 午夜福利成人在线免费观看| 日本免费在线观看一区| 国产视频首页在线观看| 内地一区二区视频在线| 国产老妇女一区| 国产成年人精品一区二区| 国产精品嫩草影院av在线观看| 中文字幕久久专区| 久久99蜜桃精品久久| 天美传媒精品一区二区| 天堂影院成人在线观看| 亚洲精品乱码久久久久久按摩| 听说在线观看完整版免费高清| 极品教师在线视频| 九九在线视频观看精品| 97在线视频观看| 人妻系列 视频| 国产成人一区二区在线| 色综合亚洲欧美另类图片| 99久国产av精品国产电影| 美女被艹到高潮喷水动态| 亚洲av中文av极速乱| 深爱激情五月婷婷| 男人爽女人下面视频在线观看| 成年av动漫网址| 亚洲欧美日韩东京热| 26uuu在线亚洲综合色| videossex国产| 日本一本二区三区精品| 久久99精品国语久久久| 日日干狠狠操夜夜爽| 精品久久久久久久久久久久久| 国产午夜福利久久久久久| 久久久久久久午夜电影| 亚洲美女搞黄在线观看| 日韩一本色道免费dvd| 美女xxoo啪啪120秒动态图| 如何舔出高潮| 国产一级毛片七仙女欲春2| 久久久精品94久久精品| 内地一区二区视频在线| 男女啪啪激烈高潮av片| 美女内射精品一级片tv| 欧美变态另类bdsm刘玥| 久久久成人免费电影| 亚洲最大成人手机在线| 亚洲精华国产精华液的使用体验| 亚洲精品成人久久久久久| 好男人视频免费观看在线| 国产日韩欧美在线精品| 久久久午夜欧美精品| 91久久精品国产一区二区成人| 十八禁国产超污无遮挡网站| 日本与韩国留学比较| 69av精品久久久久久| 国产大屁股一区二区在线视频| 中文天堂在线官网| 日韩av在线大香蕉| 秋霞伦理黄片| 国内揄拍国产精品人妻在线| 亚洲欧美一区二区三区国产| 国产精品.久久久| 亚洲精品乱久久久久久| 一级av片app| 色网站视频免费| 国产精品日韩av在线免费观看| 久久精品久久久久久久性| 伦理电影大哥的女人| 亚洲av免费在线观看| 久久人人爽人人片av| 国产成人精品福利久久| 精品一区在线观看国产| 别揉我奶头 嗯啊视频| 边亲边吃奶的免费视频| 亚洲精品久久午夜乱码| 国产免费又黄又爽又色| 婷婷色综合大香蕉| 老司机影院成人| 久久久久久久久久成人| 国产精品人妻久久久影院| 少妇熟女欧美另类| 欧美三级亚洲精品| 欧美激情在线99| 精品久久久久久久久久久久久| 精品人妻偷拍中文字幕| 亚洲精品影视一区二区三区av| 精品国内亚洲2022精品成人| 国产伦精品一区二区三区视频9| 亚洲人成网站高清观看| 自拍偷自拍亚洲精品老妇| 国模一区二区三区四区视频| 欧美人与善性xxx| 高清日韩中文字幕在线| 国产精品久久久久久久久免| 日韩av不卡免费在线播放| 一区二区三区四区激情视频| 成年女人在线观看亚洲视频 | 日本av手机在线免费观看| 午夜久久久久精精品| 国产极品天堂在线| 午夜精品在线福利| 国产精品1区2区在线观看.| 夫妻午夜视频| 亚洲天堂国产精品一区在线| 91aial.com中文字幕在线观看| 国语对白做爰xxxⅹ性视频网站| 亚洲精华国产精华液的使用体验| 欧美精品国产亚洲| 成人二区视频| 亚洲精品自拍成人| 能在线免费看毛片的网站| 亚洲人成网站在线观看播放| 丰满人妻一区二区三区视频av| 非洲黑人性xxxx精品又粗又长| 久久久久久久久久人人人人人人| 视频中文字幕在线观看| 少妇的逼水好多| 久久久成人免费电影| 免费在线观看成人毛片| 亚洲精品aⅴ在线观看| 免费观看性生交大片5| 国产色婷婷99| 久久久久久伊人网av| 国产乱来视频区| 亚洲成人av在线免费| 91久久精品国产一区二区三区| 日本三级黄在线观看| 日韩av不卡免费在线播放| 大片免费播放器 马上看| 波多野结衣巨乳人妻| 亚洲怡红院男人天堂| 少妇熟女欧美另类| av网站免费在线观看视频 | 伦精品一区二区三区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 老师上课跳d突然被开到最大视频| 久久久午夜欧美精品| 久久久久九九精品影院| 伦理电影大哥的女人| 久久精品综合一区二区三区| 亚洲成人一二三区av| 国产白丝娇喘喷水9色精品| 欧美日韩精品成人综合77777| 偷拍熟女少妇极品色| 秋霞在线观看毛片| 黄色配什么色好看| 蜜臀久久99精品久久宅男| 欧美zozozo另类| 国产v大片淫在线免费观看| 亚洲最大成人中文| 一级片'在线观看视频| 午夜精品国产一区二区电影 | 黄片wwwwww| 欧美xxxx性猛交bbbb| 国产男女超爽视频在线观看| 69人妻影院| 成人欧美大片| 爱豆传媒免费全集在线观看| 色尼玛亚洲综合影院| 国产精品国产三级专区第一集| 男插女下体视频免费在线播放| 久久久久国产网址| 一级毛片久久久久久久久女| 成人午夜精彩视频在线观看| 一边亲一边摸免费视频| 真实男女啪啪啪动态图| 日本wwww免费看| 婷婷色av中文字幕| 成人毛片a级毛片在线播放| 男女视频在线观看网站免费| 国产成人freesex在线| 男女国产视频网站| 99久久精品一区二区三区| 国产精品av视频在线免费观看| 久久久久性生活片| 国产免费福利视频在线观看| 丰满少妇做爰视频| 国产午夜精品论理片| 一边亲一边摸免费视频| 国产高清三级在线| 亚洲一级一片aⅴ在线观看| 国产一级毛片在线| 国产黄色免费在线视频| 国产成人aa在线观看| 国产av码专区亚洲av| 欧美zozozo另类| 中国美白少妇内射xxxbb| 国产精品一区二区三区四区久久| videos熟女内射| 免费观看a级毛片全部| 97精品久久久久久久久久精品| 午夜福利在线观看免费完整高清在| 亚洲欧美日韩卡通动漫| 一个人看视频在线观看www免费| 男女边吃奶边做爰视频| 成人美女网站在线观看视频| 99久久中文字幕三级久久日本| 国产91av在线免费观看| 91av网一区二区| 亚洲精品成人av观看孕妇| 日本-黄色视频高清免费观看| 啦啦啦中文免费视频观看日本| 久久久久久久久中文| 黑人高潮一二区| 亚洲精品国产av蜜桃| 亚洲精品久久久久久婷婷小说| 男人和女人高潮做爰伦理| 国产白丝娇喘喷水9色精品| 日韩成人av中文字幕在线观看| 日韩欧美一区视频在线观看 | 天堂av国产一区二区熟女人妻| 国产 亚洲一区二区三区 | 免费看av在线观看网站| 自拍偷自拍亚洲精品老妇| 亚洲欧美一区二区三区国产| 中文字幕av成人在线电影| 老司机影院成人| 国产熟女欧美一区二区| 能在线免费看毛片的网站| 色综合色国产| av卡一久久| 一个人看视频在线观看www免费| 舔av片在线| 可以在线观看毛片的网站| 最近最新中文字幕免费大全7| 狠狠精品人妻久久久久久综合| 一级毛片黄色毛片免费观看视频| 青春草亚洲视频在线观看| 亚洲丝袜综合中文字幕| 亚洲怡红院男人天堂| 国产片特级美女逼逼视频| 久久久久久久久久人人人人人人| 成人无遮挡网站| 亚洲av二区三区四区| 欧美zozozo另类| 十八禁网站网址无遮挡 | 插逼视频在线观看| 国产在视频线精品| 国产有黄有色有爽视频| 亚洲欧美清纯卡通| 大话2 男鬼变身卡| 成人性生交大片免费视频hd| 日韩一本色道免费dvd| 午夜爱爱视频在线播放| 寂寞人妻少妇视频99o| 禁无遮挡网站| 我的老师免费观看完整版| 亚洲四区av| 一级毛片黄色毛片免费观看视频| 99久久精品国产国产毛片| 全区人妻精品视频| 婷婷色综合大香蕉| 久久久久久久大尺度免费视频| 自拍偷自拍亚洲精品老妇| 日韩一区二区三区影片| 91aial.com中文字幕在线观看| 99热这里只有是精品在线观看| 日日啪夜夜撸| 三级国产精品片| 亚洲av国产av综合av卡| 久久久久性生活片| 欧美日韩在线观看h| 欧美丝袜亚洲另类| 国产三级在线视频| 久热久热在线精品观看| 3wmmmm亚洲av在线观看| 成年av动漫网址| 免费播放大片免费观看视频在线观看| 国产在线一区二区三区精| 亚洲国产av新网站| 国产亚洲av片在线观看秒播厂 | 亚洲国产成人一精品久久久| 亚洲欧洲国产日韩| 精品亚洲乱码少妇综合久久| 久久久久久久久久黄片| 精品一区二区三卡| 综合色av麻豆| 国产伦在线观看视频一区| 在线观看美女被高潮喷水网站| 亚洲,欧美,日韩| 天美传媒精品一区二区| 看十八女毛片水多多多| 亚洲精品国产av成人精品| 美女脱内裤让男人舔精品视频| 丰满少妇做爰视频| 精品一区二区三区人妻视频| 国产精品美女特级片免费视频播放器| 日产精品乱码卡一卡2卡三| 国产视频内射| 免费观看a级毛片全部| 女的被弄到高潮叫床怎么办| 日韩制服骚丝袜av| 日本一本二区三区精品| 一级a做视频免费观看| 精品久久久久久久人妻蜜臀av| a级毛片免费高清观看在线播放| 欧美变态另类bdsm刘玥| 国产综合精华液| 十八禁网站网址无遮挡 | 人妻夜夜爽99麻豆av| 久久久久精品性色| 只有这里有精品99| 中文字幕免费在线视频6| 3wmmmm亚洲av在线观看| 极品少妇高潮喷水抽搐| 天堂√8在线中文| a级一级毛片免费在线观看| 淫秽高清视频在线观看| 日韩国内少妇激情av| 日韩av在线大香蕉| 欧美日韩一区二区视频在线观看视频在线 | 午夜亚洲福利在线播放| 黄色一级大片看看| 最后的刺客免费高清国语| 亚洲欧美精品自产自拍| 午夜激情欧美在线| 国产真实伦视频高清在线观看| 欧美 日韩 精品 国产| 看非洲黑人一级黄片| 久久精品国产鲁丝片午夜精品| 美女黄网站色视频| 国产激情偷乱视频一区二区| 综合色丁香网| 亚洲av二区三区四区| 男插女下体视频免费在线播放| 三级国产精品欧美在线观看| 99热全是精品| eeuss影院久久| 欧美极品一区二区三区四区| 日韩大片免费观看网站| 国产淫语在线视频| 国产精品精品国产色婷婷| 人人妻人人看人人澡| 日本猛色少妇xxxxx猛交久久| av线在线观看网站| 久久久午夜欧美精品| 国产久久久一区二区三区| 边亲边吃奶的免费视频| 久久午夜福利片| 国产一区二区三区综合在线观看 | 高清av免费在线| 久久久欧美国产精品| 在线观看美女被高潮喷水网站| 国产精品一区二区三区四区免费观看| 能在线免费看毛片的网站| av在线蜜桃| 麻豆乱淫一区二区| 免费播放大片免费观看视频在线观看| 亚洲av成人精品一区久久| 精品久久国产蜜桃| 国产成人freesex在线| 欧美成人一区二区免费高清观看| 精品一区二区三区人妻视频| 国产精品一二三区在线看| 日韩伦理黄色片| 极品少妇高潮喷水抽搐| 国产一区二区亚洲精品在线观看| 亚洲,欧美,日韩| 性插视频无遮挡在线免费观看| 国产熟女欧美一区二区| 在线免费观看不下载黄p国产| 亚洲欧美精品专区久久| 国产久久久一区二区三区| 亚洲自偷自拍三级| 尾随美女入室| 欧美成人一区二区免费高清观看| 22中文网久久字幕| 女的被弄到高潮叫床怎么办| 亚洲av免费在线观看| 波多野结衣巨乳人妻| 国产黄片视频在线免费观看| 欧美日韩一区二区视频在线观看视频在线 | 午夜福利在线观看吧| 寂寞人妻少妇视频99o| 免费在线观看成人毛片| 婷婷六月久久综合丁香| 美女被艹到高潮喷水动态| 在线观看美女被高潮喷水网站| 人人妻人人澡人人爽人人夜夜 | 亚洲成人av在线免费| 精品一区二区三区视频在线| 深夜a级毛片| 中文字幕人妻熟人妻熟丝袜美| 国产精品三级大全| 黄色一级大片看看| 成年人午夜在线观看视频 | 水蜜桃什么品种好| 五月伊人婷婷丁香| 天堂网av新在线| 我要看日韩黄色一级片| 夫妻性生交免费视频一级片| 国产人妻一区二区三区在| 久久99蜜桃精品久久| 国产乱人偷精品视频| 亚洲欧洲日产国产| 精品酒店卫生间| 国产精品嫩草影院av在线观看| 自拍偷自拍亚洲精品老妇| 直男gayav资源| 国产国拍精品亚洲av在线观看| 伦精品一区二区三区| 能在线免费看毛片的网站| 久久精品人妻少妇| 亚洲不卡免费看| 国产成人福利小说| 国产成人精品福利久久| 在线免费十八禁| 国产午夜精品久久久久久一区二区三区| 亚洲av在线观看美女高潮| 一级a做视频免费观看| 成人高潮视频无遮挡免费网站| 亚洲综合精品二区| 2021天堂中文幕一二区在线观| 高清毛片免费看| 午夜激情久久久久久久| 不卡视频在线观看欧美| 精品欧美国产一区二区三| 自拍偷自拍亚洲精品老妇| 美女高潮的动态| 日本与韩国留学比较| 欧美极品一区二区三区四区| 日韩av免费高清视频| 在线播放无遮挡| 欧美日韩视频高清一区二区三区二| 亚洲在久久综合| 毛片女人毛片| 亚洲欧美精品专区久久| 男女那种视频在线观看| 综合色丁香网| 三级国产精品欧美在线观看| 欧美 日韩 精品 国产| 一级片'在线观看视频| 亚洲欧美日韩东京热| 好男人在线观看高清免费视频| 国产真实伦视频高清在线观看| 又黄又爽又刺激的免费视频.| 青春草亚洲视频在线观看| 欧美区成人在线视频| 麻豆精品久久久久久蜜桃| 亚洲综合色惰| 色5月婷婷丁香| 高清欧美精品videossex| 久久99蜜桃精品久久| 国产高清三级在线| 嫩草影院新地址| 欧美xxⅹ黑人| 女的被弄到高潮叫床怎么办| 一级a做视频免费观看| 伦理电影大哥的女人| 最近2019中文字幕mv第一页| 精品久久久久久电影网| 亚洲国产日韩欧美精品在线观看| 亚洲精品影视一区二区三区av| 亚洲精品日韩在线中文字幕| 又爽又黄无遮挡网站| 日韩电影二区| 国产精品日韩av在线免费观看| kizo精华| 免费大片18禁| 久久久久国产网址| 69av精品久久久久久| 人妻制服诱惑在线中文字幕| 青青草视频在线视频观看| 大香蕉久久网| 男人和女人高潮做爰伦理| 边亲边吃奶的免费视频| 国产人妻一区二区三区在| 男女边摸边吃奶| 久久人人爽人人片av| 国产亚洲5aaaaa淫片| 99久国产av精品| 黄片wwwwww| av黄色大香蕉| 又粗又硬又长又爽又黄的视频| kizo精华| 午夜亚洲福利在线播放| 亚洲色图av天堂| 成人无遮挡网站| 欧美日韩一区二区视频在线观看视频在线 | 久久99精品国语久久久| 免费看日本二区| 搡女人真爽免费视频火全软件| 最近最新中文字幕大全电影3| 国产av不卡久久| 免费av观看视频| 欧美zozozo另类| 午夜日本视频在线| 乱码一卡2卡4卡精品| 一夜夜www| 中文字幕av成人在线电影| 中文在线观看免费www的网站| 综合色丁香网| 精品人妻偷拍中文字幕| 老师上课跳d突然被开到最大视频| 校园人妻丝袜中文字幕| 国内少妇人妻偷人精品xxx网站| 精品久久久久久久久久久久久| 午夜亚洲福利在线播放| 国产永久视频网站| 在线观看人妻少妇| 亚洲精品久久午夜乱码| 男女边摸边吃奶| 国产一区有黄有色的免费视频 | kizo精华| 国产精品嫩草影院av在线观看| 亚洲欧洲国产日韩| 国产伦在线观看视频一区| 亚洲国产精品成人久久小说| 美女国产视频在线观看| 亚洲欧美日韩东京热| 免费黄色在线免费观看| 国产成年人精品一区二区| 免费无遮挡裸体视频| 久久精品国产亚洲网站| 国产成人精品婷婷| 在线a可以看的网站| 亚洲成人一二三区av| 色综合站精品国产| 天堂中文最新版在线下载 |