• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Contraction of Heat Shock Protein 70 Genes Uncovers Heat Adaptability of Ostrea denselamellosa

    2023-12-21 08:09:08DONGZhenLIUShikaiYUHongKONGLingfengandLIQi
    Journal of Ocean University of China 2023年6期

    DONG Zhen, LIU Shikai, YU Hong, KONG Lingfeng, and LI Qi

    Contraction of Heat Shock Protein 70 Genes Uncovers Heat Adaptability of

    DONG Zhen, LIU Shikai, YU Hong, KONG Lingfeng, and LI Qi*

    ,,,266003,

    The milin oysteris a live-bearing species with a sharp decline in the natural population. Unlike other oysters,lives in the subtidal zone and its adaptability to heat, salinity,. is different from most other oysters. Heat shock proteins 70 (HSP70) are a family of conserved ubiquitously expressed heat shock proteins which are produced in re- sponse to stressful conditions, especially heat. In this study, we identifiedgenes through bioinformatic analysis in five species of oyster. Among them,holds the fewest number ofgenes, which may be one of the reasons whycannot tolerate high temperatures. The conserved motifs and gene structures ofsub-family and other types ofwere different from that ofsub-family, which may be due to performing necessary multiple phy- siological functions. Transcription profile analysis forgenes ofindicated that gills play an important role in responding to multiple external challenges. In addition, synteny analysis ofgenes among,andshowed thatgenes in genus ofgenome might have evolved from a common ancestor with genus of. In short, our results lay the foundation for further investigation of the evolution ofgenes and heat adaptability.

    ; oysters;; heat; adaptability

    1 Introduction

    Milin oysteris a potential econo- mically important species, which generally inhabits the sub- tidal zone with high salinity along the coasts of China, Ja- pan and Korea (Xu., 2008; Chen., 2011). How- ever, previous studies showed that oysters such asandhad a survival rate of more than 50% at 32℃ (Wang and Li, 2017; Hu., 2020), whilecouldn not survive at 32℃ (Yang., 2003), which means that milin oyster is relatively poorly adapted to high temperatures. Moreover,is a kind of live-bearing oyster, which differs sig- nificantly from oysters,and most other bivalves. During reproduction, the eggs are fertilized and grow to D-shaped larvae in the female mental cavity within 1-3 days (Buroker, 1985; Foighil and Taylor, 2000; Yang., 2001). Previous study showed that species are more likely to be ovoviviviparous when they live in lower- temperature environments, and the female keep the em- bryos in their body to make sure they can grow in a suit- able temperature (Webb., 2006). To date, previous studies onmainly focused on its mito-chondrial genome, seed production and biological charac- teristics (Insua and Thiriot-Quievreux, 1991; Chen., 2011; Yu., 2016; Han., 2022), while the geno- mic-level research on their ecological adaptation remains limited (Xu., 2008).

    , also known as, has functions in a wide range of housekeeping and stress-related activities (Rosenzweig., 2019). In previous studies, several members ofhave been cloned inand, and thesegenes were significantly up-regulated when the oysters were under heat stress (Nagata., 2017; Casas and La Peyre, 2020). In addition, with the quick development of genomesequencing, the genome-widegene family has beenstudied in oysters based on their genomes. These genes were found to be expanded in,and, which indicated thatgenes play important roles in adaptation to heat in dynamic environ- ments with a wide variety of stress factors (Zhang., 2012; Powell., 2018; Peng., 2020). Although we have generated the genome assembly of(Dong., 2023),no detailed analysis of thefamily has been performed in.

    In this study, in order to provide a comprehensive un- derstanding of thegene family in the,thenumber of gene copies, chromosomal locations, tissue specific expression pattern, structure and motifs were examined based on the genome ofand other oysters. We also analyzed the evolution ofgenes among oysters by performing phylogenetic trees and synteny analyses, and carried out a preliminary study on the ecological adaptability ofby com- parative genomics and gene family enrichment.

    2 Material and Methods

    2.1 Data Preparation

    The genomes, the longest peptides sequences and gff3files of(GCA_902806645.1) (Zhang., 2012),(GCA_002022765.4) (Gomez-Chiarri.,2015) and the genome of(GCA_003671525.1) (Powell., 2018) were downloaded from NCBI website. The longest peptides sequences and gff3 fileofwere obtained from http://soft.bioinfo-minzhao.org/srog/. All these three data sets of(CNA0022698) (Wu., 2022) were obtained from the China National GeneBank DataBase (CNGBdb). In addi- tion, we have generated the genomic data of(Dong., 2023) and(Li., 2023),which can be found in Figshare https://doi.org/10.6084/m9.figshare.19801705 and https://doi.org/10.6084/m9.figshare. 20013503, respectively. To identifygenes in oysters, HSP70 protein sequences fromwere download- ed from UniProt (https://www.uniprot.org/). The RNA-Seq data of.was derived from NCBI web- site with SRA numbers: SRR19238441, SRR19238440, SRR19238438 and SRR19238439.

    2.2 Identification of Hsp70 Genes

    To identifygenes in,,and,HSP70 protein sequences inwere used as query database. First, basic local alignment search tool algorithm program (BLASTP) (Al- tschul., 1990) was used to get the initial candidategenes ofe?5and iden- tity ≥30%. To make the results more accurate, these can- didate genes were then filtered by conserved domain. The hidden Markov model (HMM) (Eddy, 1996) profile of the HSP70 domain (PF00012) was downloaded from the Pfamprotein family database http://pfam-legacy.xfam.org/family/ HSP70. We filtered the candidate genes of the previous step by running ‘hmmsearch --cut_tc’ algorithm. Finally, we selected the candidate genes with corresponding amino acid length >300 asgenes.

    2.3 Sequence Alignment and Phylogenetic Analysis

    To investigate the evolutionary relationship offa- mily, thegenes of,andwere used to build a phylogenetic tree. First, the protein sequences of these genes were aligned using MU- SCLE (v3.6) (Edgar, 2004) and then the tree was con-structed using FASTTREE (Price., 2009). The tree was finally decorated and displayed with Interactive Tree of Life (ITOL, https://itol.embl.de/).

    2.4 Gene Structure and Conserved Motif

    PEPTIDES (2.4.4) (Osorio., 2015) was used to cal- culate the molecular weight and isoelectric point (PI). We used MEME (4.11.2) (Bailey., 2015) with parameters ‘-mod anr -protein -nmotifs 10 -minw 6 -maxw 200’ to de- tect the conserved motif. In addition, the structure of each gene was analyzed based on the coding sequence (CDS) and untranslated region (UTR) data from the gff3 file. Both the conserved motif and gene structure were visualized by TBtools (Chen., 2020).

    2.5 Chromosomal Distribution and Synteny Analysis

    genes of.were mapped to the chromosomes according to the gff3 file, and the results were processed and visualized by MAPCHART (Voorrips, 2002). To figure out what chromosomes-level changes occurred ingenes in oystersduring evolution, DIAMOND (Bu- chfink., 2015) was used to two-way align the protein sequences of.againstandwith parameters ‘--max-target-seqs 5 --evalue 1e-10’. Then the synteny of genes of these three species was identified based on MCscanX (Wang., 2012). Thecorresponding chromosome was determined by the frac- tion of genes in a block of approximately 25 genes. JCVI (Sleator, 2016) was used to visualize the final result andgenes were marked in red.

    2.6 Expression Profiles of OdeHsp70 Genes in Different Tissues

    We generated twelve sets of RNA-seq data for tissue specific expression analysis, including gonads, gills, adduc- tor and mantle from each of the three female.in stage of ovulation. These data have already been uploaded to NCBI with SRA numbers SRR19238441, SRR 19238440, SRR19238438 and SRR19238439. First, the RNA-Seq raw data was mapped toge- nome by HISAT2 (v2-2.2.1) (Kim., 2015). Then the quantity of transcriptomes was detected by FEATURE- COUNTS (v2.0.1) (Liao., 2014). The result was stan-dardized using TPM and TMM in order to balance the dif- ferences between tissues and individuals. Based on the stan-dardized quantification results, we plotted a heat map ofgenes ofusing PHEATMAP in R.

    3 Results and Discussion

    3.1 Identification of Hsp70 Genes

    With the strict filtering standard, a total of 401genes were identified, including 59 in, 84 in, 83 in, 84 inand 88 in(Table 1)Compared to other species of oys- ters and previous studies of bivalves, including 133genes in hard calm(Hu., 2022), 61genes in(Cheng., 2016) and 65genes in(Hu., 2019),holds the fewestgenes.

    The number ofgenes among bivalves varied great- ly, which might be a reflection of regulatory physiological variation that can help the bivalves adapt to the changing environment, especially temperature (Zhang., 2012).Therefore, the decrease in heat shock protein gene may af- fectto regulate heat-adaptability.

    Moreover, we found that thegenes included 6 Heat shock protein70 B2 () genes, which was the same as in, and one copy more than that in; 47 Heat Shock Protein Fa- mily A Member 12 () genes and 6 other types ofgenes. Compared togene family in other spe- cies of oysters and scallops (Cheng., 2016; Hu., 2019), the contraction of thegene family inwas mainly due to the decrease in the number ofgenes (Table 1).

    Table 1 Copy numbers of Hsp70 sub-families among mollusk genomes

    3.2 Phylogenetic Analysis of the Hsp70 Genes

    In order to figure out the evolutionary relationships ofgenes among oysters, four phylogenetic trees with maximum likelihood were constructed based on the long- est protein sequences. Because thegenes ofare well studied and examined, we used its protein se- quences as a reference. These four trees had similar topo- logical structures, and thegene family in the five species of oysters all mainly had two clusters, thesub-family (black branches) and other sub-families (red and green branches), as shown in Fig.1. Thegenes were first clustered together. The other sub-families likeandgene pairs were also clustered together. The other branch consisted of 47sub-family members. Compared with, the copy number ofis significantly reduced (Fig.1). This condition also occurred in a small subset of regions inandFor oysters, not only the total number ofgenes was changing, but the copy number ofsub-family genes was also different. These differences between species may be ex- plained by duplicated genes having independent origins orthere may have existed some genomic rearrangement in this region (Metzger., 2016). This situation inmay be due to the subtidal living environment which is different from the environments of other oysters.

    3.3 OdeHsp70 Gene Structure and Conserved Motifs

    The information aboutgenes’ location, amino acidlength and MolWts is summarized in https://doi.org/10. 6084/m9.figshare.24152763.v1. The predicted MolWts of theproteins varied from 46.04kDa (ode_0040 25-RB) to 171.14kDa (). In addition,encoded proteins varying from 421aa () to 1508aa (). Compared to other oysters (proteins from 384aa to 2290aa,proteins from 347aa to 2460aa andpro- teins from 316aa to 2595aa), the protein length range ofinwas relatively small. Thismay be due to the evolution ofgenes themselves and the different genome assembly-annotation methods of each species.

    A total of ten conserved motifs were detected ingenes. The conserved motifs and gene structures ofsub-family (red) and other types of(green) were different from that ofsub-family. This may be due to performing necessary multiple physiologi- cal functions, according to the conjecture that different mo-tifs may indicate different functions or functional diver- gence (Liu., 2016). Except, the con- served motifs and gene structures of the genes in each of the above three sub-families were highly similar (Fig.2).

    Fig.2 Architecture of conserved protein motifs and gene structure of Hsp70 genes in O. denselamellosa. Different branch colors represent different sub-families, red for Hsp70B2, green for other types, and black for Hspa12. (A) The motifs of Hsp70 proteins in O. denselamellosa. The ten motifs were displayed with different colors. The length of the protein can be estimated using the scale at the bottom. (B) Exons and introns of Hsp70 proteins in O. denselamellosa. Blue boxes in- dicated untranslated regions; orange boxes indicated exons.

    3.4 Chromosomal Distribution of OdeHsp70 Genes

    A total of 59genes were finally distributedamong 8chromosomes (Fig.3). Among all thesegenes, 28 (48.27%) were located on chromosome 4. The other chromosomes have fewer than 7 genes on each one. Only onegene was observed on chromosome 9. Similarly,genes were alsolocated on 8 chromosomes and 42 of 84 (50.00%) were distributed on chromosome 2 (https://doi.org/10.6084/m9.figshare.24152763.v1). Only onegene was ob- served on chromosome 1 and twogenes were observed on chromosome 6. Unlike the European oyster, in which onegene was distributed on a scaffold, thegenes ofwere all found on chromosomes. It might be a common phenome- non for members of large gene families to be unequally distributed on chromosomes. For example, only19 of 66 transient receptor potential channel genes were located on chromosome 2 in(Fu., 2021).

    3.5 Synteny Analysis of OdeHsp70 Genes Between O. edulis and C. ariakensis

    Synteny analysis of thegenes was performed among,and. There are many syntenic blocks between the genomes of these oysters, with 616 betweenand, 396 betweenand(Fig.4). Thegenes were mainly distributed on chro- mosome 4 of,chromosome 2 ofandchromosome 5 ofInterestingly, mostgenes located on chromosomes 10 weregenes. For, in addition to chromosomes Ode4 and Oed2,genes were also more or less distributed on other chromosomes, and eight out ten chromosomes of each species have the distribution of this gene family. But the situation was different in, only 6 chromo- somes have the distribution ofgenes, other than chro- mosomes Car3 and Car5. There are distributions on chro- mosomes Car6, Car7, Car8 and Car9, but just in small quan- tities. These results indicated that thegene family may be more conserved and that thegenes widely distributed on more chromosomes ofgenome might have evolved from those of a common an- cestor with.

    3.6 Expression Patterns of OdeHsp70 Genes in Different Tissues

    RNA-seq data of four tissues, including mantle, gill, ad- ductor muscle and gonad, from an ovulating femalewere used to characterize the expression pro- files ofs. Based on TPM+TMM values, a heat- map ofgenes in various tissues was created(Fig.5).genes were highly expressed in gills and re- latively lowly expressed in mantle and adductor muscle. The same expression pattern has also been reported in hard clamandManila clam(Liu., 2015; Nie., 2017; Hu., 2022). In Bivalve, gills are considered to be sensitive to environ- mental changes, and high expression ofgenes will promote the regulation of the environmental changes re- sponse (Cheng., 2019). Interestingly, somegenes showed highly tissue-specific expression. For exam- ple, fourgenes, including,,and, had high expression in the gills. Genesandshowed high expression levels in the gonad. Genes,were highly ex- pressed in the mantle. Genes,had higher expression in adductor muscle. In addition to a small part of genes like,,and, mostgenes were highly expressed in only one tissue.

    Fig.4 Synteny analyses between the Hsp70 genes of the C. ariakensis (C. ar), O. denselamellosa (O. de), and O. edu- lis (O. ed). Grey lines in the background indicated Syn- teny blocks among these genomes, while red lines high- light syntenic Hsp70 gene pairs.

    Fig.5 Expression pattern analysis of Hsp70 genes in four tissues of ovulating female O. denselamellosa based on TPM and TMM analyses. G, gill; X, gonad; MA, mantle; RM, muscle. The labels of Hsp70B2 genesare highlighted with green, the labels of Hspa12 genes are not highlighted and the labels of other types genes are highlighted with yellow. The color scale represents Z-score.

    4 Conclusions

    In summary, a genome-wide analysis ofgene fa- mily in 5 oyster species identified 401 genes including 59 in, 84 in, 83 in, 84 inand 88 in. The fewest num- ber ofgenes inis mainly due to the decrease in the number ofgenes, possibly ex- plaining whycannot tolerate high tem- perature. The gene structure and conserved motif investi- gation revealed that the conserved motifs and gene struc- tures ofgenes and other types ofwere different from that of, which may be due to performing necessary multiple physiological functions. Tran- scription profile analysis forgenes ofsupport that gills play an important role in re- sponding to multiple external challenges. In addition, syn- teny analysis ofgenes betweenanddemonstrated thatgenes inge- nome might have evolved from those of a common an-cestor with. Taken together, the informationobtained in this study lay the foundation for further invest- tigation of the evolution ofgenes and heat adaptability of.

    Acknowledgements

    This work was supported by grants from the National Key R&D Program of China (No. 2022YFD2400305), the China Agriculture Research System Project (No. CARS-49), and the Key R&DProject of Shandong Province (Nos. 2021ZLGX03, 2021LZGC027).

    Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J., 1990. Basic local alignment search tool., 215 (3): 403-410, DOI: 10.1016/S0022-2836(05) 80360-2.

    Bailey, T. L., Johnson, J., Grant, C. E., and Noble, W. S., 2015. The MEME Suite., 43 (W1): W39- W49, DOI: 10.1093/nar/gkv416.

    Buchfink, B., Xie, C., and Huson, D., 2015. Fast and sensitive protein alignment using DIAMOND., 12 (1): 59-60, DOI: 10.1038/nmeth.3176.

    Buroker, N. E., 1985. Evolutionary patterns in the family Ostrei- dae: Larviparity. Oviparity., 90 (3): 233-247, DOI: 10.1016/0022- 0981(85)90169-8.

    Casas, S. M., and La Peyre, J. F., 2020. Heat shock protein 70 levels and post-harvest survival of eastern oysters following sublethal heat shock in the laboratory or conditioning in the field., 25 (2): 369-378, DOI: 10.1007/ s12192-019-01056-1.

    Chen, C., Chen, H., Zhang, Y., Thomas, H. R., Frank, M. H., He, Y.,., 2020. TBtools: An integrative toolkit developed for interactive analyses of big biological data., 13 (8): 1194-1202, DOI: 10.1016/j.molp.2020.06.009.

    Chen, L., Li, Q., Wang, Q., Kong, L., and Zheng, X., 2011. Tech- niques of artificial breeding of the oyster., 41 (3): 43-46 (in Chinese with English abstract).

    Cheng, D., Liu, H., Zhang, H., Soon, T. K., Ye, T., Li, S.,., 2019. Differential expressions ofgene between golden and brown noble scallopsunder heat stress and bacterial challenge., 94: 924- 933, DOI: 10.1016/j.fsi.2019.10.018.

    Cheng, J., Xun, X., Kong, Y., Wang, S., Yang, Z., Li, Y.,., 2016.gene expansions in the scallopand their expression regulation after exposure to the toxic dinoflagellate., 58: 266-273, DOI: 10.1016/j.fsi.2016.09.009.

    Dong, Z., Bai, Y., Liu, S., Yu, H., Kong, L., Du, S.,., 2023. Achromosome-level genome assembly ofprovides initial insights into its evolution., 115 (2): 110582, DOI: 10.1016/j.ygeno.2023.110582.

    Eddy, S. R., 1996. Hidden Markov models., 6 (3): 361-365, DOI: 10.1016/S0959-440X (96)80056-X.

    Edgar, R. C., 2004. MUSCLE: Multiple sequence alignment withhigh accuracy and high throughput., 32 (5): 1792-1797, DOI: 10.1093/nar/gkh340.

    Foighil, D. O., and Taylor, D. J., 2000. Evolution of parental careand ovulation behavior in oysters., 15 (2): 301-313, DOI: 10.1006/mpev.1999.0755.

    Fu, H., Jiao, Z., Li, Y., Tian, J., Ren, L., Zhang, F.,., 2021. Transient receptor potential (TRP) channels in the Pacific oys- ter (): Genome-wide identification and ex- pression profiling after heat stress betweenand., 22 (6): 3222, DOI: 10.3390/ijms22063222.

    Gomez-Chiarri, M., Warren, W., Guo, X., and Proestou, D., 2015. Developing tools for the study of molluscan immunity: The se- quencing of the genome of the eastern oyster,., 46 (1): 2-4, DOI: 10.1016/ j.fsi.2015.05.004.

    Han, J., Kim, H. J., Oh, S. Y., and Choi, Y. U., 2022. Reproductive characteristics of the flat oyster(Bival- via, Ostreidae) found on the southern coast of South Korea., 10: 1326, DOI: 10.3390/jmse10091326.

    Hu, B., Li, M., Yu, X., Xun, X., Lu, W., Li, X.,., 2019. Di- verse expression regulation ofgenes in scallops after exposure to toxicdinoflagellates., 234: 62-69, DOI: 10.1016/j.chemosphere.2019.06.034.

    Hu, Y. M., Li, Q., Liu, S. K., and Kong, L. F., 2020. Effects of acute temperature and salinity stress on the survival and im- mune indexes of Iwagaki oysters,., 27 (3): 286-294 (in Chinese with English abstract).

    Hu, Z., Song, H., Feng, J., Zhou, C., Yang, M, J., Shi, P.,., 2022. Massive heat shock protein 70 genes expansion and trans-criptional signatures uncover hard clam adaptations to heat and hypoxia., 9: 898669, DOI: 10. 3389/fmars.2022.898669.

    Insua, A., and Thiriot-Quievreux, C., 1991. The characterization of(Mollusca, Bivalvia) chromosomes: Karyotype, constitutive heterochromatin and nucleolus orga- nizer regions., 97 (4): 317-325, DOI: 10.1016/ 0044-8486(91)90324-z.

    Kim, D., Landmead, B., and Salzberg, S. L., 2015. HISAT: A fast spliced aligner with low memory requirements., 12 (4): 357-360, DOI: 10.1038/nmeth.3317.

    Kumar, S., Stecher, G., Suleski, M., and Hedges, S. B., 2017. Time tree: A resource for timelines, timetrees, and divergence times., 34 (7): 1812-1819, DOI: 10.1093/molbev/msx116.

    Li, X., Bai, Y., Dong, Z., Xu, C., Liu, S., Yu, H.,., 2023. Chro- mosome-level genome assembly of the European flat oyster () provides insights into its evolution and adap- tation.–, 45 (1): 101045, DOI: 10.1016/j.cbd. 2022.101045.

    Liao, Y., Smyth, G. K., and Shi, W., 2014. featureCounts: An ef- ficient general purpose program for assigning sequence reads to genomic features., 30 (7): 923-930, DOI: 10. 1093/bioinformatics/btt656.

    Liu, T., Pan, L., Cai, Y., and Miao, J., 2015. Molecular cloning and sequence analysis of heat shock proteins 70 () and 90 () and their expression analysis when exposed to benzo (a) pyrene in the clam., 555 (2): 108-118, DOI: 10.1016/j.gene.2014.10.051.

    Liu, X., Tang, S., Jia, G., Schnable, J. C., Su, H., Tang, C.,., 2016. The C-terminal motif of SiAGO1b is required for theregulation of growth, development and stress responses in fox- tail millet ((L.) P. Beauv)., 67 (11): 3237-3249, DOI: 10.1093/jxb/erw135.

    Metzger, D. C., Hemmer-Hansen, J., and Schulte, P. M., 2016. Conserved structure and expression ofparalogs in te- leost fishes., 18: 10-20, DOI: 10.1016/j.cbd.2016. 01.007.

    Nagata, T., Sameshima, M., Uchikawa, T., Osafune, N., and Ki- tano, T., 2017. Molecular cloning and expression of the heat shock protein 70 gene in the Kumamoto oyster., 83: 273-281, DOI: 10.1007/s12562- 017-1064-6.

    Nie, H., Liu, L., Huo, Z., Chen, P., Ding, J., Yang, F.,., 2017. Thegene expression responses to thermal and salinity stress in wild and cultivated Manila clam., 470: 149-156, DOI: 10.1016/j.aquaculture. 2016.12.016.

    Osorio, D., Rondon-Villarreal, P., and Torres, R., 2015. Peptides: A package for data mining of antimicrobial peptides., 7 (1): 4-14, DOI: 10.32614/RJ-2015-001.

    Peng, J., Li, Q., Xu, L., Wei, P., He, P., Zhang, X.,., 2020. Chromosome-level analysis ofge-nome reveals extensive duplication of immune-related genes in bivalves., 20 (4): 980-994, DOI: 10.1111/1755-0998.13157.

    Powell, D., Subramanian, S., Suwansaard, S., Zhao, M., O’Con- nor, W., Raftos, D.,., 2018. The genome of the oysteroffers insight into the environmental resilience of bi- valves., 25 (6): 655-665, DOI: 10.1093/dnares/ dsy032.

    Price, M. N., Dehal, P. S., and Arkin, A. P., 2009. FastTree: Com- puting large minimum evolution trees with profiles instead of a distance matrix., 26 (7): 1641-1650, DOI: 10.1093/molbev/msp077.

    Rosenzweig, R., Nillegoda, N. B., Mayer, M. P., and Bukau, B., 2019. The Hsp70 chaperone network., 20 (11): 665-680, DOI: 10.1038/s41580- 019-0133-3.

    Sleator, R. D., 2016. JCVI-syn3.0–A synthetic genome stripped bare., 7 (2): 53-56, DOI: 10.1080/21655979.2016. 1175847.

    Voorrips, R. E., 2002. MapChart: Software for the graphical pre- sentation of linkage maps and QTLs., 93 (1): 77-78, DOI: 10.1093/jhered/93.1.77.

    Wang, T., and Li, Q., 2017. Effects of salinity and temperature on growth and survival of juvenile of kumamoto oyster ()., 48 (2): 297-302 (in Chinese with English abstract).

    Wang, Y., Tang, H., Debarry, J. D., Tan, X., Li, J., Wang, X.,.,2012. MCScanX: A toolkit for detection and evolutionary ana- lysis of gene synteny and collinearity., 40 (7): e49, DOI: 10.1093/nar/gkr1293.

    Webb, J. K., Shine, R., and Christian, K. A., 2006. The adaptive significance of reptilian viviparity in the tropics: Testing the maternal manipulation hypothesis., 60 (1): 115-122, DOI: 10.1111/j.0014-3820.2006.tb01087.x.

    Wu, B., Chen, X., Yu, M., Ren, J., Hu, J., Shao, C.,., 2022. Chromosome-level genome and population genomic analysis provide insights into the evolution and environmental adapta- tion of Jinjiang oyster.,22 (4): 1529-1544, DOI: 10.1111/1755-0998. 13556.

    Xu, F., and Zhang, S., 2008.. Science Press, Beijing, 336pp (in Chinese).

    Yang, M. H., Bong, S. H., and Han, C. H., 2003. Growth and sur- vival rates of flat oyster larvae,, by con- dition of larvae cultivation., 19(2): 133-142.

    Yang, M. H., Kim, H. S., Lee, J. Y., and Han, C. H., 2001. Artifi- cial mass culture of flat oyster larvae,, and collection rates according to various spat collection methods., 17 (1): 35-44.

    Yu, H., Kong, L., and Li, Q., 2016. Complete mitochondrial ge- nome of(Bivalvia, Ostreidae)., 27 (1): 711-712, DOI: 10.3109/19401 736.2014.913154.

    Zhang, G., Fang, X., Guo, X., Li, L., Luo, R., Xu, F.,., 2012. The oyster genome reveals stress adaptation and complexity of shell formation., 490 (7418): 49-54, DOI: 10.1038/ nature11413.

    (January 6, 2023;

    March 17, 2023;

    May 23, 2023)

    ? Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2023

    Tel: 0086-532-82031622

    E-mail: qili66@ouc.edu.cn

    (Edited by Qiu Yantao)

    精品福利观看| 99久久中文字幕三级久久日本| 国产私拍福利视频在线观看| 少妇猛男粗大的猛烈进出视频 | 99热网站在线观看| а√天堂www在线а√下载| 国产黄色视频一区二区在线观看 | 非洲黑人性xxxx精品又粗又长| 久久人人爽人人片av| 中文在线观看免费www的网站| 亚洲av中文字字幕乱码综合| 久久热精品热| 久久中文看片网| 在线观看美女被高潮喷水网站| 男插女下体视频免费在线播放| 精品久久久久久成人av| 看十八女毛片水多多多| 男女下面进入的视频免费午夜| 久久精品综合一区二区三区| 国产成人aa在线观看| 日本三级黄在线观看| 熟妇人妻久久中文字幕3abv| 亚洲真实伦在线观看| 久久人人爽人人爽人人片va| 亚洲国产色片| 国产欧美日韩精品一区二区| 又粗又爽又猛毛片免费看| 深夜精品福利| 99在线视频只有这里精品首页| 久久久久久久久久久丰满| 亚洲欧美日韩东京热| 亚洲精品在线观看二区| 黄色视频,在线免费观看| 精品一区二区三区视频在线| 99热这里只有是精品50| 1000部很黄的大片| 免费不卡的大黄色大毛片视频在线观看 | 日本免费a在线| 国产美女午夜福利| 亚洲精华国产精华液的使用体验 | 变态另类丝袜制服| 国产黄色视频一区二区在线观看 | 嫩草影院精品99| 最后的刺客免费高清国语| 一卡2卡三卡四卡精品乱码亚洲| 国产伦一二天堂av在线观看| 婷婷色综合大香蕉| 欧美在线一区亚洲| 久久久久久久久久久丰满| 亚洲av五月六月丁香网| 色综合亚洲欧美另类图片| 欧美激情在线99| 蜜桃亚洲精品一区二区三区| 欧美激情国产日韩精品一区| 少妇被粗大猛烈的视频| 亚洲精品影视一区二区三区av| 老司机福利观看| 内射极品少妇av片p| 人人妻,人人澡人人爽秒播| 麻豆国产97在线/欧美| 在现免费观看毛片| 午夜视频国产福利| 久久人人精品亚洲av| 九色成人免费人妻av| 一本一本综合久久| 成人综合一区亚洲| 国产一级毛片七仙女欲春2| 99久久中文字幕三级久久日本| 一级毛片我不卡| 国产精品永久免费网站| 午夜福利在线观看免费完整高清在 | 国产精品一区二区三区四区久久| 别揉我奶头~嗯~啊~动态视频| 久久久精品大字幕| 中文字幕av成人在线电影| 麻豆国产97在线/欧美| 久99久视频精品免费| 联通29元200g的流量卡| 久久精品人妻少妇| 观看美女的网站| 99热这里只有是精品在线观看| 免费av观看视频| 日日啪夜夜撸| 搡老妇女老女人老熟妇| 天堂影院成人在线观看| 一进一出抽搐gif免费好疼| 久久人人爽人人爽人人片va| 日本撒尿小便嘘嘘汇集6| 日韩成人伦理影院| av天堂在线播放| 国产精品一及| 嫩草影院精品99| 97热精品久久久久久| 麻豆乱淫一区二区| 国产在视频线在精品| 在线播放无遮挡| 亚洲中文字幕日韩| 免费看a级黄色片| 亚洲av免费在线观看| 亚洲av一区综合| 99久国产av精品国产电影| 欧美中文日本在线观看视频| 国产成人a区在线观看| 国产毛片a区久久久久| 又粗又爽又猛毛片免费看| 亚洲av.av天堂| 亚洲欧美日韩卡通动漫| 夜夜看夜夜爽夜夜摸| 深夜a级毛片| 看非洲黑人一级黄片| 国产国拍精品亚洲av在线观看| 噜噜噜噜噜久久久久久91| 国产精品嫩草影院av在线观看| 舔av片在线| 亚洲精品一卡2卡三卡4卡5卡| 别揉我奶头~嗯~啊~动态视频| 国产真实乱freesex| 欧美色欧美亚洲另类二区| 级片在线观看| 欧美高清成人免费视频www| 日本成人三级电影网站| 免费看a级黄色片| 波多野结衣高清作品| 日日摸夜夜添夜夜爱| 久99久视频精品免费| 国产乱人偷精品视频| 日韩成人伦理影院| 三级国产精品欧美在线观看| 少妇丰满av| 亚洲性夜色夜夜综合| 男插女下体视频免费在线播放| 国产久久久一区二区三区| 国产精品乱码一区二三区的特点| 久久久久久九九精品二区国产| 综合色av麻豆| 久久久久久久久久久丰满| 成年女人看的毛片在线观看| 欧美性猛交╳xxx乱大交人| 欧美色欧美亚洲另类二区| 日本熟妇午夜| 亚洲自偷自拍三级| 久久久久性生活片| 网址你懂的国产日韩在线| 91麻豆精品激情在线观看国产| 国产精品嫩草影院av在线观看| 真人做人爱边吃奶动态| 国产一区二区在线观看日韩| 美女内射精品一级片tv| 国产av麻豆久久久久久久| 人人妻,人人澡人人爽秒播| 日日干狠狠操夜夜爽| 国产乱人偷精品视频| 精品一区二区三区人妻视频| 欧美日韩乱码在线| 直男gayav资源| 国产午夜福利久久久久久| 久久久精品94久久精品| 色尼玛亚洲综合影院| 国产一级毛片七仙女欲春2| 亚洲精品国产成人久久av| 免费看日本二区| 精品不卡国产一区二区三区| 国产一区二区三区在线臀色熟女| 欧美成人精品欧美一级黄| 插逼视频在线观看| 我要看日韩黄色一级片| 99久久成人亚洲精品观看| 亚洲成人久久性| 久久综合国产亚洲精品| 精品人妻一区二区三区麻豆 | АⅤ资源中文在线天堂| 日本黄色片子视频| 成年女人看的毛片在线观看| 精品免费久久久久久久清纯| 啦啦啦观看免费观看视频高清| 国产av在哪里看| 天天躁日日操中文字幕| 看片在线看免费视频| 国产真实伦视频高清在线观看| 免费搜索国产男女视频| 麻豆一二三区av精品| 91av网一区二区| 插阴视频在线观看视频| 色5月婷婷丁香| 菩萨蛮人人尽说江南好唐韦庄 | 天堂√8在线中文| 国产精品一二三区在线看| 大香蕉久久网| 狂野欧美激情性xxxx在线观看| 精品99又大又爽又粗少妇毛片| 精品熟女少妇av免费看| а√天堂www在线а√下载| 真实男女啪啪啪动态图| 国产精品久久久久久亚洲av鲁大| 九九热线精品视视频播放| 男插女下体视频免费在线播放| 亚洲欧美精品综合久久99| 少妇的逼水好多| 免费观看在线日韩| 欧美精品国产亚洲| 亚洲国产色片| 中文字幕av在线有码专区| 身体一侧抽搐| 床上黄色一级片| 国产亚洲精品久久久com| 欧美另类亚洲清纯唯美| 欧美激情久久久久久爽电影| 久久精品国产自在天天线| 偷拍熟女少妇极品色| 国产麻豆成人av免费视频| 久久久久久久亚洲中文字幕| 日本黄色视频三级网站网址| 亚洲精品色激情综合| 国产精品久久视频播放| 精品人妻一区二区三区麻豆 | 精品乱码久久久久久99久播| 给我免费播放毛片高清在线观看| 亚洲三级黄色毛片| 欧美+亚洲+日韩+国产| 欧美成人a在线观看| 精品国内亚洲2022精品成人| 久久久成人免费电影| 最近的中文字幕免费完整| 白带黄色成豆腐渣| av在线天堂中文字幕| 国产 一区 欧美 日韩| 婷婷精品国产亚洲av在线| 一级毛片久久久久久久久女| 乱系列少妇在线播放| 久久久久久久久久久丰满| 在线观看免费视频日本深夜| 精品国产三级普通话版| 一级毛片久久久久久久久女| 久久精品国产亚洲网站| 亚洲欧美成人精品一区二区| 欧美又色又爽又黄视频| 欧美性感艳星| 亚洲一区高清亚洲精品| 日韩国内少妇激情av| 精华霜和精华液先用哪个| 欧美在线一区亚洲| 国产久久久一区二区三区| 国产视频一区二区在线看| 国产男人的电影天堂91| 1024手机看黄色片| a级一级毛片免费在线观看| 日本五十路高清| 日日干狠狠操夜夜爽| 99久久成人亚洲精品观看| 亚洲电影在线观看av| 亚洲熟妇熟女久久| 日韩人妻高清精品专区| 人妻丰满熟妇av一区二区三区| 国产探花极品一区二区| 国产高清激情床上av| 我要搜黄色片| 99久国产av精品| 97超碰精品成人国产| 国产成人精品久久久久久| 久久精品国产清高在天天线| 久久天躁狠狠躁夜夜2o2o| 精品欧美国产一区二区三| 欧美成人一区二区免费高清观看| 国产91av在线免费观看| 婷婷精品国产亚洲av| 亚洲精品一区av在线观看| 精品久久久久久久末码| av专区在线播放| 日本与韩国留学比较| av在线播放精品| 淫妇啪啪啪对白视频| 成人三级黄色视频| 美女内射精品一级片tv| 亚洲第一电影网av| 婷婷亚洲欧美| 久久久久久伊人网av| 亚洲高清免费不卡视频| 日本三级黄在线观看| 精品不卡国产一区二区三区| 亚洲18禁久久av| 非洲黑人性xxxx精品又粗又长| 成人永久免费在线观看视频| 午夜福利高清视频| 少妇被粗大猛烈的视频| 久久久久国内视频| 国产高清三级在线| 欧美+亚洲+日韩+国产| 国产精品一及| 久久久久国内视频| 亚洲av成人精品一区久久| 国产探花极品一区二区| 日韩精品有码人妻一区| 久久久色成人| 久久久久久久久久成人| 久久久久久伊人网av| 可以在线观看的亚洲视频| 亚洲性久久影院| 丰满的人妻完整版| 亚洲欧美中文字幕日韩二区| 国产精品亚洲一级av第二区| 搡老妇女老女人老熟妇| 搞女人的毛片| 美女xxoo啪啪120秒动态图| 美女被艹到高潮喷水动态| 91麻豆精品激情在线观看国产| 老司机福利观看| 亚洲真实伦在线观看| 简卡轻食公司| 老熟妇仑乱视频hdxx| 亚洲精品久久国产高清桃花| 在线a可以看的网站| 91在线精品国自产拍蜜月| 免费av观看视频| 九色成人免费人妻av| 老女人水多毛片| 亚洲美女视频黄频| 国产91av在线免费观看| 午夜a级毛片| 色视频www国产| 国产乱人视频| 精品欧美国产一区二区三| 日韩国内少妇激情av| 高清日韩中文字幕在线| 亚洲精品国产av成人精品 | 日韩欧美 国产精品| 一区二区三区四区激情视频 | a级一级毛片免费在线观看| 无遮挡黄片免费观看| 国产成人影院久久av| 久久久欧美国产精品| 午夜a级毛片| 美女内射精品一级片tv| 亚洲人成网站高清观看| 国产精品久久久久久亚洲av鲁大| 两个人视频免费观看高清| 精品一区二区三区av网在线观看| 亚洲激情五月婷婷啪啪| 国产成人a∨麻豆精品| 日韩一区二区视频免费看| 国产亚洲精品久久久久久毛片| or卡值多少钱| 亚洲av不卡在线观看| 成人毛片a级毛片在线播放| 成人午夜高清在线视频| 可以在线观看毛片的网站| 日韩欧美 国产精品| 婷婷亚洲欧美| 成人国产麻豆网| 给我免费播放毛片高清在线观看| 尾随美女入室| 丰满人妻一区二区三区视频av| 秋霞在线观看毛片| 国产亚洲精品av在线| 国产精品电影一区二区三区| 午夜福利18| av卡一久久| 欧美潮喷喷水| 亚洲综合色惰| 久久人人爽人人片av| av天堂中文字幕网| a级毛片a级免费在线| 精品久久久久久久久久久久久| 人人妻,人人澡人人爽秒播| 国产精品久久久久久av不卡| 麻豆一二三区av精品| 亚洲国产精品sss在线观看| 久久天躁狠狠躁夜夜2o2o| 国产黄a三级三级三级人| 久久九九热精品免费| 成人精品一区二区免费| 一区福利在线观看| 国产精品美女特级片免费视频播放器| 少妇熟女aⅴ在线视频| 精品久久久久久久久av| 蜜桃久久精品国产亚洲av| 男人舔奶头视频| 久久久久国内视频| 欧美+日韩+精品| 变态另类丝袜制服| 日本三级黄在线观看| www日本黄色视频网| 极品教师在线视频| 午夜a级毛片| 国产久久久一区二区三区| 男女做爰动态图高潮gif福利片| 高清毛片免费看| 亚洲美女视频黄频| 久久久a久久爽久久v久久| 国产精品国产三级国产av玫瑰| 欧洲精品卡2卡3卡4卡5卡区| 免费电影在线观看免费观看| 乱码一卡2卡4卡精品| 久久久久久伊人网av| 国产 一区 欧美 日韩| www.色视频.com| 久久99热6这里只有精品| av.在线天堂| 久久久精品欧美日韩精品| 亚洲天堂国产精品一区在线| 国产男靠女视频免费网站| 日韩高清综合在线| 日韩一区二区视频免费看| 你懂的网址亚洲精品在线观看 | 我要看日韩黄色一级片| 久久久久国内视频| 成人亚洲精品av一区二区| 伦精品一区二区三区| 2021天堂中文幕一二区在线观| 一区二区三区四区激情视频 | 国产成人freesex在线 | 欧美激情国产日韩精品一区| 18禁在线播放成人免费| 波多野结衣巨乳人妻| 最新中文字幕久久久久| 桃色一区二区三区在线观看| 国产午夜福利久久久久久| 亚洲精品影视一区二区三区av| 中国美白少妇内射xxxbb| 国产精品一区二区三区四区久久| 亚洲不卡免费看| 国产一区二区三区av在线 | 亚洲av电影不卡..在线观看| 国产三级中文精品| 好男人在线观看高清免费视频| 一区二区三区高清视频在线| 久久精品国产亚洲网站| 国产不卡一卡二| 国产乱人偷精品视频| 日本精品一区二区三区蜜桃| 中文字幕av在线有码专区| 日韩欧美免费精品| av福利片在线观看| 久久久国产成人免费| 日韩一本色道免费dvd| 夜夜夜夜夜久久久久| 国产一区二区在线观看日韩| 老女人水多毛片| 少妇的逼好多水| 在线播放无遮挡| 最近中文字幕高清免费大全6| 色综合色国产| 国产亚洲精品久久久com| ponron亚洲| 麻豆精品久久久久久蜜桃| 日韩中字成人| 国产在线精品亚洲第一网站| 久久精品综合一区二区三区| 少妇熟女aⅴ在线视频| 成人无遮挡网站| 日本黄大片高清| 非洲黑人性xxxx精品又粗又长| 亚洲国产精品sss在线观看| 别揉我奶头 嗯啊视频| 国产精品人妻久久久影院| 久久久久久久久中文| 少妇裸体淫交视频免费看高清| 免费无遮挡裸体视频| 男插女下体视频免费在线播放| 久久热精品热| 精品日产1卡2卡| 丰满的人妻完整版| 97碰自拍视频| 寂寞人妻少妇视频99o| 最近中文字幕高清免费大全6| 成人精品一区二区免费| 亚洲av成人av| 亚洲人成网站在线播| 久久人人精品亚洲av| 成人av在线播放网站| 国产精品一区二区三区四区免费观看 | 国产成人福利小说| 日韩欧美国产在线观看| 婷婷色综合大香蕉| a级毛色黄片| 亚洲第一区二区三区不卡| 综合色丁香网| 日韩一区二区视频免费看| 高清日韩中文字幕在线| 久久人妻av系列| 日本精品一区二区三区蜜桃| 国内精品久久久久精免费| 亚洲av免费在线观看| 日本在线视频免费播放| 中文字幕av成人在线电影| 亚洲欧美成人综合另类久久久 | www.色视频.com| 99热这里只有精品一区| 日产精品乱码卡一卡2卡三| 桃色一区二区三区在线观看| 国产真实伦视频高清在线观看| 久久九九热精品免费| 色哟哟哟哟哟哟| 国产淫片久久久久久久久| 精品一区二区三区人妻视频| 毛片女人毛片| 国产色爽女视频免费观看| 久久这里只有精品中国| 久久久久久久久久久丰满| 免费电影在线观看免费观看| 亚洲美女搞黄在线观看 | 直男gayav资源| 91麻豆精品激情在线观看国产| 精品日产1卡2卡| 国内精品一区二区在线观看| a级毛片免费高清观看在线播放| 欧美最黄视频在线播放免费| 插逼视频在线观看| 久久九九热精品免费| 99久久九九国产精品国产免费| 一级a爱片免费观看的视频| 99热这里只有精品一区| 国产成人91sexporn| 精品久久久久久久久久免费视频| www.色视频.com| 亚洲国产精品国产精品| 精品一区二区免费观看| 老师上课跳d突然被开到最大视频| 99久久久亚洲精品蜜臀av| 国产精品美女特级片免费视频播放器| h日本视频在线播放| 久久精品国产清高在天天线| 欧美极品一区二区三区四区| 男女做爰动态图高潮gif福利片| 99热这里只有是精品50| 国产成人91sexporn| 真实男女啪啪啪动态图| 亚洲国产欧美人成| 亚洲欧美成人精品一区二区| 在线观看美女被高潮喷水网站| 少妇高潮的动态图| 欧美成人一区二区免费高清观看| 国产亚洲精品久久久久久毛片| 午夜免费激情av| 在线天堂最新版资源| 国产欧美日韩一区二区精品| 国产精品一区二区性色av| 人妻少妇偷人精品九色| av天堂在线播放| 国产单亲对白刺激| 日韩中字成人| 日韩欧美国产在线观看| 免费高清视频大片| 免费av观看视频| 欧美日韩乱码在线| 久久精品国产亚洲av涩爱 | 一个人免费在线观看电影| 久久久久国产精品人妻aⅴ院| 亚洲电影在线观看av| 午夜福利在线观看吧| 国产老妇女一区| 给我免费播放毛片高清在线观看| 老熟妇仑乱视频hdxx| 午夜激情福利司机影院| 亚洲精品日韩av片在线观看| 精品99又大又爽又粗少妇毛片| 国产蜜桃级精品一区二区三区| 欧美最黄视频在线播放免费| 欧美性猛交╳xxx乱大交人| 黄色配什么色好看| 毛片一级片免费看久久久久| 国产高清不卡午夜福利| 美女cb高潮喷水在线观看| 国产高潮美女av| 热99re8久久精品国产| 日韩欧美精品v在线| 中文字幕免费在线视频6| 99热网站在线观看| 亚洲三级黄色毛片| 久久久精品欧美日韩精品| 久久精品国产亚洲av涩爱 | av女优亚洲男人天堂| 99国产极品粉嫩在线观看| 国产精品久久电影中文字幕| 国产精品一区二区三区四区久久| 在线国产一区二区在线| 国产黄色小视频在线观看| 看十八女毛片水多多多| 我的女老师完整版在线观看| 毛片一级片免费看久久久久| 女同久久另类99精品国产91| 精品一区二区三区视频在线| 日本与韩国留学比较| 日本在线视频免费播放| 国产精品人妻久久久影院| 精品国内亚洲2022精品成人| 精品久久久久久久久av| 欧美人与善性xxx| 插阴视频在线观看视频| 在线观看av片永久免费下载| 午夜激情欧美在线| 男人舔女人下体高潮全视频| 亚洲在线自拍视频| 偷拍熟女少妇极品色| 九九在线视频观看精品| 热99re8久久精品国产| 少妇丰满av| 国产综合懂色| 亚洲国产欧洲综合997久久,| 欧美绝顶高潮抽搐喷水| 午夜精品在线福利| 深夜a级毛片| 国产色爽女视频免费观看| 美女xxoo啪啪120秒动态图| 又黄又爽又免费观看的视频| 久久国内精品自在自线图片| 国产男靠女视频免费网站| 日本三级黄在线观看| 精品久久国产蜜桃| 黄色一级大片看看| 久久午夜亚洲精品久久| 国产精品无大码| 真实男女啪啪啪动态图| 美女xxoo啪啪120秒动态图| 一个人看视频在线观看www免费| 久久午夜亚洲精品久久|