• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Wave Radiation by a Floating Body in Water of Finite Depth Using an Exact DtN Boundary Condition

    2023-12-21 08:10:10RIMUnRyong
    Journal of Ocean University of China 2023年6期

    RIM Un-Ryong

    Wave Radiation by a Floating Body in Water of Finite Depth Using an Exact DtN Boundary Condition

    RIM Un-Ryong*

    Institute of Ocean Engineering, Kim Chaek University of Technology, Pyongyang 999093, Democratic People’s Republic of Korea

    The present paper focuses on the wave radiation by an oscillating body with six degrees of freedom by using the DtN artifi- cial boundary condition. The artificial boundary is usually selected as a circle or spherical surface to solve various types of fields, such as sound waves or electromagnetic waves, provided that the considered domain is infinite or unbounded in all directions. However, the substantial wave motion is considered in water of finite depth, that is, the fluid domain is bounded vertically but unbounded horizon- tally. Thus, the DtN boundary condition is given on an artificial cylindrical surface, which divides the water domain into an interior andexterior region. The boundary integral equation is adopted to implement the present model. In the case of a floating cylinder, the results of hydrodynamic coefficients of a chamfer box are discussed.

    wave radiation; boundary element method; Dirichlet-to-Neumann map; artificial boundary; floating body; finite-depth water

    1 Introduction

    Ocean wave interactions with floating structures have been of interest in hydrodynamics research for capturing sustainable energy from the sea or protecting the coastal line (Ning, 2018; Deng., 2019). The wave ra- diation from offshore structures floating on the sea is an important area related to this research. Different analyti- cal and numerical methods have been suggested by many researchers to solve the wave radiation problem.

    An analytical solution of two-dimensional wave radia- tion by using a small circular cylinder submerged in infi- nite-depth water was suggested by Tyvand (1992), intro- ducing a dimensionless parameter expressed as the radius divided by the submerged depth of the cylinder. The re- sults of hydrodynamic forces and additional mass caused by the oscillating motion of the cylinder showed good performance provided that the dimensionless parameter is smaller than 0.3. Wu (1993) focused on the second-order wave radiation by using a horizontal cylinder under hori- zontal oscillation or circular motion in infinite-depth wa- ter based on the schemes for the wave diffraction problem. Semi-analytical solutions of wave radiation from a verti- cal cylinder in finite-depth water were proposed (Bhatta and Rahman, 2003; Drobyshevski, 2004; Lu and Wang, 2015; Ren, 2018).The water domain is divided into an interior region underneath the cylinder and an exterior one unbounded horizontally. Series-type analytical solu- tions with unknown coefficients for velocity potential are derived for each region, and the coefficients are determined by an algebraic method from matching conditions at the interface between two regions.

    Williams and Abul-Azm (1989) studied the approximate analytical solution of the wave radiation from cylinder ar- rays.After obtaining an analytical solution of the velocity potential for an isolated cylinder, the assumption that the distances between the cylinders are larger than the inci- dent wavelength causes the radiated wave to emanate from one cylinder into a plane wave with reference to another cylinder, which makes the solution for the interaction be- tween the two cylinders simple. The analytical solution for wave radiation can also be found in Wu. (2006) for two cylinders only and Siddorn and Eatock Taylor (2008) for multiple cylinders.

    Cyclone-anticyclone asymmetry in rotating shallow wa- ter by gravitational wave radiation from a co-rotating vor- tex pair wasfound by Sugimoto(2015), who intro- duced a two-dimensional domain expressed in cylindrical coordinates to compare the analytical results with numeri- cal data for the amplitude of gravitational waves.

    The abovementioned analytical methods are only appli- cable to regular-shaped bodies, particularly vertical cylin- ders from their simplification of analytical derivation. Nu- merical methods for dealing with irregular-shaped bodies were reported by Politis(2002), Teng and Eatock Taylor (1995), and Singh and Babarit (2014), who adopted the boundary element method (BEM) for wave diffraction and radiation problems. Setting boundary conditions at po- sitions far from structures is important in applying BEM to the wave-structure interaction. Several ways to solve this problem have been suggested, which can be roughly di- vided into multi-transmitting formula (MTF) by Liao and Wong (1984) and Liao (1996), Higdon-type non-reflectingboundary conditions (NRBCs) by Higdon (1986, 1987) and Dea (2011, 2013), and damping zone method by Shao and Faltinsen (2010). Coupling MTF with the damping zone method was reported by Duan(2015), and Xu and Duan (2013).

    Givoli (1992) found an exact NRBC on an artificialboundary to provide a numerical solution for exterior wave problems. The artificial boundary is selected as a circle or sphere to enclose the obstacle; thus, the fluid domain is divided into interior and exterior regions. The boundary condition for the interior region is defined fully after a Dirichlet-to-Neumann (DtN) map on the artificial bound- ary is obtained from the exterior region. Bao and Han (2000) and Premrov and Spacapan (2004) proposed local DtN maps with the finite element method to solve two-dimensional Helmholtz equations. Harwood and Dupère (2015) and Chaillat(2017) adopted BEM with a DtNmap to solve two-dimensional Helmholtz equation andthree-dimensional Navier equation. More studies on DtN maps can also be found in Huang and Yu (2009), and Bar-ucq(2010).

    The abovementioned artificial boundaries are selected as a circle in a two-dimensional problem or a spherical sur-face in a three-dimensional problem, provided that the con-sidered domain is infinite or unbounded in all directions, that is,-,-, and-directions. However, the substantial wave motion is considered in water of finite depth, that is, the fluid domain is unbounded horizontally but bounded vertically (, finite in-direction).Recently, Rim (2021) suggested an exact DtN artificial boundary condition to study the three-dimensional wave diffraction by station- ary bodies in water of finite depth, which is the first part of the wave-structure interaction problem.

    The present paper focuses on the second part of the wavestructure interaction problem, that is, the wave radiation by an oscillating body with six degrees of freedom by using the DtN boundary condition. The DtN condition is given on an artificial cylindrical surface, which divides the water domain into an interior region and an exterior one. A boundary integral equation (BIE) is constructed to solve the wave radiation problem in the interior region, where theboundary conditions are fully defined by the DtN conditionon the artificial cylindrical surface and traditional boundary conditions on free-water surfaces and seabed.

    2 Mathematical Formulation for the Wave Radiation Problem

    A body floating on the free-water surface of finite depthis illustrated in Fig.1a. A right-handed Cartesian coor- dinate systemis introduced; thus, theplane is at the free-water surface, and theaxis points upward. As- suming that the isotropic, incompressible, and inviscid fluidis irrotational, the radiation problem can be treated with the fluid motion denoted by the radiated velocity potential

    Fig.1 (Colour online) Schematic diagram. (a), bird view ofa mean free surface (top plane with green), a seabed (bot- tom plane with gray), a floating body with blue, and an ar- tificial circular cylindrical surface with rose pink; (b), front view of the interior domain.

    In the wave radiation problem, the displacement of the body in the-th mode can be expressed as

    and the spatial potentialcan be decomposed as follows:

    whereis the motion amplitude in the-th mode;=1, 2, ···, 6, corresponding to surge, sway, heave, roll, pitch, and yaw, respectively, andis the complex radiated spa- tial potential caused by the unit amplitude velocity oscil- lation of the body in the-th mode. Moreover, eachsatisfies the governing equation and the following bound- ary conditions:

    where=(n,n,n) is the unit normal vector directed into the fluid on the wetted surface of the body, andu, Ldenotes the normal component of the velocitycaused by the unit oscillatory motion of the body in the-th mode.Eq.(6) is known as the Sommerfeld radiation condition, where0is the wave number satisfying the following dispersion relation:

    At present, an artificial cylinder with radiusis intro- duced (Fig.1) to solvefor the confined water domain. An artificial cylinder has been selected; thus, the body can be enclosed, and the attentional fluid domain can be in- cluded. Then, the entire fluid domain is divided into a finite interior domain and an infinite exterior domain. The interior fluid domain Ω is enveloped by the artificial sur- face Γ, seabed ΓD, wetted surface of the bodyΓB, and mean free surface ΓF(Fig.1b). The boundary condition on ΓRcan be set as ?/?=, whereis the DtN map or DtN operator because it maps the Dirichlet datato the Neumann datum ?/?on Γ. The DtN operator reflects anexact boundary condition on the artificial surface.The waveradiation problem in the interior domain can be ex- pressed as follows:

    3 Dirichlet-to-Neumann Map

    The DtN map on Γcan be obtained by solving the fol- lowing problems in the exterior domain Ωe:

    where Eq. (17) is known as the Dirichlet boundary condi- tion, that is, the spatial velocity potential on the artificial surface Γis assumed to be already given as(,,). By separating the variables,a general solution for Eqs. (13)–(16) can be expressed as follows:

    whereaandb(,=0, 1, 2, ···) are unknown con- stants;H(·) is the Hankel function of the first kind of order;K(·) is the modified Bessel function of the sec- ond kind of order, andksatisfies the following rela- tion:

    Eq. (18) is a Fourier series for, and each Fourier coef- ficient can be expressed by using the following orthonor- mal set in [?, 0]:

    where

    Substituting=into (18) and using the Dirichlet bound- ary condition (17), unknown coefficientsaandbare calculatedas follows:

    where

    Using the Dirichlet boundary condition on the artificial surface (Γ), Eq. (18) or a solution for the exterior fluid do- main can be expressed as follows:

    Differentiating Eq. (26) with regard toand setting=, the DtN map on Γis calculated as follows:

    whereχ(,,?) is the DtN kernel presented in the following equation.

    The DtN operatorin Eq. (12) is determined by Eq. (27). Thus, a BIE can be constructed from Eqs. (8)–(12) tosolve the wave radiationproblem for the interior fluid do- main, which will be mentioned in the next section.

    4 Implementation by BIE

    Based on Green’s second identity, a BIEfor the spatial velocity potentialis written as follows:

    where Γ is the boundary surface of the interior fluid do- mainΩ (, Γ=ΓF+ΓB+ΓD+Γ),andrepresent fieldand source points on Γ, respectively,() is the solid angle at,is the unit normal vector at, and(,) is the following Rankine source Green function:

    Using the boundary conditions (9)–(12) and (27), Eq. (29) is then rewritten as follows:

    whereandare the operators on an arbitrary bound- arydefined as follows:

    u, Lin the right-hand side of Eq. (31) is already given by the body motion in the-th mode; thus, the unknown radiation potentialin the left-hand side can be deter- minedby discretizing the whole boundary Γ into a finite number of panels and by applying BEM. The detail calcu- lation for each panel can be found in Appendix A of Rim (2021).

    5 Results and Discussion

    Onceis determined, the radiation force acting on the body in componentis written as

    where

    and

    are the added mass and damping coefficient in componentcaused by the unit velocity oscillation motion of the body in the-th mode, in whichnis the-th component of the generalized normal vector expressed as1=n,2=n,3=n,4=?(?0)n+(?0)n,5=(?0)n?(?0)n, and6=?(?0)n+(?0)n.

    whereH(,,) represents the complex amplitude of the wave elevationat SWL caused by the oscillation of the body in the-th mode, which can be calculated as fol- lows:

    5.1 Model Validation

    A cylinder with radiiand draftis selected to validate the present method. In comparing the results, the hydrody- namic coefficients are non-dimensionalized, which are pre- sented as follows:

    Fig.2 Comparison of the present study with the results of Williams and Abul-Azm (1989) for hydrodynamic coefficients of a cylinder.

    5.2 Hydrodynamic Coefficients of a Chamfer Box

    The hydrodynamic coefficients of a single chamfer box are estimated for practical purposes. Fig.3(a) shows a sin- gle chamfer box with length (B), width (B), height (B), fillet radius (B), and draft (B). In this case, the non-di- mensionalized hydrodynamic coefficients of the chamfer box are presented as follows:

    Fig.3 Wave elevation and hydrodynamic coefficients of a floating chamfer box with WB/LB=0.8, dB/LB=0.65, RB/LB=0.15, and d/LB=3: (a), configuration of the chamfer box; (b–e), wave elevation because of the oscillation of the box in the 1st, 2nd, 3rd, and 6th modes, respectively; (f–h), added mass and damping coefficients of the chamfer box.

    Fig.4 Effect of the draft on the added mass: (a) translation mode and (b) rotation mode.

    Fig.5 Effect of water depth on the added mass: (a) translation mode and (b) rotation mode.

    6 Conclusions

    An exact DtN condition for an artificial circular cylin- drical surface is presented to solve the three-dimensional wave radiation by a floating body in finite-depth water with boundary conditions on the free-water surface and seabed. The fluid domain around the body is divided into an interior region and an exterior one by the artificial sur- face. The upper and lower faces of the interior region are parallel, and they have their own boundary conditions (, free surface condition and seabed condition, respectively). Thus, only the additional boundary condition on the inter- face between the two regions is needed to find a solution to the three-dimensional wave radiation problem. DtN map-ping is established only on the artificial cylindrical sur- face, followed by BEM implementation of Laplace’s equa- tion with its full boundary condition. Theintroduction of the DtN artificial boundary converts the horizontally infi- nite water domain into horizontally finite domain with a finite depth, that is, finite volume by the artificial bound- ary, which makes BEM implementation easier than the case of the original water domain because it involves the difficulty of implementing BEM caused bythe horizontal infinityof the original domain.

    The present method is verified by using a floating cyl- inder, which shows good consistency with the precedent paper. The hydrodynamic coefficients of a chamfer box are calculated, and their effects on draft and water depth are discussed, which shows that the larger the draft is, the larger the added mass in the horizontal modes but the smaller it is in the vertical mode. In addition, the deeper the water domain is, the larger the added mass is in the heave mode, but a slight difference is observed in other modes. The present model will be applied to assess hydrodynamic coefficients of an arbitrary-shaped floating body.

    Bao, W., and Han, H.,2000. High-order local artificial boundary conditions for problems in unbounded domains., 188: 455-471.

    Barucq, H., Djellouli, R., and Saint-Guirons, A., 2010. Three-dimensional approximate local DtN boundary conditions for prolate spheroid boundaries., 234: 1810-1816.

    Bhatta, D. D., and Rahman, M., 2003. On scattering and radiation problem for a cylinder in water of finite depth., 41: 931-967.

    Chaillat, S., Darbas, M., and Lou?r, F. L., 2017. Fast iterative boundary element methods for high-frequency scattering prob- lems in 3D elastodynamics., 341: 429-446.

    Dea, J. R., 2011. Improving the performance of Higdon non-reflecting boundary conditions by using weighted differencing., 61: 1186-1197.

    Dea, J. R., 2013. Absorbing boundary conditions for the frac- tional wave equation., 219: 9810-9820.

    Deng, Z., Wang, L., Zhao, X., and Huang, Z., 2019. Hydrody- namic performance of a T-shaped floating breakwater., 82: 325-336.

    Drobyshevski, Y., 2004. Hydrodynamic coefficients of a floating, truncated vertical cylinder in shallow water.,31: 269-304.

    Duan, W. Y., Chen, J. K., and Zhao, B. B., 2015. Second-order Taylor expansion boundary element method for the second-or- der wave diffraction problem., 58: 140-150.

    Givoli, D., 1992. A numerical solution procedure for exterior wave problems., 43: 77-84.

    Harwood, A. R. G., and Dupère, I. D. J., 2015. Calculation of acoustic Green’s functions using BEM and Dirichlet-to-Neu- mann-type boundary conditions., 39: 4134-4150.

    Higdon, R. L., 1986. Absorbing boundary conditions for differ- ence approximations to the multi-dimensional wave equation., 47: 437-459.

    Higdon, R. L., 1987. Numerical absorbing boundary conditions for the wave equation., 49: 65-90.

    Huang, H., and Yu, D., 2009. The ellipsoid artificial boundary method for three-dimensional unbounded domains., 27: 196-214.

    Liao, Z. P., 1996. Extrapolation non-reflecting boundary condi- tions., 24: 117-138.

    Liao, Z. P., and Wong, H. L., 1984.A transmitting boundary for the numerical simulation of elastic wave propagation., 3(4): 174-183.

    Lu, X., and Wang, K. H., 2015. Modeling a solitary wave inter- action with a fixed floating body using an integrated analyti- cal-numerical approach., 109: 691-704.

    Ning, D., Zhou, Y., and Zhang, C., 2018. Hydrodynamic mod- eling of a novel dual-chamber OWC wave energy converter., 78: 180-191.

    Politis, C. G., Papalexandris, M. V., and Athanassoulis, G. A., 2002. A boundary integral equation method for oblique water-wave scattering by cylinders governed by the modi?ed Helm- holtz equation., 24: 215-233.

    Premrov, M., and Spacapan, I., 2004. Solving exterior problems of wave propagation based on an iterative variation of local DtN operators., 28: 291-304.

    Ren, K., Wu, G. X., and Ji, C. Y., 2018.Wave diffraction and ra- diation by a vertical circular cylinder standing in a three-di- mensional polynya., 82: 287-307.

    Rim, U. R., 2021. Wave diffraction by floating bodies in water of finite depthusing an exact DtN boundary condition., 239: 109711, https://doi.org/10.1016/j.oceaneng.2021.109711.

    Shao, Y. L., and Faltinsen, O. M., 2010. Use of body-fixed co- ordinate system in analysis of weakly nonlinear wave-body problems., 32: 20-33.

    Siddorn, P., and Eatock Taylor, R., 2008. Diffraction and inde- pendent radiation by an array of floating cylinders.,35: 1289-1303.

    Singh, J., and Babarit, A., 2014. A fast approach coupling Bound- ary Element Method and plane waveapproximation for wave interaction analysis in sparse arrays of waveenergy converters., 85: 12-20.

    Sugimoto, N., Ishioka, K., Kobayashi, H., and Shimomura, Y., 2015. Cyclone-anticyclone asymmetry in gravity waveradia- tion from a co-rotating vortex pair inrotating shallow water., 772: 80-106.

    Teng, B., and Eatock Taylor, R., 1995. New higher-order boundary element methods for wave diffraction/radiation., 17: 71-77.

    Tyvand, P. A., 1992. Wave radiation and diffraction from a small submerged circular cylinder., 9: 279-288.

    Williams, A. N., and Abul-Azm, A. G., 1989. Hydrodynamic in- teractions in floating cylinder arrays–II. Wave radiation., 16: 217-263.

    Wu, B. J., Zheng, Y. H., You, Y. G., Jie, D. S., and Chen, Y., 2006. On diffraction and radiation problem for two cylinders in water of finite depth., 33: 679-704.

    Wu, G. X., 1993. Second-order wave radiation by a submerged horizontal circular cylinder., 15: 293-303.

    Xu, G., and Duan, W. Y.,2013. Time-domain simulation of wave-structure interaction based on multi-transmitting formula cou- pled with damping zone method for radiation boundary condition., 42: 136-143.

    (February 22, 2022;

    September 5, 2022;

    September 16, 2022)

    ? Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2023

    . E-mail: lur8971@star-co.net.kp

    (Edited by Xie Jun)

    一区二区av电影网| 80岁老熟妇乱子伦牲交| 亚洲va在线va天堂va国产| 成人黄色视频免费在线看| 99re6热这里在线精品视频| 99热这里只有是精品在线观看| 精品久久国产蜜桃| 亚洲精品aⅴ在线观看| 日韩成人伦理影院| 哪个播放器可以免费观看大片| av在线亚洲专区| 免费在线观看成人毛片| 国产亚洲91精品色在线| 纵有疾风起免费观看全集完整版| 国产色婷婷99| 禁无遮挡网站| 亚洲欧洲日产国产| 国产乱人视频| 日本一本二区三区精品| 欧美成人午夜免费资源| 狂野欧美白嫩少妇大欣赏| 一区二区三区四区激情视频| 国产成人精品婷婷| 欧美+日韩+精品| 男人添女人高潮全过程视频| 国产精品麻豆人妻色哟哟久久| 老司机影院成人| 一级毛片电影观看| 欧美日韩视频精品一区| 国产成人精品福利久久| 国产综合懂色| 最近的中文字幕免费完整| 日韩制服骚丝袜av| 交换朋友夫妻互换小说| 赤兔流量卡办理| 伊人久久国产一区二区| 国产精品嫩草影院av在线观看| 欧美日韩在线观看h| 日日撸夜夜添| 欧美区成人在线视频| 免费人成在线观看视频色| 久久精品国产亚洲网站| 久久99热这里只频精品6学生| 久久99热这里只有精品18| 精品熟女少妇av免费看| 国产精品不卡视频一区二区| 国产欧美日韩一区二区三区在线 | 欧美性感艳星| 亚洲自拍偷在线| 色综合色国产| 80岁老熟妇乱子伦牲交| 99热这里只有精品一区| 亚洲精品影视一区二区三区av| 麻豆国产97在线/欧美| 国产一区二区三区av在线| 熟女电影av网| 在线精品无人区一区二区三 | 97精品久久久久久久久久精品| 国产高清国产精品国产三级 | 国产精品不卡视频一区二区| 麻豆精品久久久久久蜜桃| 在线观看国产h片| www.色视频.com| 国产女主播在线喷水免费视频网站| 免费看不卡的av| 老师上课跳d突然被开到最大视频| 99久国产av精品国产电影| 18禁在线播放成人免费| 在线观看一区二区三区| 国产av码专区亚洲av| 国产精品人妻久久久久久| 亚洲国产精品国产精品| 色婷婷久久久亚洲欧美| 国产一区二区亚洲精品在线观看| 精品国产三级普通话版| 精品人妻视频免费看| 国产男女超爽视频在线观看| 精品视频人人做人人爽| 丝袜脚勾引网站| 大片免费播放器 马上看| 国产成人福利小说| 色哟哟·www| 婷婷色麻豆天堂久久| 国产精品一区二区在线观看99| 青春草视频在线免费观看| 久久精品久久久久久久性| 啦啦啦中文免费视频观看日本| 日韩av免费高清视频| 国产真实伦视频高清在线观看| 亚洲,欧美,日韩| 新久久久久国产一级毛片| 亚洲四区av| av卡一久久| 一级二级三级毛片免费看| 精品午夜福利在线看| 少妇被粗大猛烈的视频| av在线蜜桃| 国产探花极品一区二区| 人妻 亚洲 视频| 秋霞伦理黄片| 色5月婷婷丁香| 亚洲无线观看免费| 国产又色又爽无遮挡免| 亚洲精华国产精华液的使用体验| 特大巨黑吊av在线直播| 免费在线观看成人毛片| 建设人人有责人人尽责人人享有的 | av天堂中文字幕网| 久热这里只有精品99| 老女人水多毛片| 熟妇人妻不卡中文字幕| 99热这里只有是精品在线观看| 亚洲va在线va天堂va国产| 欧美激情在线99| 青春草亚洲视频在线观看| 国产成人精品婷婷| 各种免费的搞黄视频| 交换朋友夫妻互换小说| 在线a可以看的网站| 亚洲精品久久午夜乱码| 国产av不卡久久| 91在线精品国自产拍蜜月| 成人无遮挡网站| 国产精品99久久99久久久不卡 | 在线观看美女被高潮喷水网站| 97超视频在线观看视频| 日韩av在线免费看完整版不卡| 成人亚洲欧美一区二区av| 亚洲欧美日韩东京热| 国产又色又爽无遮挡免| 日韩欧美一区视频在线观看 | 欧美三级亚洲精品| 一个人看视频在线观看www免费| 成人综合一区亚洲| 亚洲精品456在线播放app| 国产淫片久久久久久久久| 免费观看的影片在线观看| 性色avwww在线观看| 大片免费播放器 马上看| 亚洲欧美日韩卡通动漫| 亚洲色图综合在线观看| 在线观看国产h片| 偷拍熟女少妇极品色| 成人国产av品久久久| 久久精品久久久久久噜噜老黄| 两个人的视频大全免费| 肉色欧美久久久久久久蜜桃 | 好男人视频免费观看在线| 毛片一级片免费看久久久久| 免费大片18禁| 一区二区三区免费毛片| 啦啦啦中文免费视频观看日本| 在线观看美女被高潮喷水网站| 嫩草影院精品99| 日本与韩国留学比较| 国产一区二区亚洲精品在线观看| 又大又黄又爽视频免费| 最新中文字幕久久久久| 成人综合一区亚洲| 午夜精品国产一区二区电影 | 少妇熟女欧美另类| 亚洲欧美日韩另类电影网站 | 亚洲精品国产av成人精品| 免费看av在线观看网站| 韩国av在线不卡| 精品99又大又爽又粗少妇毛片| 亚洲图色成人| 一级爰片在线观看| 最近最新中文字幕大全电影3| 久久精品国产a三级三级三级| 亚洲不卡免费看| 亚洲av不卡在线观看| 午夜精品国产一区二区电影 | 久久精品综合一区二区三区| 最新中文字幕久久久久| 国产午夜精品久久久久久一区二区三区| 亚洲第一区二区三区不卡| 国产精品一区二区三区四区免费观看| 欧美精品国产亚洲| 汤姆久久久久久久影院中文字幕| 美女脱内裤让男人舔精品视频| 免费看不卡的av| 欧美潮喷喷水| 免费黄频网站在线观看国产| 亚洲av不卡在线观看| 热re99久久精品国产66热6| 日本欧美国产在线视频| 毛片一级片免费看久久久久| 18禁裸乳无遮挡动漫免费视频 | 日韩三级伦理在线观看| 亚洲成人精品中文字幕电影| 大话2 男鬼变身卡| 熟女电影av网| 99re6热这里在线精品视频| 日韩电影二区| 欧美极品一区二区三区四区| 天堂俺去俺来也www色官网| 毛片女人毛片| 美女内射精品一级片tv| 最近中文字幕高清免费大全6| 美女xxoo啪啪120秒动态图| 大码成人一级视频| 精品国产乱码久久久久久小说| 国产亚洲5aaaaa淫片| 在线看a的网站| 久久久久久久久久久免费av| 国产精品99久久久久久久久| 国产又色又爽无遮挡免| 又黄又爽又刺激的免费视频.| 中文字幕制服av| 色视频www国产| 在线免费观看不下载黄p国产| 一区二区三区乱码不卡18| 丝袜美腿在线中文| 久久综合国产亚洲精品| 少妇的逼好多水| 18禁裸乳无遮挡动漫免费视频 | 亚洲精品乱久久久久久| 国产午夜精品久久久久久一区二区三区| 91午夜精品亚洲一区二区三区| 中文字幕av成人在线电影| 制服丝袜香蕉在线| www.av在线官网国产| 亚洲精品一二三| 精品视频人人做人人爽| 精品人妻一区二区三区麻豆| 中文字幕免费在线视频6| 免费在线观看成人毛片| 人妻系列 视频| 亚洲精品成人av观看孕妇| 春色校园在线视频观看| 国产在视频线精品| 熟女人妻精品中文字幕| 99热全是精品| 成年av动漫网址| av黄色大香蕉| 国产 一区 欧美 日韩| 极品少妇高潮喷水抽搐| 在线观看人妻少妇| 又黄又爽又刺激的免费视频.| 高清毛片免费看| 亚洲国产精品国产精品| 乱码一卡2卡4卡精品| 18+在线观看网站| 中文资源天堂在线| 国产精品.久久久| 白带黄色成豆腐渣| 欧美三级亚洲精品| 五月伊人婷婷丁香| 狂野欧美激情性xxxx在线观看| 亚洲精品国产av成人精品| 美女视频免费永久观看网站| 国产免费又黄又爽又色| 伦精品一区二区三区| 熟女电影av网| 日本黄大片高清| 亚洲欧美成人综合另类久久久| 九色成人免费人妻av| 狂野欧美激情性xxxx在线观看| 亚洲国产欧美人成| 国产亚洲最大av| 深爱激情五月婷婷| 青春草亚洲视频在线观看| 午夜福利视频精品| 男人和女人高潮做爰伦理| 人妻系列 视频| 乱码一卡2卡4卡精品| 国产精品蜜桃在线观看| 免费黄网站久久成人精品| 天堂网av新在线| 亚洲国产精品999| 国产av码专区亚洲av| 天天躁夜夜躁狠狠久久av| 22中文网久久字幕| 成人国产av品久久久| 青春草视频在线免费观看| 少妇高潮的动态图| 日产精品乱码卡一卡2卡三| 国产亚洲91精品色在线| 午夜老司机福利剧场| 午夜精品国产一区二区电影 | av天堂中文字幕网| 神马国产精品三级电影在线观看| 久久久久久久久大av| 亚洲精品久久午夜乱码| 在线 av 中文字幕| 老师上课跳d突然被开到最大视频| 一个人看视频在线观看www免费| 亚洲av国产av综合av卡| 97在线视频观看| 在现免费观看毛片| 国产久久久一区二区三区| 久久精品国产亚洲av涩爱| 欧美区成人在线视频| av免费观看日本| 校园人妻丝袜中文字幕| 日韩一区二区三区影片| 日韩一区二区视频免费看| 国产女主播在线喷水免费视频网站| 一本色道久久久久久精品综合| 午夜老司机福利剧场| 在线亚洲精品国产二区图片欧美 | 人人妻人人爽人人添夜夜欢视频 | 亚州av有码| 午夜老司机福利剧场| 久久久久久久大尺度免费视频| 亚洲人成网站在线观看播放| 1000部很黄的大片| 日本wwww免费看| 亚洲aⅴ乱码一区二区在线播放| 最近的中文字幕免费完整| 可以在线观看毛片的网站| 人人妻人人澡人人爽人人夜夜| 最新中文字幕久久久久| 国产av国产精品国产| 啦啦啦啦在线视频资源| 高清视频免费观看一区二区| 成人毛片a级毛片在线播放| 亚洲自偷自拍三级| 日本欧美国产在线视频| 中文字幕久久专区| 亚洲电影在线观看av| 3wmmmm亚洲av在线观看| 色播亚洲综合网| 中文字幕制服av| 搞女人的毛片| 国产一区二区三区av在线| 亚洲精品国产成人久久av| 一本一本综合久久| 国产大屁股一区二区在线视频| 夫妻性生交免费视频一级片| 国产精品av视频在线免费观看| 日本av手机在线免费观看| 亚洲人与动物交配视频| av专区在线播放| 欧美亚洲 丝袜 人妻 在线| 噜噜噜噜噜久久久久久91| 秋霞在线观看毛片| 久久这里有精品视频免费| 91久久精品电影网| 又大又黄又爽视频免费| 丰满人妻一区二区三区视频av| av国产精品久久久久影院| 亚洲高清免费不卡视频| 国产亚洲一区二区精品| 黄色一级大片看看| 日韩精品有码人妻一区| 久久97久久精品| 成人国产av品久久久| 嫩草影院入口| 成年av动漫网址| 老司机影院毛片| 最近最新中文字幕免费大全7| 精品久久久精品久久久| 久久精品国产a三级三级三级| 免费av不卡在线播放| 精品国产乱码久久久久久小说| 国产免费视频播放在线视频| 日本三级黄在线观看| 身体一侧抽搐| 一级二级三级毛片免费看| 久久久久性生活片| 免费看不卡的av| 亚洲天堂av无毛| av国产精品久久久久影院| 成年av动漫网址| 夫妻性生交免费视频一级片| 婷婷色综合大香蕉| av卡一久久| 最近最新中文字幕大全电影3| 麻豆久久精品国产亚洲av| xxx大片免费视频| 丝袜脚勾引网站| 熟女av电影| 在线观看一区二区三区| 欧美zozozo另类| 国产大屁股一区二区在线视频| 欧美精品一区二区大全| 欧美另类一区| 婷婷色av中文字幕| 亚洲在久久综合| 久久99热这里只有精品18| 亚洲四区av| 成人欧美大片| 亚洲四区av| 看免费成人av毛片| 少妇人妻 视频| 国产亚洲精品久久久com| 80岁老熟妇乱子伦牲交| 亚洲av中文av极速乱| 美女xxoo啪啪120秒动态图| 91精品国产九色| av福利片在线观看| 精品午夜福利在线看| 99热全是精品| 伦理电影大哥的女人| 成人国产av品久久久| 国产人妻一区二区三区在| 80岁老熟妇乱子伦牲交| 亚洲真实伦在线观看| av在线播放精品| 国产乱人偷精品视频| 纵有疾风起免费观看全集完整版| 成人漫画全彩无遮挡| 久久精品国产亚洲av天美| av.在线天堂| 一级a做视频免费观看| 国产亚洲一区二区精品| h日本视频在线播放| 日韩大片免费观看网站| 久久久久精品性色| 亚洲精品一二三| 街头女战士在线观看网站| 国产视频首页在线观看| 成人二区视频| h日本视频在线播放| 啦啦啦在线观看免费高清www| 午夜激情福利司机影院| 日韩,欧美,国产一区二区三区| 搡女人真爽免费视频火全软件| 一本一本综合久久| 伦精品一区二区三区| 视频区图区小说| 亚洲av免费高清在线观看| 波多野结衣巨乳人妻| 日韩欧美精品v在线| 久久午夜福利片| 99热这里只有是精品50| 在线观看av片永久免费下载| a级毛片免费高清观看在线播放| 久久人人爽人人片av| 国产伦在线观看视频一区| 少妇丰满av| 热99国产精品久久久久久7| 美女被艹到高潮喷水动态| 亚洲精品视频女| 国产视频首页在线观看| 国产欧美日韩一区二区三区在线 | 亚洲成色77777| 午夜激情久久久久久久| 成人二区视频| 国产午夜福利久久久久久| 国产精品三级大全| 熟妇人妻不卡中文字幕| 亚洲av日韩在线播放| 91在线精品国自产拍蜜月| 亚洲av成人精品一区久久| 2022亚洲国产成人精品| 一个人观看的视频www高清免费观看| 青春草视频在线免费观看| 黄片无遮挡物在线观看| 精品少妇久久久久久888优播| 中文在线观看免费www的网站| 午夜日本视频在线| 免费大片18禁| 又黄又爽又刺激的免费视频.| 久久热精品热| 观看美女的网站| 97精品久久久久久久久久精品| 三级经典国产精品| 亚洲国产欧美人成| 精品人妻一区二区三区麻豆| 日本与韩国留学比较| 中文乱码字字幕精品一区二区三区| 国产一区二区三区综合在线观看 | 成年版毛片免费区| 久久ye,这里只有精品| 精品亚洲乱码少妇综合久久| 国产黄频视频在线观看| 五月天丁香电影| av福利片在线观看| 久久综合国产亚洲精品| 中文字幕人妻熟人妻熟丝袜美| 国产真实伦视频高清在线观看| 亚洲国产色片| 免费av不卡在线播放| 嫩草影院新地址| 亚洲av中文字字幕乱码综合| 美女国产视频在线观看| 青春草国产在线视频| 精品国产露脸久久av麻豆| 91在线精品国自产拍蜜月| 少妇的逼水好多| 日日撸夜夜添| 超碰97精品在线观看| 亚洲欧美一区二区三区黑人 | 国模一区二区三区四区视频| 人人妻人人看人人澡| 亚洲av.av天堂| 超碰97精品在线观看| 日韩欧美 国产精品| 性色avwww在线观看| 99re6热这里在线精品视频| 亚洲内射少妇av| av在线老鸭窝| 日韩中字成人| 日韩一区二区三区影片| 亚洲第一区二区三区不卡| 一个人观看的视频www高清免费观看| 少妇的逼水好多| 国产欧美另类精品又又久久亚洲欧美| 99热这里只有精品一区| 色5月婷婷丁香| 日韩中字成人| 久久99热6这里只有精品| 在线看a的网站| 欧美成人a在线观看| 国产伦在线观看视频一区| 高清av免费在线| 亚洲精品一区蜜桃| 国产精品偷伦视频观看了| 春色校园在线视频观看| 亚洲国产日韩一区二区| 久久ye,这里只有精品| 免费少妇av软件| 免费av毛片视频| 少妇 在线观看| 两个人的视频大全免费| 国模一区二区三区四区视频| 尾随美女入室| 中文精品一卡2卡3卡4更新| 久久久久久久久久久丰满| 亚洲自拍偷在线| 欧美xxxx性猛交bbbb| 日本黄大片高清| 欧美日韩国产mv在线观看视频 | 国产成人freesex在线| 久久久精品欧美日韩精品| 亚洲av成人精品一区久久| 婷婷色综合大香蕉| 简卡轻食公司| 国产免费一级a男人的天堂| 精品久久久久久久末码| 伦精品一区二区三区| 18禁在线播放成人免费| 欧美变态另类bdsm刘玥| 啦啦啦在线观看免费高清www| 99久久人妻综合| 美女主播在线视频| 久久99热6这里只有精品| 身体一侧抽搐| 亚洲va在线va天堂va国产| .国产精品久久| 国产免费视频播放在线视频| 日本熟妇午夜| 欧美日韩视频高清一区二区三区二| 日韩欧美一区视频在线观看 | 成人美女网站在线观看视频| 久久99热这里只有精品18| 熟妇人妻不卡中文字幕| 成人黄色视频免费在线看| 韩国高清视频一区二区三区| 国产黄色免费在线视频| 久久久久网色| 日本黄大片高清| 亚洲av免费高清在线观看| 九九在线视频观看精品| 国产免费视频播放在线视频| 亚洲国产日韩一区二区| 69av精品久久久久久| 亚洲欧美日韩东京热| 国产综合精华液| 亚洲,欧美,日韩| 成人特级av手机在线观看| 免费少妇av软件| 一级片'在线观看视频| 免费少妇av软件| 丰满人妻一区二区三区视频av| 国产大屁股一区二区在线视频| 免费av毛片视频| 亚洲av在线观看美女高潮| 婷婷色综合大香蕉| 香蕉精品网在线| 26uuu在线亚洲综合色| 国产欧美日韩一区二区三区在线 | 黄片无遮挡物在线观看| 日韩一区二区三区影片| 神马国产精品三级电影在线观看| 99热6这里只有精品| 只有这里有精品99| 99热全是精品| 久久精品人妻少妇| 狂野欧美激情性bbbbbb| 国产乱人视频| 麻豆乱淫一区二区| 亚洲av国产av综合av卡| 麻豆精品久久久久久蜜桃| 国产精品福利在线免费观看| 欧美丝袜亚洲另类| 国产精品国产三级专区第一集| 一级黄片播放器| 男人舔奶头视频| 麻豆乱淫一区二区| 日产精品乱码卡一卡2卡三| 国产乱来视频区| 日产精品乱码卡一卡2卡三| 成人鲁丝片一二三区免费| 日本午夜av视频| 极品教师在线视频| 国产精品av视频在线免费观看| 亚洲不卡免费看| 色吧在线观看| 男人添女人高潮全过程视频| 国产精品人妻久久久影院| 国产伦精品一区二区三区四那| 亚洲国产欧美人成| 18+在线观看网站| 免费大片18禁| 看免费成人av毛片| 国产成人a∨麻豆精品| 亚洲经典国产精华液单| 亚洲国产最新在线播放| 亚洲欧美精品自产自拍| 简卡轻食公司| 中文欧美无线码|