• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      微課助力圖形教學

      2023-12-20 07:15:19胡小麗
      江蘇科技報·E教中國 2023年15期
      關鍵詞:對稱點軸對稱重難點

      胡小麗

      隨著信息技術的發(fā)展,教學方式也在隨之發(fā)生改變,傳統(tǒng)教學方式正在逐步被新興教學方式替代,微課就是近幾年走入大眾視野的新興教學方式之一。微課主要以短視頻的形式出現,通過一個個短小精悍的微視頻就可以把教學中一些比較抽象的重難點知識具體化,解決學生的疑難問題,提高課堂教學效率。

      一、微課助力教學的優(yōu)勢

      1.調動學生學習積極性

      小學生的思維具有直觀、形象的特點,而圖形與幾何的相關知識具有抽象性,這就導致學生在學習這部分知識時普遍存在困難,很多學生會因為對這部分知識理解不到位而喪失數學學習的興趣。相較于傳統(tǒng)的教學方式,微課可以讓知識的傳播變得更加有趣,教師可以通過制作集圖片、文字、聲音等于一身的微視頻,將抽象的數學理論知識變得形象化、具體化。

      2.突出教學重難點

      小學課堂一節(jié)課是40分鐘,而小學生的注意力集中時間有限,很難在40分鐘內都能認真聽課,如果教師將大量時間花費在教學前期鋪墊上,到講解本課重難點時學生可能已感覺比較疲勞或是已經不能集中注意力,這樣的課堂教學效果自然較差。而通過微課導入的方式進行教學,可以縮短前期鋪墊的時間,節(jié)省下來的時間就能用于新授課,并且通過微課呈現出的教學重難點形象又具體,教師再通過一些必要的輔助,就能幫助學生很好地理解教學重難點了。

      3.打破課堂教學的時空限制

      每個人的智力發(fā)展水平以及接受能力都不一樣,在課堂有限的時間里,有的學生能很快理解學習內容,而有的學生還需要課后再學習。如何做好分層教學,讓不同水平的學生都能有所收獲?微課可以很好地解決這一問題。微課時間短、容量小、內容精,可以在電腦、平板、手機等各種多媒體設備上播放,學生可以通過課后觀看微課進行再學習,鞏固學習效果,最終實現課堂整體教學效率的提升。

      4.提高學生自主學習能力

      學生在課前可以通過微課自主預習新知,不受時間和空間的限制,反復暫停和播放,自由控制學習的速度和時間。課堂教學中,由于學生已經事先熟悉了課程內容,所以教師能夠更快更直接地進入重難點內容的教學,無形中提升了教學效率。

      二、微課在小學數學圖形教學中的應用策略

      隨著現代信息技術的發(fā)展,微課對課堂教學的輔助作用顯而易見,如何制作微課以及如何在課堂教學中通過微課有效提升教學效率正在成為當前教師能力提升的重點。

      1.抓好微課質量,優(yōu)化微課內容

      微課的質量直接影響課堂教學效果,因此教師在制作微課的過程中要備好課,包括備教材、備教學內容、備學情等。圖形與幾何的相關內容比較抽象,教師應根據課程特點來決定將哪些內容制作進微課中,并在制作完成后進行試課,根據學生反饋對微課進行二次優(yōu)化。例如教學“軸對稱圖形”,教師提前制作好微課,在上課的過程中發(fā)現一些學生看完視頻后對“對稱點到對稱軸的距離”這一知識點不是很理解。由于微課中采用的是點跳動的方式,從對稱點跳動到對稱軸,導致有學生不理解對稱點到對稱軸的距離到底是幾格。所以,教師根據學生的反饋將微課內容進行了優(yōu)化,將這部分內容改成用線跳動的方式呈現,這樣學生一下就能明白對稱軸到對稱點的距離是多少了。

      2.做好微課引導,調動學生學習興趣

      制作微課時,教師可以根據課程內容設置一些有趣的情境,讓學生對即將學習的內容產生興趣,以此促成教學順利開展。還是以教學“軸對稱圖形”為例,在講解軸對稱圖形的相關知識之前,教師可以通過微課展示生活中的軸對稱圖形以及它們的應用,讓學生充分感受軸對稱圖形的美,在這樣的情境及期待之中開始本課重難點教學。

      現代信息技術支持下的微課是一種有效的教學輔助方式,可以有效提升課堂教學效率,使課堂呈現出一種積極、活躍、飽滿的狀態(tài)。作為新時代的教師,我們應該不斷學習探索,在教學中積極運用正確且有效的教學策略,提高課堂教學質量。

      猜你喜歡
      對稱點軸對稱重難點
      說說軸對稱
      九點圓圓心關于三邊的對稱點的性質
      中等數學(2021年1期)2021-07-23 01:41:00
      《軸對稱》鞏固練習
      認識軸對稱
      線性代數中矩陣特征值的解析方法
      誦讀100句,記考綱重難點詞匯(二)
      關于軸對稱的幾個基本概念
      化學平衡重難點知識突破
      利用對稱求函數的解析式
      新目標英語八年級(上)Units?。保持仉y點預習
      五华县| 松潘县| 牡丹江市| 通化市| 当雄县| 成都市| 略阳县| 寿阳县| 竹北市| 永昌县| 三明市| 佛冈县| 汾西县| 五寨县| 运城市| 荔浦县| 黄冈市| 凉山| 郁南县| 若羌县| 泸溪县| 武定县| 英吉沙县| 黑河市| 延安市| 灵寿县| 肇源县| 方城县| 南雄市| 遂宁市| 应城市| 张北县| 永胜县| 固阳县| 余姚市| 宁波市| 交口县| 南澳县| 台山市| 西畴县| 富平县|