• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research on dual-command operation path optimization based on Flying-V warehouse layout①

    2023-12-15 10:43:28LIUJiansheng劉建勝YUANBinYANGZanZHONGRAY
    High Technology Letters 2023年4期

    LIU Jiansheng(劉建勝),YUAN Bin,YANG Zan②,ZHONG RAY Y

    (?School of Advanced Manufacturing, Nanchang University, Nanchang 330031, P.R.China)

    (?Department of Industrial and Manufacturing Systems Engineering, University of Hong Kong, Hong Kong 999077, P.R.China)

    Abstract

    Key words: Flying-V, access collaboration, path optimization, dynamic decoding, genetic algorithm

    0 Introduction

    Logistics optimization in warehouse management can effectively reduce the operating costs for enterprises.Among all logistics processes, access operation is the most labor-intensive and costly, with costs accounting for up to 55% of the total operating expenses of a warehouse[1].Previous studies have indicated that optimizing access operation is crucial for improving warehousing efficiency[2].The time spent on access operation is a key indicator for measuring operational efficiency, and it is closely associated with the selection of access operation path.Therefore, reducing the travel distance of access operation is capable of enhancing the efficiency of warehousing management operations.

    In recent years, researchers have studied access operation paths in warehouse by taking into account different warehouse layouts and order distributions under the assistance of heuristic algorithms such as genetic algorithms[3-4], ant colony algorithms[5-8], and particle swarm algorithms[9-12].To reduce the access cost of goods, Ref.[13] proposed the Flying-V layout mode as an innovative warehouse layout, proving that this non-traditional layout can shorten travel distance by 10% - 20% compared with traditional layout in terms of picking efficiency.However, most current studies focus on single-command operation mode[14-19]by maximizing their respective operational efficiency without considering the association of access operations,where only deposit or picking operations are conducted during a single operation trip.Although this single-command operation mode is simple and easy to execute, it leads to problems such as idle trips and resource waste, indicating the need for improving overall operation efficiency.Therefore, this paper focuses on optimizing the dual-command operation path of Flying-V layout warehouse.

    1 Problem description and mathematical model

    1.1 Problem description

    In this study, a batch of ordered goods required depositing while another batch required picking, and the objective is to complete the order operations with the shortest total operation path.The warehouse layout adopted Flying-V type layout, and the plane layout of the entire warehouse is shown in Fig.1.The P&D(pick and deposit) point is the entrance and exit of the warehouse.To facilitate the study of warehouse management path optimization, certain assumptions have been made.

    (1) During the operation, the freight vehicle has a load limit ofQ,allowing for multiple operations to be carried out.

    (2) It is assumed that walking distance on both the left and right sides of the passage are negligible.

    (3) In addition, turning back and walking in the passage is permitted.

    (4) The demand for goods in every order is less than that of the freight vehicle’s load capacity, and the freight vehicle can only access each location once.

    Fig.1 Flying-V warehouse layout

    1.2 Parameter design

    Fig.1 shows the picking area number and cargo space number.The cargo space number ranges from 1 to 260, from left to right and bottom to top, with the P&D point number being 0.The warehouse layout is divided into four picking areas, starting clockwise from the lower left corner of the warehouse, and is divided into Zone 1, Zone 2, Zone 3 and Zone 4.Regardless of the height of the cargo space, the length and width of the shelf arel, the width of the picking channel isl, and the width of the diagonal main channel is 2l.

    To represent the corresponding cargo space number, a virtual coordinate system is utilized in the plane layout.The array {k,x,y,z} is employed, wherek(k= 1,2,3,4) indicates the cargo area number,x(x=1,2,3,...,11) represents the number of channels,y(y= 1,2,3,...,ymax) depicts the number of rows of shelves starting from the diagonal main channel, andz(z= 1,2) indicates the left and right sides of the channel; specifically,z= 1 denotes the left side of the channel, andz= 2 represents the right side of the channel.For example, {2,5,10,1} represents Zone 2, the 5 th channel, the 10 th space from the diagonal main channel upward, the shelf on the left, i.e., cargo space number 102 in Fig.1.

    1.3 Distance matrix calculation

    To optimize the distance to complete the order access operation, it is necessary to calculate the distances between any two points, including the distance between the P&D point and the cargo space point, as well as the distance between two cargo space points.

    (1) Distance between the P&D point and the cargo space pointi.

    1) When the cargo space is located in Zone 1 (the same for Zone 4), that is,ki= 1 :

    2) When the cargo space point is located in Zone 2 (the same for Zone 3), that is,ki= 2 :

    (2) Distance between any two cargo space points:

    1) When two cargo space points are in Zone 1 (the same for Zone 4),ki=kj= 1 :

    2) When two cargo space points are in Zone 2 (the same for Zone 3),ki=kj= 2 :

    3) When two cargo space points are located in Zone 1 and Zone 2 respectively (the same for Zone 3 and Zone 4),ki= 1,kj= 2 :

    4) When two cargo space points are located in Zone 1 and Zone 3, respectively (the same for Zone 2 and Zone 4),ki= 1,kj= 3 :

    5) When two cargo space points are located in Zone 1 and Zone 4, respectively,ki= 1,kj= 4 :

    6) When two cargo space points are located in Zone 2 and Zone 3, respectively,ki= 2,kj= 3 :

    1.4 Modeling

    The goal of optimization is to minimize the distance to complete the order access process while returning to the entrance for multiple operations.The mathematical model for the path problem can be designed as follows.

    Objective function is

    Constraints:

    Decision variables:

    where,

    S: total traveling distance when all order operations are completed;

    i,j∈Ω: all cargo spaces to be picked and the starting point; andi= 0 indicates the P&D point;

    dij: the shortest distance between cargo spaceiand cargo spacej, calculated according to Eqs (1)–(8);

    Qi: load when starting from pointi;

    Q0: initial load from P&D point;

    Q: maximum load;

    qi: required weight at cargo space pointi;

    The objective Eq.(9) seeks to minimize the distance required to complete all orders; Eq.(10) and Eq.(11) guarantee that each picking point has one and only one previous and subsequent task; Eq.(12)defines the range of values for the decision variables;Eq.(13) and Eq.(14) prohibit overloading during the operation.

    2 Algorithm solution

    To solve the aforementioned model,a dynamic decoding genetic algorithm is implemented.Algorithm 1 provides the corresponding pseudo-code, and the corresponding elaboration for the following steps are shown in subsections 2.1 -2.6.

    Algorithm 1 The dynamic decoding-based genetic algorithm Input:Population size:N, Crossover probability: Pc,Mutation probability: Pm, Number of orders:Num_orders, Required weight at each point:q, Operation type:label, Maximum load:Q Output: Optimal individual:xbest 1.Initialize population with random candidate solutions, shown in subsection 2.1.2.Decode (using Algorithm 2) and evaluate each candidate solution shown in subsection 2.2.3.g = 0 4.While terminate condition is not satisfied do 5.Select parents shown in subsection 2.3.6.Crossover operation shown in subsection 2.4.7.Mutation operation shown in subsection 2.5.8.Decode (using Algorithm 2) and evaluate new candidate solution shown in subsection 2.2.9.Select individuals for the next generation shown in subsection 2.3.10.g = g +1 11.End while

    2.1 Initialization

    To initiate the optimization process, the value for the population sizeN, cross probabilityPc and mutation probabilityPm are defined.The chromosome code is randomly generated as 1×No,whereNo refers to the order quantity.This process is repeatedNtimes to generate anN×No population.

    2.2 Decoding

    The natural number code is used, with numbers ranging from 1 toNo and 0 for the P&D point number.The sequence of codes indicate the access sequence of the cargo space points.

    If there is no load limit, the problem could be simplified into a standard TSP problem, which only requires visiting each cargo space point in sequence and returning to the starting P&D point without the need for additional decoding.However, due to the load limit, it is necessary to go back and forth to the starting point during the access operation.Therefore,0 is inserted into the code sequence and the load is dynamically calculated to determine the position where 0 is inserted.The dynamic decoding steps are as follows.

    (1)Considering the limit state, at a certain time during the access operation, all goods ordered in all cycles are on the freight vehicle and are decoded according to the load limit of the freight vehicle.If the freight vehicle carrying 1-iorders is not overweight,the first cycle of decoding is(0,p1,p2,...,pi,0).

    (2)Cargo space pointi+ 1 is added to the decoding cycle to simulate the load of the previousi+1 cargo space points.The order weight to be warehoused is taken as the initial load to simulate the access operation of each cargo space point and calculate the load of each cargo space point.If a middle point is overweight, it means that the decoding fails, and the first decoding cycle is still (0,p1,p2,...,pi,0).If no overweight occurs during the intermediate process, it means that the decoding is successful, and the decoding is(0,p1,p2,...,pi,pi+1,0).Then cargo space pointi+2 is added to the decoding cycle, and the above steps are repeated until pointi+nbecomes overweight in the simulation process.At this point, the decoding is considered as failure, and the next cycle of decoding starts.

    (3)Steps (1) and (2) are repeated until all order points are decoded successfully.

    Algorithm 2 presents the process of dynamic decoding.

    Algorithm 2 The dynamic decoding algorithm Input:Individual:x, Number of orders:Num_orders,Required weight at each point: q, Operation type:label, Maximum load:Q Output: Decoded individual:x_d 1.For i =1 to Num_orders 2.Calculate the initial load of the first i orders Q0.3.x_d =0 4.For j = 1 to i 5.x_d = [x_d,x(i)]6.If label(j) = = 1 7.Qi = Qi-1 + q(j)8.Else 9.Qi = Qi-1 –q(j)10.End if 11.If Qi < = Q 12.Continue 13.Else 14.x_d = [x_d,x(i -1)]15.save decode fragment x_d 16.break 17.End if 18.End for 19.End for 20.Restores the decoded fragment to a one-dimensional array x_d

    2.3 Selection operation

    The fitness value is the value of the objective function.To optimize the population and improve the fitness of individuals, the principles of ‘survival of the fittest’ in nature are followed.Inspired by the replication operation in bacterial foraging algorithms, half of the individuals with poor fitness value are directly eliminated, while the other half individuals with good fitness values are copied.To prevent the subsequent crossover and mutation operations from degrading the individuals with the best fitness value, an elite retention strategy is adopted.This strategy ensured that the fittest individuals are preserved in the population and not lost during the optimization process.

    2.4 Crossover operation

    To increase the diversity of the population and improve the global search ability, double-point crossover is adopted.This allows the same chromosome crossover operation to generate new chromosomes, which further enhances the optimization process.In double-point crossover, two crossing points are randomly selected on the two parent chromosomes.The chromosome between the two points is copied to the corresponding chromosome of the other parent, and the previous duplicated code is removed.This process increased the diversity of the population and allowed for a more efficient search for optimal solutions.

    2.5 Mutation operation

    The mutation operation uses double-point exchange mutation, which further increases the diversity of the population.In this operation, two point are randomly generated in the chromosome.The codes of the two points are then exchanged to complete the mutation operation.This approach allowes for the exploration of new solutions and prevents the population from getting trapped in a local optimum.By introducing random changes to the chromosomes, the algorithm is able to search for more optimal solutions across the solution space.

    3 Simulation experiment

    Experimental environment: Windows 10 operating system, Intel (R) Core (TM) i5-10400 CPU @2.9 GHz processor, 32.0 GB RAM, developed with Matlab R2018a.

    To demonstrate the effectiveness of the proposed algorithm, a randomized example with 20 orders and their corresponding demands are created, which is shown in Table 1.The cargo space number is designed according to the model parameters, and the maximum load (Q) of the freight vehicle is set to 20 kg.For example, the second order requires picking 4 kg of goods from the No.32 cargo space.To ensure a sufficient population size to 200, which is 10 times the number of orders, set the evolution times to 500.The selection of crossover and mutation probability is determined through experiments.An orthogonal table is used to select the crossover probability ranging from 0.1 to 0.9 with an interval of 0.1 and the variation probability from 0.01 to 0.1 with an interval of 0.01.The optimal values are obtained by changing the parameters and running the process 20 times.Calculate the average value and find that the optimal crossover probability is 0.8,and the optimal mutation probability is 0.1.

    The reason for selecting a large probability of crossover and mutation is analyzed.Since the replication is used for selection, the average fitness value of the population, i.e., the objective value, would decrease rapidly, but at the same time, the diversity of the population and the global search ability decrease rapidly.Therefore, selecting a large probability of crossover and mutation can effectively increase the diversity of the population and the global search ability,leading to better optimization results.

    Table 1 Order demand

    Three different access operation schemes are adopted, and genetic algorithms are used to solve the optimal path.

    Mode 1: separated deposit and picking operations, with the deposit order operation and picking order operation conducted separately.The shortest operation distance calculated is 277.55.

    Mode 2: ‘deposit first and then pick’ operation.After all the goods on the freight vehicle are deposited,the freight vehicle does not return to the entrance and exit but continues with the picking operation.The shortest operation distance calculated is 234.68.

    Mode 3: the deposit and picking operations are completed simultaneously in an access collaboration operation.The shortest operation distance calculated is 190.40.

    Calculation results are presented in Table 2 and Figs 2 -4.

    Table 2 Optimization results of three different modes

    Fig.2 Optimization path of Mode 1

    Fig.3 Optimization path of Mode 2

    Note: in the table, the freight vehicle follows the path 0→34→22→127→0, starting from the entrance and carrying 13 kg of cargo.When arriving at cargo space No.34, 5 kg of cargo is deposited, and when reaching cargo space No.22, 2 kg of cargo is deposited.Finally,6 kg of cargo is deposited in cargo space No.127 before returning to the entrance and exit to load cargo.In the figures, the dotted line indicates picking cargo for stock out, while the solid line indicates depositing of cargo.

    The calculation results, Table 2, and the simulation path diagrams show that all three modes are operated with maximum load to reduce trips to and from the entrance and exit and shorten the operation path.Mode 1 has the longest path, while Mode 2 is slightly shorter with some optimization.Mode 3 has the shortest path,which is 31.4% shorter than Mode 1 and 18.8% shorter than Mode 2.The reason is that Mode 1 has noload when travelling to and from the entrance and exit.After deposit, it returns to the entrance and exit without any load, and when picking the cargo, it also goes to the cargo spaces with no load.Although Mode 2 can avoid no-load at the entrance and exit, it is not optimized as a whole.Mode 3 is optimized as a whole while avoiding no-load, resulting in the most optimal outcome.

    Fig.4 Optimization path of Mode 3

    To prove the effectiveness of the algorithm for access cooperative operation, numerous experiments have been conducted.The orders between 20 and 100 are randomly generated for calculation.For each example of different order quantity, the calculation is repeated 100 times, and the average value is calculated, as shown in Table 3 and Fig.5.The experimental results show that in the non-traditional Flying-V warehouse layout mode,the operation in Mode 3 can be shortened by an average of 25% – 35% compared with the operation path in Mode 1,and 13%–23% on average compared with the operation path in Mode 2.With an increase in order size, the optimization effect of Mode 3 becomes better.

    4 Conclusion

    This paper establishes a Flying-V layout warehouse path optimization model for dual-command operation path optimization of Flying-V layout warehouse management and proposes a dynamic decoding genetic algorithm.The simulation optimization experiment is conducted by randomly generating orders,and the optimization paths of three solutions, namely, separated operation of deposit and picking, ‘deposit first and then pick’ operation, and access collaboration operation, are calculated.The experimental results show that the access collaboration of dual-command operation can effectively reduce no-load, shorten the path,and improve efficiency.

    Table 3 The average of 20 independent runs of three modes for different number of orders

    Fig.5 Average optimization results of three modes for different number of orders

    美女免费视频网站| 午夜a级毛片| 天堂动漫精品| 满18在线观看网站| 成人三级做爰电影| 午夜免费鲁丝| 精品第一国产精品| 国产99久久九九免费精品| 国产乱人伦免费视频| 亚洲国产精品sss在线观看| 亚洲精品美女久久久久99蜜臀| 色精品久久人妻99蜜桃| 黄色丝袜av网址大全| 女性被躁到高潮视频| 精品人妻1区二区| 19禁男女啪啪无遮挡网站| 啪啪无遮挡十八禁网站| 久久性视频一级片| 在线观看日韩欧美| 大型av网站在线播放| 国产精品久久视频播放| 两性夫妻黄色片| 国内精品久久久久久久电影| 国产激情久久老熟女| 黄片播放在线免费| 丝袜美足系列| 黄色成人免费大全| 亚洲一区二区三区色噜噜| 伊人久久大香线蕉亚洲五| 美女大奶头视频| 欧美激情 高清一区二区三区| 久久香蕉国产精品| 亚洲性夜色夜夜综合| 久久久久久久久久久久大奶| tocl精华| 欧美成人性av电影在线观看| av在线播放免费不卡| 男女午夜视频在线观看| 国产一区二区三区视频了| 欧美绝顶高潮抽搐喷水| 精品不卡国产一区二区三区| 777久久人妻少妇嫩草av网站| 国产视频一区二区在线看| 少妇粗大呻吟视频| 天天躁狠狠躁夜夜躁狠狠躁| 夜夜看夜夜爽夜夜摸| 亚洲精品在线美女| 久久久久亚洲av毛片大全| 男女做爰动态图高潮gif福利片 | 黄色女人牲交| 视频区欧美日本亚洲| 久久天躁狠狠躁夜夜2o2o| 国产麻豆成人av免费视频| √禁漫天堂资源中文www| 99精品在免费线老司机午夜| 天天一区二区日本电影三级 | a在线观看视频网站| 高清毛片免费观看视频网站| 如日韩欧美国产精品一区二区三区| 久久这里只有精品19| 国产精品久久电影中文字幕| 精品国产乱子伦一区二区三区| 欧美乱码精品一区二区三区| 一级a爱视频在线免费观看| 国产高清视频在线播放一区| 日韩精品免费视频一区二区三区| 亚洲成av片中文字幕在线观看| av在线天堂中文字幕| 久久久久九九精品影院| 很黄的视频免费| 啦啦啦观看免费观看视频高清 | 久久久久国内视频| 亚洲第一电影网av| 亚洲中文字幕日韩| 欧美日本中文国产一区发布| 日本撒尿小便嘘嘘汇集6| 韩国av一区二区三区四区| 国产男靠女视频免费网站| 国产精品av久久久久免费| 欧美色欧美亚洲另类二区 | 亚洲国产欧美一区二区综合| 欧美久久黑人一区二区| 午夜精品国产一区二区电影| 欧美激情高清一区二区三区| 亚洲第一电影网av| 18禁观看日本| 叶爱在线成人免费视频播放| 欧美成人免费av一区二区三区| 色婷婷久久久亚洲欧美| 久久中文看片网| 禁无遮挡网站| 可以在线观看毛片的网站| 亚洲全国av大片| 亚洲成av片中文字幕在线观看| 亚洲av熟女| 首页视频小说图片口味搜索| 亚洲精品一卡2卡三卡4卡5卡| 欧美午夜高清在线| 精品欧美国产一区二区三| 丁香六月欧美| 亚洲美女黄片视频| 亚洲欧美一区二区三区黑人| 两个人看的免费小视频| 国产精品综合久久久久久久免费 | xxx96com| 国产精品久久久久久亚洲av鲁大| 老鸭窝网址在线观看| 在线播放国产精品三级| 18禁观看日本| 国内毛片毛片毛片毛片毛片| 欧美中文综合在线视频| 黄色 视频免费看| 国产亚洲欧美在线一区二区| 在线av久久热| 国产视频一区二区在线看| 国产一区二区三区综合在线观看| 久久精品国产99精品国产亚洲性色 | 亚洲 欧美 日韩 在线 免费| 视频区欧美日本亚洲| 亚洲一区高清亚洲精品| 国产亚洲精品久久久久久毛片| 久久中文看片网| 在线观看日韩欧美| 一边摸一边抽搐一进一出视频| 色综合亚洲欧美另类图片| 国产精华一区二区三区| 午夜福利影视在线免费观看| 精品国产美女av久久久久小说| 国产av又大| 真人做人爱边吃奶动态| 亚洲少妇的诱惑av| 99riav亚洲国产免费| 精品国产乱子伦一区二区三区| 此物有八面人人有两片| av视频在线观看入口| 正在播放国产对白刺激| 国产精品综合久久久久久久免费 | 脱女人内裤的视频| 国产真人三级小视频在线观看| 丝袜人妻中文字幕| 国产亚洲精品综合一区在线观看 | 韩国精品一区二区三区| 欧美日韩亚洲综合一区二区三区_| 亚洲欧美精品综合久久99| 黄色成人免费大全| 亚洲人成77777在线视频| 91麻豆av在线| 免费在线观看影片大全网站| 亚洲国产精品成人综合色| 欧美大码av| 午夜精品国产一区二区电影| 老鸭窝网址在线观看| 50天的宝宝边吃奶边哭怎么回事| 久久人人精品亚洲av| 免费人成视频x8x8入口观看| 国产激情欧美一区二区| 久久精品aⅴ一区二区三区四区| 国产亚洲av嫩草精品影院| 色综合婷婷激情| 男女下面进入的视频免费午夜 | 桃色一区二区三区在线观看| 日韩av在线大香蕉| 午夜老司机福利片| 国产精品免费视频内射| 露出奶头的视频| 成人亚洲精品av一区二区| 夜夜看夜夜爽夜夜摸| 久久精品人人爽人人爽视色| 正在播放国产对白刺激| 涩涩av久久男人的天堂| 99riav亚洲国产免费| 精品高清国产在线一区| 黄色女人牲交| 最新在线观看一区二区三区| 国产一级毛片七仙女欲春2 | 欧美另类亚洲清纯唯美| 日本免费一区二区三区高清不卡 | 一边摸一边做爽爽视频免费| 大陆偷拍与自拍| 午夜成年电影在线免费观看| 欧美+亚洲+日韩+国产| 亚洲欧美一区二区三区黑人| 久久国产亚洲av麻豆专区| 日韩 欧美 亚洲 中文字幕| 两性夫妻黄色片| 精品久久久精品久久久| 91麻豆精品激情在线观看国产| 在线观看日韩欧美| 亚洲专区国产一区二区| 精品国产乱码久久久久久男人| 亚洲精品国产色婷婷电影| 国产欧美日韩一区二区三区在线| 久久精品91无色码中文字幕| 好看av亚洲va欧美ⅴa在| 国产精品久久久久久精品电影 | 热re99久久国产66热| 国产真人三级小视频在线观看| tocl精华| 一级黄色大片毛片| 久久人妻福利社区极品人妻图片| 人妻丰满熟妇av一区二区三区| 亚洲少妇的诱惑av| 久9热在线精品视频| 一本大道久久a久久精品| 国产精品,欧美在线| 免费在线观看亚洲国产| 精品一区二区三区视频在线观看免费| 亚洲aⅴ乱码一区二区在线播放 | 50天的宝宝边吃奶边哭怎么回事| 一a级毛片在线观看| 久久久国产成人免费| 老司机深夜福利视频在线观看| 亚洲成人国产一区在线观看| 久久久久久亚洲精品国产蜜桃av| 999精品在线视频| 日日干狠狠操夜夜爽| 我的亚洲天堂| 久热这里只有精品99| 国产精品美女特级片免费视频播放器 | 岛国视频午夜一区免费看| 老司机午夜十八禁免费视频| 12—13女人毛片做爰片一| 亚洲aⅴ乱码一区二区在线播放 | 久久国产亚洲av麻豆专区| 欧美黑人精品巨大| 十分钟在线观看高清视频www| 亚洲专区国产一区二区| 精品免费久久久久久久清纯| 国产亚洲精品综合一区在线观看 | 国产真人三级小视频在线观看| 99精品久久久久人妻精品| 成人国产综合亚洲| 亚洲性夜色夜夜综合| 九色国产91popny在线| 日韩成人在线观看一区二区三区| 亚洲人成电影免费在线| 一级黄色大片毛片| 99国产精品一区二区蜜桃av| 女人爽到高潮嗷嗷叫在线视频| 日韩欧美三级三区| svipshipincom国产片| 人人妻,人人澡人人爽秒播| a在线观看视频网站| 亚洲专区字幕在线| 国产欧美日韩精品亚洲av| 色av中文字幕| 久久欧美精品欧美久久欧美| 成人手机av| 亚洲va日本ⅴa欧美va伊人久久| 啦啦啦 在线观看视频| 欧美日韩亚洲国产一区二区在线观看| 村上凉子中文字幕在线| 成人手机av| 亚洲一区中文字幕在线| 国产一区二区三区在线臀色熟女| 久久青草综合色| 两个人免费观看高清视频| 精品一区二区三区四区五区乱码| 悠悠久久av| av网站免费在线观看视频| 色播在线永久视频| 国产三级黄色录像| 久久青草综合色| 在线永久观看黄色视频| 精品日产1卡2卡| 精品电影一区二区在线| 国产色视频综合| 亚洲av五月六月丁香网| а√天堂www在线а√下载| 黄色毛片三级朝国网站| 欧美日本中文国产一区发布| 亚洲在线自拍视频| avwww免费| 老司机午夜十八禁免费视频| 亚洲全国av大片| 国产精华一区二区三区| 国产视频一区二区在线看| 日本a在线网址| 91精品国产国语对白视频| av欧美777| 国产亚洲欧美98| 日韩中文字幕欧美一区二区| 少妇裸体淫交视频免费看高清 | 久久人妻熟女aⅴ| 中文字幕人妻熟女乱码| 国产成人精品久久二区二区免费| 国产亚洲精品第一综合不卡| 亚洲aⅴ乱码一区二区在线播放 | 一夜夜www| svipshipincom国产片| 亚洲精品中文字幕在线视频| 国产一区二区三区在线臀色熟女| 91麻豆av在线| 欧美成人午夜精品| 亚洲精品粉嫩美女一区| 性欧美人与动物交配| 欧美日韩精品网址| 亚洲av成人av| 老司机午夜十八禁免费视频| 视频区欧美日本亚洲| 9色porny在线观看| 亚洲第一青青草原| 久久热在线av| 亚洲第一青青草原| 两个人看的免费小视频| 岛国视频午夜一区免费看| 多毛熟女@视频| 丁香欧美五月| 成人国语在线视频| 男女午夜视频在线观看| 国产熟女xx| 亚洲片人在线观看| 高清毛片免费观看视频网站| 国产亚洲精品综合一区在线观看 | 亚洲午夜理论影院| 国产精品日韩av在线免费观看 | 午夜亚洲福利在线播放| 亚洲一区二区三区不卡视频| 国产一区二区三区在线臀色熟女| 99久久99久久久精品蜜桃| 欧美激情极品国产一区二区三区| 久久青草综合色| 欧美黄色片欧美黄色片| 淫妇啪啪啪对白视频| 国产91精品成人一区二区三区| 国产激情久久老熟女| 国产xxxxx性猛交| 十分钟在线观看高清视频www| 亚洲av成人不卡在线观看播放网| 久久这里只有精品19| 午夜精品国产一区二区电影| 18禁黄网站禁片午夜丰满| 亚洲成人久久性| 久久性视频一级片| 中文亚洲av片在线观看爽| 老鸭窝网址在线观看| 美女国产高潮福利片在线看| av网站免费在线观看视频| 久久久久国产精品人妻aⅴ院| 午夜亚洲福利在线播放| 欧美国产精品va在线观看不卡| 国产av精品麻豆| 中文字幕高清在线视频| 久久久久久大精品| 可以在线观看毛片的网站| 国产欧美日韩精品亚洲av| 淫妇啪啪啪对白视频| 午夜福利,免费看| 高清在线国产一区| 精品乱码久久久久久99久播| 亚洲欧美日韩高清在线视频| 99在线人妻在线中文字幕| 精品一区二区三区av网在线观看| 一进一出好大好爽视频| 成人18禁高潮啪啪吃奶动态图| 欧美午夜高清在线| 精品久久久久久久久久免费视频| 亚洲精品美女久久久久99蜜臀| 久久人人爽av亚洲精品天堂| 亚洲av成人av| 一级毛片高清免费大全| 精品久久久久久久毛片微露脸| 99国产精品99久久久久| 黄色视频,在线免费观看| 久久久久久久久中文| 久久久久久大精品| 女人爽到高潮嗷嗷叫在线视频| 国产精品精品国产色婷婷| 9191精品国产免费久久| 丝袜美腿诱惑在线| 又黄又爽又免费观看的视频| 夜夜爽天天搞| 一边摸一边做爽爽视频免费| 如日韩欧美国产精品一区二区三区| 国产一级毛片七仙女欲春2 | 午夜日韩欧美国产| 亚洲性夜色夜夜综合| 精品久久久精品久久久| 欧美日韩亚洲综合一区二区三区_| 国产亚洲精品一区二区www| 99国产综合亚洲精品| 一本综合久久免费| 69av精品久久久久久| 老司机深夜福利视频在线观看| 18禁美女被吸乳视频| 久久精品亚洲熟妇少妇任你| 久久久久久久久久久久大奶| 夜夜看夜夜爽夜夜摸| 成年人黄色毛片网站| 亚洲精品中文字幕在线视频| 热99re8久久精品国产| 亚洲精品在线观看二区| 久久久久国产一级毛片高清牌| 巨乳人妻的诱惑在线观看| 91麻豆av在线| 他把我摸到了高潮在线观看| 夜夜躁狠狠躁天天躁| 老汉色av国产亚洲站长工具| 波多野结衣巨乳人妻| 日韩视频一区二区在线观看| 在线十欧美十亚洲十日本专区| 国产成人精品无人区| 欧美日韩精品网址| 大香蕉久久成人网| 18禁观看日本| 性欧美人与动物交配| 日韩 欧美 亚洲 中文字幕| 日本三级黄在线观看| 久久婷婷人人爽人人干人人爱 | 久久久久久大精品| 免费在线观看视频国产中文字幕亚洲| av超薄肉色丝袜交足视频| 侵犯人妻中文字幕一二三四区| 日韩av在线大香蕉| 日本黄色视频三级网站网址| bbb黄色大片| 亚洲少妇的诱惑av| 精品久久久久久成人av| 欧美黄色片欧美黄色片| 成人精品一区二区免费| 男女之事视频高清在线观看| 麻豆成人av在线观看| 大香蕉久久成人网| 伊人久久大香线蕉亚洲五| 国产亚洲欧美98| 欧美在线黄色| 正在播放国产对白刺激| 亚洲精品粉嫩美女一区| 中文字幕精品免费在线观看视频| 夜夜爽天天搞| 亚洲一区二区三区色噜噜| 国产国语露脸激情在线看| 亚洲精品一区av在线观看| 大码成人一级视频| 18禁国产床啪视频网站| 亚洲精品av麻豆狂野| av在线天堂中文字幕| 欧美日韩瑟瑟在线播放| 男人的好看免费观看在线视频 | 一级a爱视频在线免费观看| 一级片免费观看大全| 久久精品91蜜桃| 别揉我奶头~嗯~啊~动态视频| 黑人巨大精品欧美一区二区蜜桃| 自拍欧美九色日韩亚洲蝌蚪91| 国产高清激情床上av| 最近最新中文字幕大全电影3 | 欧美日韩乱码在线| 在线观看66精品国产| 后天国语完整版免费观看| 大型黄色视频在线免费观看| 成年女人毛片免费观看观看9| 日本 av在线| 两个人看的免费小视频| 露出奶头的视频| 亚洲最大成人中文| 91国产中文字幕| 亚洲全国av大片| 中文字幕色久视频| 亚洲视频免费观看视频| 窝窝影院91人妻| 国内毛片毛片毛片毛片毛片| 在线观看66精品国产| 麻豆国产av国片精品| 久久欧美精品欧美久久欧美| 熟女少妇亚洲综合色aaa.| 18禁国产床啪视频网站| 热re99久久国产66热| 狠狠狠狠99中文字幕| 黑人巨大精品欧美一区二区mp4| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜福利18| 日韩欧美在线二视频| 国产成年人精品一区二区| 99久久99久久久精品蜜桃| 日韩av在线大香蕉| 黄色 视频免费看| 欧美丝袜亚洲另类 | 久久青草综合色| 国产精品av久久久久免费| 国产精品98久久久久久宅男小说| 真人一进一出gif抽搐免费| 久久久久亚洲av毛片大全| 国产激情久久老熟女| 日本精品一区二区三区蜜桃| 香蕉久久夜色| a在线观看视频网站| 自线自在国产av| 校园春色视频在线观看| АⅤ资源中文在线天堂| 搞女人的毛片| 两性夫妻黄色片| 国产三级在线视频| 亚洲国产中文字幕在线视频| 一边摸一边抽搐一进一小说| 欧美+亚洲+日韩+国产| 欧美日韩亚洲国产一区二区在线观看| 亚洲av成人av| 国产精品乱码一区二三区的特点 | 久久欧美精品欧美久久欧美| √禁漫天堂资源中文www| 国产黄a三级三级三级人| 欧美性长视频在线观看| 如日韩欧美国产精品一区二区三区| 国产亚洲精品第一综合不卡| 最新美女视频免费是黄的| 免费高清在线观看日韩| av免费在线观看网站| 亚洲一卡2卡3卡4卡5卡精品中文| 国产xxxxx性猛交| 高潮久久久久久久久久久不卡| 91av网站免费观看| 动漫黄色视频在线观看| 亚洲成国产人片在线观看| 国产91精品成人一区二区三区| 亚洲国产欧美网| 久久天躁狠狠躁夜夜2o2o| 亚洲全国av大片| 午夜久久久在线观看| 国产欧美日韩精品亚洲av| 日韩国内少妇激情av| 嫁个100分男人电影在线观看| 女人高潮潮喷娇喘18禁视频| 中文字幕最新亚洲高清| 久久中文字幕人妻熟女| 日本黄色视频三级网站网址| 性欧美人与动物交配| 亚洲男人天堂网一区| 国产伦一二天堂av在线观看| 高清毛片免费观看视频网站| 久久人人精品亚洲av| 9色porny在线观看| 免费女性裸体啪啪无遮挡网站| 动漫黄色视频在线观看| 成年女人毛片免费观看观看9| 日本精品一区二区三区蜜桃| 最近最新中文字幕大全电影3 | 高清黄色对白视频在线免费看| 999精品在线视频| 99久久综合精品五月天人人| 国产一区二区三区综合在线观看| 岛国在线观看网站| 99精品久久久久人妻精品| 男人舔女人下体高潮全视频| 亚洲色图综合在线观看| 母亲3免费完整高清在线观看| 好男人电影高清在线观看| 久久伊人香网站| 国产一区二区三区在线臀色熟女| 久久香蕉精品热| 首页视频小说图片口味搜索| 一二三四社区在线视频社区8| 欧美另类亚洲清纯唯美| 亚洲精品美女久久av网站| 亚洲午夜精品一区,二区,三区| 国产极品粉嫩免费观看在线| 国产精品久久久久久精品电影 | 欧美av亚洲av综合av国产av| 看免费av毛片| 亚洲国产欧美一区二区综合| 99国产极品粉嫩在线观看| 久久影院123| 国产伦人伦偷精品视频| 99久久久亚洲精品蜜臀av| 国产精品久久电影中文字幕| 国产精品爽爽va在线观看网站 | 韩国精品一区二区三区| 中文字幕最新亚洲高清| 免费女性裸体啪啪无遮挡网站| 丝袜在线中文字幕| 亚洲男人的天堂狠狠| 久久精品人人爽人人爽视色| 亚洲欧美激情在线| 在线av久久热| 久久久水蜜桃国产精品网| 国产精品98久久久久久宅男小说| 性少妇av在线| www.999成人在线观看| 老熟妇乱子伦视频在线观看| 极品人妻少妇av视频| 18禁国产床啪视频网站| 亚洲va日本ⅴa欧美va伊人久久| 欧美日韩一级在线毛片| 精品国产一区二区三区四区第35| 99国产精品99久久久久| 一本久久中文字幕| 国产真人三级小视频在线观看| 99国产精品99久久久久| 高清毛片免费观看视频网站| 日本欧美视频一区| 日日摸夜夜添夜夜添小说| 一边摸一边抽搐一进一小说| 亚洲国产毛片av蜜桃av| 久久 成人 亚洲| 国产成人影院久久av| 97人妻精品一区二区三区麻豆 | 少妇熟女aⅴ在线视频| 国产成人av教育| 午夜福利,免费看| 亚洲午夜精品一区,二区,三区| 免费在线观看亚洲国产| 国产成年人精品一区二区| 一边摸一边抽搐一进一出视频| 老司机午夜十八禁免费视频| 99国产精品免费福利视频| 国产精品99久久99久久久不卡| 国产亚洲欧美98| 19禁男女啪啪无遮挡网站| 精品不卡国产一区二区三区| 精品欧美一区二区三区在线| 成人亚洲精品一区在线观看| 黄网站色视频无遮挡免费观看| 人妻久久中文字幕网| 黑丝袜美女国产一区| 少妇粗大呻吟视频|